On Model-Checking Optimistic Replication Algorithms

Hanifa Boucheneband Abdessamad Imife

1 Laboratoire VeriFormEcoIe Polytechnique de Moi&al, Canada
hani f a. boucheneb@ol ynt 1. ca
2 INRIA Grand-Est & Nancy-Univers#, France
imne@oria.fr

Abstract. Collaborative editors consist of a group of users editing a shared doc-
ument. The Operational Transformation (OT) approach is used fogpasting
optimistic replication in these editors. It allows the users to concurrentlytapda
the shared data and exchange their updates in any order since thegeoieeof

all replicas,i.e. the fact that all users view the same data, is ensured in all cases.
However, designing algorithms for achieving convergence with the @foagh

is a critical and challenging issue. In this paper, we address the verificHt@T
algorithms with a model-checking technique. We formally define, using4ésl
PAAL, the behavior and the convergence requirement of the collaboraitoes

as well as the abstract behavior of the environment where these syatersup-
posed to operate. So, we show how to exploit some features of suemsyand

the toolUPPAALto attenuate the severe state explosion problem. We have been
able to show that if the number of users exceeds 2 then the convengepssty

is not satisfied for five OT algorithms. A counterexample is provided Yerye
algorithm.

1 Introduction

Collaborative editors are a class of distributed systerhgre/two or more users (sites)
may manipulate simultaneously some objects like textsgemsagraphics, etc. In or-
der to achieve an unconstrained group work, the shared tsbjee replicated at the
local memory of each participating user. Every operatioexiscuted locally first and
then broadcast for execution at other sites. So, the opasatre applied in different
orders at different replicas of the object. This potenfiddiads to divergent (or differ-
ent) replicas, an undesirable situation for replicatiasdd collaborative editor®per-
ational Transformatior{OT) is an approach which has been proposed to overcome the
divergence problem [4]. This approach consists of an algoriwhich transforms an
operation (previously executed by some other site) acogrtti local concurrent ones
in order to achieve convergence. It has been used in mamgboolitive editors such
as Joint Emacs [9] (an Emacs collaborative editor), Cowa#dd (a collaborative ver-
sion of MicroSoft Word) and CoPowerPoint [14] (a collaboratversion of MicroSoft
PowerPoint).

As established in [12], an OT algorithm consists of two pai)san integration
procedurethat is responsible for generating and propagating locatatns as well
as executing remote operations; (iijransformation functiorfcalled IT function) that

determines how an operation is transformed against ancthé function depends
on the semantics of the shared document. However, if an Qdriiigh is not correct
then the consistency of shared data is not ensured. Thgs;ritical to verify such an
algorithm in order to avoid the loss of data when broadcgstiperations. According
to [9], only the transformation function of a shared datadsee fulfill two properties
TP1 andTP2 (explained in Section 2) in order to ensure convergencediig such
a function and proving that it satisfi@sP1 and T P2 is not an easy task. This proof
is often unmanageably complicated due to the fact that anl@irithm has infinitely
many states.

In this paper, we investigate the use of a model-checkingnigae [1] to verify
whether an OT algorithm satisfies the convergence propempio Model-checking is
a very attractive and automatic verification technique stems. It is applied by rep-
resenting the behavior of a system as a fistt#e transition systenspecifying prop-
erties of interest in a temporal logic and finally exploritg tstate transition system
to determine whether they hold or not. The main interesteajure of this technique
is the production of counterexamples in case of unsatisfiedgsties. Several Model-
checkers have been proposed in the literature. The well Rrav@SPIN|, UPPAALY
andNuSM\P. Among these Model-checkers, we consider here theUSHAAL

UPPAAL s a tool suite for validation and symbolic model-checkirfgeal-time
systems. It consists of a number of tools including a gragteditor for system de-
scriptions, a graphical simulator, and a symbolic modelekler. This choice is moti-
vated by the interesting features PPAAL tools [8], especially the powerful of its
description model, its simulator and its symbolic modetater. Indeed, its description
model is a set of timed automata [1] extended with binary nbés broadcast channels,
C-like types, variables and functions (functions can bealuseabstract some compli-
cated treatments). Its simulator is useful and convividl alfows to get and replay, step
by step, counterexamples obtained by its symbolic modetiatr. Its model-check&r
based on a forward on-the-fly method, allows to compute oweillibns of states.

In this work, we deal with OT algorithms that have the samegrdtion proce-
dure but differ only by their transformation functions. Terify these algorithms, we
formally describe, usingfPPAAL, the behavior and the requirements of the replication-
based collaborative editors, as well as the abstract behaf/the environment where
these systems are supposed to operate. Two main modelsidiedsand proposed for
the verification of the convergence properties of OT alponi: theconcrete model
and thesymbolic modelThe concrete model is very close to the system implementa-
tion in the sense that the selection and the effective eiwgtof editing operations are
performed during the construction of execution traces. &l@s this model runs up
against a severe explosion of states (the number of sigrsincreases exponentially
with the number of operations). We have not been able towedime OT algorithms.
The symbolic model aims to overcome the limitation of thearete model by delay-
ing the effective selection and execution of editing operat until the construction of

3 http://spinroot.com

4 http://www.uppaal.com

5 http:/nusmv.irst.itc.it

6 The model-checker is used without the graphical interface

symbolic execution traces of all sites is completed. Udiregsymbolic model, we have
been able to show that if the number of sites exceeds 2 therotheergence property
is not satisfied for all OT algorithms considered here. A ¢etgxample is provided for
every algorithm.

The paper starts with a presentation of the OT approach amdfahe known OT al-
gorithms proposed in the literature for synchronizing ebaext documents (Section 2).
Section 3 is devoted to the description of the symbolic madel its model-checking.
Related work and conclusion are presented respectivelaiions 4 and 5.

2 Operational Transformation Approach

2.1 Background

OT is an optimistic replication technique which allows masgrs (or sites) to concur-
rently update the shared data and next to synchronize tiveigent replicas in order to
obtain the same data. The updates of each site are executhd lmtal replica imme-
diately without being blocked or delayed, and then are pyaped to other sites to be
executed again. Accordingly, every update is processeauingdteps: (igenerationon
one site; (ii)broadcastto other sites; (iii)receptionon one site; (ivlexecutionon one
site.

The shared object.We deal with a shared object that admits a linear structuse. T
represent this object we use thst abstract data type. Ast is a finite sequence of
elements from a data type. This data type is only a template and can be instantiated by
many other types. For instance, an element may be regardechasacter, a paragraph,

a page, a slide, an XML node, etc. Letbe the set of lists.

The primitive operations. It is assumed that a list state can only be modified by the
following primitive operations: (iJns(p,e) which inserts the elememtat positionp;
(i) Del(p) which deletes the element at positipnWe assume that positions are given
by natural numbers. The set of operations is defined as fellow

O ={Ins(p,e)lec Eandpe N}U{Del(p)|p e N} U{Nop}
whereNopis the idle operation that has null effect on the list stabec&the shared ob-
jectis replicated, each site will own a local sthtbat is altered only by local operations.
The initial state, denoted Hy, is the same for all sites. The functi@o: O x £ — L,
computes the stateo(o,|) resulting from applying operationto statel. We say that
ois generatedn statd. We denote byos; 0;. . .; 0n) an operation sequence. Applying
an operation sequence to a liss defined as follows: (ipo([],l) = I, where[] is the
empty sequence and; (ipo([o1;02;...;0n],1) = Do(on,Do(...,Do(02,D0(01,1)))).
Two operation sequenceeq andseg are equivalent denoted byseq = seq, iff
Do(seq,l) = Do(seq,|) for all lists|.

Definition 1. (Causality Relation) Let an operation ¢ be generated at site i and an operation o
be generated at site j. We say that@ausally dependsn o, denoted @ — o, iff: (i) i = j and
01 was generated beforepor, (ii) i # j and the execution ofioat site j has happened before
the generation of o

Definition 2. (Concurrency Relation) Two operations pand @ are said to beconcurrentde-
noted by @ || 0, iff neither @ — 0z nor o; — 0g.

site 1 site 2 site 1 site 2
“efecte" “efecte“ “efecte” “efecte“
01 = Iﬁs(l, f) o= beI(S) 01 = Iﬁs(l, f) 0= beI(S)
[“eﬁectNefect" @/ / “efect”
Dei(5) Ins(1, f) IT(02,00) = Del(6) 1T (o1,02) = Ins(L,)
[“efféce“ | \ “efféct" | @\
Fig. 1. Incorrect integration. Fig. 2. Integration with transformation.

As along established convention in OT-based collaboratii®rs [4,12], théimes-
tamp vectorsare used to determine the causality and concurrency nestietween op-
erations. Every timestamp is a vectbof integers with a number of entries equal to the
number of sites. For a site each entry/[i] returns the number of operations generated
at sitei that have been already executed on gileet 0; ando, be two operations issued
respectively at sites,, ands,, and equipped with their respective timestamp vectors
Vo, andVy,. The causality and concurrency relations are detectedlas/o (i) 0 — 0,
iff V01 [501} > V02 [501}; (ii) o1 ” 0y iff V01 [501} < V02 [501] andVol [502] 2 V02 [502]'

2.2 Transformation principle

A crucial issue when designing shared objects with a rej@etarchitecture and arbi-
trary messages communication between sites istimsistency maintenanger con-
vergencg of all replicas.

Example 1.Consider the following group text editor scenario (see Fig.1): therenarasers (on
two sites) working on a shared document represented by a sequecitaracters. These char-
acters are addressed from 0 to the end of the document. Initially, boiésclopld the string “
efecté. User 1 executes operatian = Ins(1,f) to insert the charactdrat position 1. Concur-
rently, user 2 performe, = Del(5) to delete the characterat position 5. Whero; is received
and executed on site 2, it produces the expected steffgct. But, wheno, is received on site

1, it does not take into account tha¢ has been executed before it and it produces the string
“effecé. The result at site 1 is different from the result of site 2 and it appiresiolates the
intention ofoy since the last charactey which was intended to be deleted, is still present in the
final string. Consequently, we obtairdavergencebetween sites 1 and 2. It should be pointed out
that even if a serialization protocol [4] was used to require that all sitesuteo; ando, in the
same orderi(e. a global order on concurrent operations) to obtain an identical refatte this
identical result is still inconsistent with the original intentionoaf

To maintain convergence, the OT approach has been propgsgd. When UserX
gets an operatioapthat was previously executed by U&eon his replica of the shared
object UserX does not necessarily integrai@ by executing it “as is” on his replica.
He will rather execute a variant ofp, denoted byop' (called atransformationof op)
thatintuitively intends to achieve the same effect as s approach is based on a
transformation functionT, calledInclusive Transformatigrthat applies to couples of
concurrent operations defined on the same state.

Example 2.In Fig.2, we illustrate the effect d on the previous example. Whes is received
on site 1,0o needs to be transformed accordingiaas follows:IT ((Del(5),Ins(1,f)) = Del(6).
The deletion position af, is incremented because has inserted a character at position 1, which
is before the character deleteddpy Next,op, is executed on site 1. In the same way, wheis
received on site 2, it is transformed as follow{(Ins(1,f),Del(5)) = Ins(1,f); o1 remains the
same becaudeis inserted before the deletion positionamf

2.3 Transformation function

We present here an IT function known in the literature forctyonizing linear ob-
jects [10] altered by insertion and deletion operationghis work, the signature of in-
sert operation is extended by two paramegesand post These parameters store the
set of concurrent delete operations. Thepetcontains operations that have deleted a
character before the insertion positipnAs for post it contains operations that have
removed a character after When an insert operation is generated the paramepters
andpostare empty. They will be filled during transformation steps.

In Fig.3, we give the four transformation cases fors and Del proposed
by Suleiman andal [10]. There is an interesting situation in the first cases(
and Ins), called conflict situation where two concurrentns(ps, ¢, pre;, post) and
Ins(p2, C2, prez, posk) have the same positiond. p = p2). To resolve this conflict,
three cases are possible:

1. (pre1n posk) # 0: character; is inserted before charactey,

2. (prepnposk) # 0: charactec; is inserted after character,

3. (prepNposp) = (post N prex) = 0: in this case functiomodéc), which computes a total
order on character®(g.lexicographic order), is used to choose amapgndc, the char-
acter to be added before the other. Like the site identif@dgc) enables us to tie-break
conflict situations [3].

Note that when two concurrent operations insert the sameacte €.9. codéc;) =
cod€c,)) at the same position, the one is executed and the other dgadeed by
returning the idle operatioNop In other words, only one character is kept. The re-
maining cases dfT are quite simple.

2.4 Transformation Properties

Definition 3. Let seq be a sequence of operations. Transforming any editing opematiocord-
ing to seq is denoted by ITo,seq and is recursively defined as follows:

IT*(o,[]) = 0 where[] is the empty sequence;
IT*(0,[01;02;...;0n])) = IT*(1T(0,01),[02; . ..; 0n])

We say that o has been concurrently generated according to all opesatioseq.

Using an IT function requires us to satisfy two properti€ls fr all o, 0; ando,
pairwise concurrent operations:

e Condition TP1: [01;1T (02,01)] = [02;IT (01,02)].
e Condition TP2: IT*(0,[01;1T (02,01)]) = IT*(0,[02;IT (01,02)]).

IT(Ins(py,C1, prey, post), Ins(pz, 2, prez, posk)) =

Ins(pz,C1, pre1, post) if p1 < p2

Ins(p1 + 1,¢y, preg, post) if (p1 > p2) V (p1 = p2 A prer N posk # 0)

Ins(pz,C1, pre, post) if p1 = p2 Apost Npre; # 0

Ins(p1,c1, pre;, post) if (preyNposk =0V pregNposk =0) A
p1 = p2 A codg(cy) > codg(cy)

Ins(p1 + 1,¢1, preg, post) if (prepNposk = 0V post Npre; =0) A
p1 = p2 Acod€cy) < cod€cy)

Nop() otherwise

Ins(p1,c1, prey, post U {Del(p2)}) ifpr<p2
Ins(py — 1,¢1, pre; U{Del(p2)}, post) otherwise

Del(py) ifp1 <p2
Del(p1+1) otherwise

IT((Ins(p1, €1, prey, post), Del(pz))= {

IT((Del(p1), Ins(pz,C2, prez, posk)) = {

Del(py) ifpr <p2
IT(Del(py),Del(p2)) = { Del(p1—1) ifp1>p2
Nop() otherwise

Fig. 3.IT function of Suleiman andl.

PropertyT P1 defines astate identityand ensures that @; ando, are concurrent,
the effect of executing; beforeo; is the same as executing beforeo;. This property
is necessary but not sufficient when the number of concuoperations is greater than
two. As for T P2, it ensures that transformimgalong equivalent and different operation
sequences will give the same operation.

PropertiesT P1 andT P2 are sufficient to ensure the convergencedioy number
of concurrent operations which can be executearbitrary order[9]. Accordingly, by
these properties, it is not necessary to enforce a globall aoler between concurrent
operations because data divergence can always be repgimzblational transforma-
tion. However, finding an IT function that satisfie®1 andT P2 is considered as a hard
task, because this proof is often unmanageably complicated

It should be noted that, using our model-checking techniguee detected subtle
flaws in the IT function of Fig.3. These flaws lead to divergeaituations (see Section
3).

2.5 Consistency criteria

A stable state in an OT-based collaborative editor is aeliavhen all generated op-
erations have been performed at all sites. Thus, the faligvariteria must be en-
sured [4,9,12]:

Definition 4. (Consistency Model) An OT-based collaborative editor consistentff it satisfies
the following properties:
1. Causality preservationit 01 — 02 then q is executed beforeat all sites.
2. Convergencewhen all sites have performed the same set of updates, the copiesludtbe s
document are identical.

To preserve the causal dependency between updates, tinpestetors are used. The
concurrent operations are serialized by using IT functiéds.this technique enables

concurrent operations to be serialized in any order, theargence depends onP1
andT P2 that IT function must verify.

2.6 Operational Transformation algorithms

Every site is equipped by an OT algorithm that consists ofrtvein components [4, 9]:
theintegration procedurand thetransformation componenthe integration procedure
is responsible for receiving, broadcasting and executpeyations. It is rathendepen-
dentof the type of the shared objects. Several integration ghoes have been pro-
posed in the groupware research area, such as dOPT [4], adJHTSOCT2,4 [11,15]
and GOTO [12]. The transformation component is commonly Bifuhction which
is responsible for merging two concurrent operations ddfime the same state. This
function isspecificto the semantics of a shared object. Every site generateatmpes
sequentially and stores these operations in a stack alkmlcahistory (or execution
trace). When a site receives a remote operatipithe integration procedure executes
the following steps:

1. From the local historgedjit determines the equivalent sequeses that is the concatenation
of two sequenceseq, andseq where (i) seq, contains all operations happened before
(according to Definition 1), and; (iBeq consists of operations that are concurrera.tbor
more details, see [3].

2. It calls the transformation component in order to get operatidhat is the transformation
of o according teseq (i.e. d = 1T*(0,seq)).

3. It execute®’ on the current state.

4. It addso’ to local historyseq

The integration procedure allows history of executed dpmra to be built on every
site, provided that the causality relation is preservedstAble state, history sites are
not necessarily identical because the concurrent opesati@y be executed in different
orders. Nevertheless, these histories must be equivaléme isense that they must lead
to the same final state. This equivalence is ensured iff tled UiE function satisfies
propertiesT P1 andT P2.

In this work, we deal with OT algorithms that have the samegrdtion procedure
but differ only by their transformation functions. Five Idirfctions have been considered
(see [3]).

The rest of the paper is devoted to the specification and sisaly OT algorithms,
by means of model-check&fPPAAL We show how to exploit some features of OT
algorithms and the specification languagdJ®PAALto attenuate the state explosion
problem of the execution environment of such algorithms.

3 Modelling OT algorithms with UPPAAL

3.1 UPPAAL's model

In UPPAAL a system consists of a collection of processes which camoricate via

some shared data and synchronize through binary or braaat@asels [8]. Each pro-
cess is an automaton extended with finite sets of clocksabias (bounded integers),
guards and actions. In such automata, locations can beddt®l clock conditions and

edges are annotated with selections, guards, synchrimmizagnals and updates. Selec-
tions bind non-deterministically a given identifier to awalin a given range (type). The
other three labels of an edge are within the scope of thigdmndn edge is enabled in

a state if and only if the guard evaluates to true. The updqgieession of the edge is
evaluated when the edge is fired. The side effect of this espe changes the state of
the system. Edges labelled with complementary synchrtaizsignals over a common
channel must synchronize. Two or more processes synclertimiaugh channels with

a sender/receiver syntax [2]. For a binary channel, a seradeemit a signal through a
given binary channebyn(Syn), if there is another process (a receiver) ready to receive
the signal §yr?). Both sender and receiver synchronize on execution opt@nen-
tary actionsSyn and Syr?. For a broadcast channel, a sender can emit a signal through
a given broadcast channgyn(Syri), even if there is no process ready to receive the
signal Syr?). When a sender emits such a signal via a broadcast chariaslymnchro-
nized with all processes ready to receive the signal. Thatagdf synchronized edges
are executed starting with the one of the sender followechbgé of the receiver(s).
The execution order of updates of receivers complies witlr ireation orders.

3.2 Modelling execution environment of OT algorithms

A collaborative editor is composed of two or more sites (sjp@rthich communicate

via a network and use the principle of multiple copies, toralsme object (a text).

Initially, each user has a copy of the shared object. It ceenabrds modify its copy by

executing operations generated locally and those recéiwatother users. When a site
executes a local operation, it is broadcast to all othersu3dre execution of a non local
operation consists of integration and transformationsstepexplained in the previous
section (see sub-section 2.6).

Two main models are proposed for the verification of the coyesece properties
of OT algorithms: theconcrete modeand thesymbolic modelThe main difference
between these models concerns the effective executionesfitipn signatures. Indeed,
in the concrete model, effective execution of editing opiers is performed during the
generation of traces (see Fig. 4) while, in the symbolic mdtlés delayed until the
construction of symbolic execution traces of all sites impteted (see Fig 5). In this
paper, we focus on the symbolic model. For further detaitsualthe concrete model
and the different variants of the concrete and symbolic nspelee refer to [3].

System definition.A collaborative editor is modelled as a set of variablescfioms,
processes (one per user) and a broadcast channel. Notbghagtivork is abstracted
and not explicitly represented. This is possible by puttiisiple (in global variables) all
operations generated by different sites and timestamreof sites. In this way, there
is no need to represent and manage queues of messages.delbégites are similar
and represented by a type of process na®ieel The only parameter of the process is
the site identifier namegid. With UPPAAL, the definition of the system is given by
the following declarations which mean that the system aasifNbSitessites of type
Site

Sites(const pid pid) = Site(pid);

system Sites;

Input data and Variables. Variables are of two kinds: those used to store input data
and those used to manage the execution of operations. Nudtalthost all variables are
defined as global to be accessible by any site (avoiding citin of data in the repre-
sentation of the system state). In addition, this easegtafication of the convergence
property and allows to force the execution, in one step, sedges of different sites.

The system model has the following inputs and variables:
1. The number of sitesconst int NbSites Each site has its own identifier, denotpidi for

process identifierdid € [0, NbSites- 1]).

2. The initial text to be shared by users and its alphabet. The text to bedshgrusers is
supposed to be infinite but the attriblResition of operations is restricted to the window
[0,L — 1] of the text. The length of the window is set in the constatonst int L).

3. The number of local operations of each site, given in arragr[NbSite$

(const int ItefNbSite§ Iter[i] being the number of local operations of sitg
We also use and set in constant namikxiter the total number of operations
(const int Maxlter= 3 Iter[i]);

i€[0,NbSites-1]

. The IT function ¢onst int alg9.

. The timestamp vectors of different sit8§{lbSitegNbSite$).

. VectorOperationgMaxlter] to store the owner and the timestamp vector of each operation.

. VectorsTracgNbSitefMaxlter] to save the symbolic execution traces of sites (the execu-

tion order of operations).

. Boolean variabl®etectedo recuperate the truth value of the convergence property.

9. VectorSignaturefMaxIter] to get back signaturg® perator position characten of opera-
tions which violate the convergence property.

10. List[2][MaxIter] to save operation signatures as they are exactly executed in two sites (after

integration steps).

11. The broadcast chanr@&yn

~NOo oA

[e0]

Behavior of each site.The process behavior of each site is depicted by the automa-
ton shown in Fig.5. Each user execusgsnbolically one by one, all operations (local
and non local ones), on its own copy of the shared text. Thebslimexecution of

an operation (local or non local) is represented by the laojppoationl O which con-
sists of 3 parts: the selection of a process identifier pid_t), the guarcguard(k) and

the updateéSymbolicExecutigik). The guard part verifies whether a sji@ can ex-
ecute an operation of site The update part is devoted to the symbolic execution of
an operation of a sitk. The execution order of operations must, however, respect t
causality principle. The causality principle is ensuredhsytimestamp vectors of sites
V[NbSite§NbSites For each pair of site§, j), element/[i][]] is the number of oper-
ations of sitej executed by site V|i][i] is then the number of local operations executed
in sitei. Note tha/[i][j] is also the rank of the next operation of sjte be executed by
sitei. Timestamp vectors are also used to determine whethertapesare concurrent
or dependent. Initially, entries of the timestamp vectoewdry sitel are set to 0. After-
wards, when sité executes an operation of a sjt¢j € [0, NbSites- 1]), it increments
the entry ofj in its own timestamp vector (i.eV,[i][j] + +).

Symbolic execution of a local operationA local operation can be executed by a site
pid if the number of local operations already executed by gitedoes not yet reach
its maximal number of local operations (i\&[pid][pid] < Iter[pid]). In this case, its
timestamp vector is set to the timestamp vector of its sissowner and the timestamp
vector are stored in arra@ perations Its entry inOperationsis stored inTrace pid].

10

oper: operator, p: position, c: alphabet

V[pid][pid]<Iter[pid] && pid==0
c== oper*c && p < Length forall (i: p|d t) forall (k:pid_t)
Operations[ns].Owner=pid, V[ilik]==Iter[k]

Operations[ns].opr=oper,
Operations[ns].ipos=p,
Operations[ns].x=c,
ns++, Execution(pid)

Syn! 12

pid==0
pid!=0 && forall (i:pid_t)

forall (k:pid_t)

V[i][K]==lIter[k]

k:pid_t Syn?

k!=pid && guard(k)

Execution(k)

Fig. 4. The concrete model

Syn!
pid==0 && forall (i:pid_t)
forall (j:pid_t) V[|][]]::Iter[1]

0 EffectiveExecution() I
k:pid_t
guard(k) O

SymbolicExecution(k) Syn? id==0
pid!=0 && forall (i:pid_t) pic==
forall (j:pid_t) V[i][j]==Iter[j]

Fig. 5. The symbolic model

Its broadcast to other sites is simulated by incrementiagitimber of local operations
executed V[pid][pid] + +).

Symbolic execution of non local operationsA site pid can execute an operation of
another sitek if there is an operation df executed by but not yet executed bpid

(i.e.: V[pid][K] < V[K][K]) and its timestamp vector is less or equal to the timestamp
vector of sitepid (i.e.: V] € [0,NbSites- 1],V[pid][j] >= Operationgnum.V[j], num
being the identifier of the operation). Recall that, the ¢farmation and effective
execution of operations (Insert and Delete) are not perdriat this level. They are
realized when the construction of all traces is completed.

Effective execution of operationsWhen all sites complete the construction of their re-
spective traces, they are forced to perform synchronouislyhe broadcast chanrgyn
their respective edges connecting locatibhandl 1 (synchronization on termination).
The update part of edge connecting locatithandl 1 of site O is devoted to testing all
signatures possibilities of operations and then verifythrgconvergence property. The
test of all these possibilities is encapsulated in a C-fonctalledE f f ectiveExecution
which is stopped as soon as the violation of the convergeraopepy is detected. This
property is violated if there exist two sites which have ctetgd the same set of op-
erations but their texts are not identical. In this casenatigres of operations and ex-
act traces of both sites which violate the convergence ptppee returned in vectors
SignaturesandList, and the variabl®etecteds set totrue. The integration steps (see
sub-section 2.6) are treated at this level (i.e., in thicfiom).

11

3.3 \Verification of the convergence property

The convergence property states that whenever two sitepleterthe execution of the
same set of operations, their resulting texts must be ic&ntA stable state of the
system is a situation where all sent operations are receimddexecuted (there is no
operation in transit). A siteis in a stable state if all operations sent to e received
and executed by(i.e. forall (k: pid-t) V[i][kK] == V[K][K]). The convergence property
can be rewritten using the notion of stable state as foll§M#&enever two sites and

j are in stable state, they have identical texts”. For the maanodel [3], we use the
negation of this property specified by the followibgPAALs CT L formulaq;:

E< (existgi : pid_t) existgj : pid._t)

it = j && forall(k: pidt) V[i][K == V[K|[K && V[j][K == V[K|[K])
&& existgl - int[0, L — 1) text(i][1]! = text[j][]

This formula means that there is an execution path leadisgnee situation where two
sitesi andj are in stable states and their copies of text]i] andtextj] are different.
For the symbolic model, the verification of the convergencgppety is based on a
variable namedetected This variable is set ttrue when the convergence propriety is
violated. Therefore, the convergence propriety is vialateUPPAAL's CT L formula
@, : EO Detecteds satisfied.

We have tested five IT functions known in the literature far@yronizing linear ob-
jects. Each IT function produces a new instance of OT algoritwhere only the trans-
formation function changes. These OT algorithms are denaspectivelyEllis [4],
Resse[9], Sun[13], Suleimar{10] andimine[6]. Two models are used : concrete and
symbolic models.

Alg. Prop.|| Val. Expl./Comp./Time || Val.||Expl./Comp./Time
Ellis 33 |[@1/¢ || true|| 825112/1838500/121.3btrue|| 1625/1739/0.14
Ellis33 (0% ? ? true|| 1837/1837/0.68

ResseB 3 ||¢1/¢ || true|| 833558/1851350/122.76true|| 1637/1751/0.25
ResseB 3 (0 ? ? true|| 1837/1837/1.63
Sun33 |[@1/@; || true|| 836564/1897392/122.3Btrue|| 1625/1739/0.14
Sun3 3 (0] ? ? true|| 1837/1837/0.38
SuleimarB 3| ¢/ ¢, | |false]|3733688/3733688/365.(6alse| 1837/1837/0.83
SuleimarB8 3|| @ ? ? true|| 1837/1837/2.22
SuleimarB 4{|@1 /@ || ? ? true|| 18450/19380/2.45
Imine3 3 ||q1/¢), ||falsel|3733688/3733688/361.1ifalsg| 1837/1837/0.81
Imine3 3 (0] ? ? true|| 1837/1837/2.18
Imine34 ||@1/@| ? ? true|| 18401/19331/2.45

Table 1. Model-checking the concrete and the symbolic models

We report in Table 1 the results obtained, for two properadsence of deadlocks
(92 : A]] notdeadlockand the violation of the convergence properpy ¢r @) defined
above, in case of 3 siteBlpSites= 3), 3 or 4 operationdaxIter = 3 orMaxlIter=4),
and a window of the observed text of lendith- 2« MaxlIter. A stateq of a model is in

12

deadlock iff there is no edge enabledjinor in states reachable frogby time progres-
sion. Propertyp, is always satisfied and allows us to compute the size of thireestate
space. Note that all tests are performed using the versibf ¢f UPPAAL 2k on a 3
Gigahertz Pentium-4 with 1GB of RAM. We give, in column 4, &ach algorithm and
each property, the number of explored states, the numbesropated states and the
execution time (CPU time in seconds). A question mark irtéiga situation where the
verification was aborted due to a lack of memory. We reportabld 2, the counterex-
amples obtained for the convergence property and the syenioldel (each operation
oi, fori = 1,3, is generated bgitei 011 andol2 are generated in this order Bjtel).
Note that counterexamples obtained for the concrete ansiytinbolic models may be
different. These results show that the symbolic model alavgignificant gain in both
time and space comparatively to the concrete model. Witkytheolic model, we have
been able to prove that the convergence property is nofiedtier five OT algorithms
and to provide counterexamples.

Alg. Operations Traces
Ellis 0l:1Ins(1,0), 02: Ins(1,1), 03: Ins(1)®jtel: 01; 02; 03 Site3: 03; 02; pl
Ressel |ol:Ins(2,0), 02: Ins(1,1), 03: Del(1)Sitel: 01; 02; 03 Site3: 03; 02; pl
Sun 0l:1Ins(1,0), 02: Ins(2,0), 03: Ins(2)Bjitel: 01; 02; 03 Site3: 03; 01; p2

Suleimanol1l: Del(1), 012: Ins(1,0), Site2 : 02; 03; 011; 012
02: Ins(1,0), 03: Ins(2,0) Site3: 03; 02; 011; 012
Imine 0l11: Ins(1,0), 012: Ins(2,0), Sitel : 0l11; 012; 02; 03
02:Ins(2,0), 03: Del(1) Site3: 03; 02; 011; 012

Table 2. Counterexamples obtained for the tested IT functions

For instance, in Fig.6, we report a divergence scenario foalgorithm based on
transformation function proposed by Suleiman ahfl0] (see Fig.3), whereg, 0, and
03 are pairwise concurrent amg — 0;.

State space reductionTo reduce the size of the state space to be explored, we @opos
some reductions (see [3] for more details) which presemedmvergence property. The
first reduction consists of synchronization of the executid non local operations in
sites which have finished the execution of their local openat This synchronization
preserves the convergence property since when a site cawile execution of all
local operations, it does not send any information to othies eind the execution of non
local operations affects only the state of the site. Witk flyinchronization, intermediate
states resulting from different interleavings of theserapens are not accessible. This
reduction has been implemented in the variant models ofdgherete and the symbolic
models [3]. The second reduction forces to stop the cort#ruof concrete/symbolic
traces as soon as two any sites have completed the constrottiheir own traces. As
sites have symmetrical behaviors, this reduction doedltestthe convergence property.
In the concrete and the symbolic models, edges connectaadiém|0 to |1 and the
broadcast chann&yn implement this reduction.

Another factor which contributes to the state explosiorbfam is the timestamp

13

02 =Ins3.0,(1.{}) o3 =Insia,L {}.()
@@><@@
CinsGL{1) o= Ins@0.{1{})
Q‘og:ﬁ)e|(4)
Nop() Ins(5.0,{}.{})

Fig. 6. Complete divergence scenario for Suleiman’s algorithm.

.
N
N
~
.
\

vectors of different sites and operations. These vectarsised to ensure the causality
principle. To attenuate this state explosion problem, vierdhe possibility to replace
the timestamp vectors by a relation of dependence over tipesaThis model allows to
test whether an OT algorithm works or not under some relaifatependence (see [3]
for more detalils).

4 Related Work

To our best knowledge, there exists only one work on analy@i algorithms [7].
In this work, the authors proposed a formal framework for ey and verifying IT
functions with algebraic specifications. For checking trapprtiesT P1 andT P2, they
used a theorem prover based on advanced automated dedeectimiques. For all IT
functions considered here, they showed thatT@PL is only satisfied for Suleiman’s
and Imine’s IT functions; (i)l P2 is always violated.

For example, consider the IT function proposed by Suleintah 0] (see Fig.3).
A theorem prover-based verification revealed B2 violation in this function [5], as
illustrated in Fig.7. As this is related P2 property, there are three concurrent opera-
tions (for all positiong and all characters andy such thaCodé&x) < Codgy)):

01 = Ins(p,x,{}7{}), 02 = Ins(p7x,{},{DeI(p)}) and og = Ins(p,y,{DeI(p)},{})
with the transformations; = IT (03,02), 0, = IT(02,03), 0] = IT*(01,[02;05]) and
0] = 1T*(0g, [03;05)]).

However, the theorem prover’s output gives no informatioowt whether thig P2
violation is reachable or not. Indeed, we do not know how taioto, andos (their pre;
and posp parameters are not empty respectively) as they are neitgsbarresults of
transformation against other operations that are not diyethe theorem prover. Using
our model-checking-based technique, we can get a compietenéormative scenario

14

[site 9
o= Ins(p.x (3.4 0 = Ins(p, {}{Del(p)}) 03 = Ins(p,y, {Del(p)}. {})

0, = Ins(p-+ 1.y, {Del(p)}.) &, ~Ins(p.x.{},{Del(p)})

‘‘‘‘‘‘

........
\\\\\\\\
.......
.........
\\\\\\\\
. S —

- - i
0, =Nop() o] =Ins(p+2x{},{})
Fig. 7. T P2 violation for Suleiman’s algorithm.

when a bug is detected. Indeed, the output contains all sagesperations and the
step-by-step execution that lead to divergence situalibas, by model-checking veri-

fication, the existence of tHEP2 violation depicted in Fig.7 is proved (or certified) by
the complete scenario given in Table 2.

As they are the basis cases of the convergence propdtyandT P2 are sufficient
to ensure the data convergence for any number of concurpemations which can be
performed in any order. Thus, a theorem prover-based agpreaains better for prov-
ing that some IT function satisfi@sP1 andT P2. But it is partially automatable and, in
the most cases, less informative when divergence bugs teeteé. A model-checking-
based approach is fully automatable for finding divergememarios. Nevertheless, it
is more limited as the convergence property can be exhalstvaluated on only a
specific finite state space.

5 Conclusion

We proposed here a model-checking technique, based onlfsmmsaused in tool UP-
PAAL, to model the behavior of replication-based collabweaeditors. To cope with
the severe state explosion problem of such systems, weitplbeir features and
those of tool UPPAAL to establish and apply some abstrastaond reductions to the
model. The verification has been performed with the modetkimg module of UP-
PAAL. An interesting and useful feature of this module is toyade, in case of failure
of the tested property, a trace of an execution for which ttopgrty is not satisfied.
We used this feature to give counterexamples for five OT #lguos, based on different
transformation functions proposed in the literature tauemshe convergence property.
Using our model-checking technique we found an upper boonerisuring the data
convergence in such systems. Indeed, when the number sfesiteeds 2 the conver-
gence property is not achieved for all OT algorithms considénere. We think that our
work is a forward step towards an efficient framework for fatip developing shared
objects based on the OT approach.

15

However, the serious drawback of the model-checking istdte explosion. So, in

future work, we plan to investigate the following directiorfi) It is interesting to find,
under which conditions, the model-checking verificationlgpem can be reduced to a
finite-state problem. (ii) Combining theorem-prover anddelechecking approaches in
order to attenuate the severe state explosion problem.

References

10.

11.

12.

13.

14.

15.

R. Alur and D. Dill. Atheory of timed automat&heoretical Computer Scienck6(2):183—
235, 1994.

. B. Bérard, P. Bouyer, and A. Petit. Analysing the pgm protocol with uppagtrnational

Journal of Production Research2(14):2773-2791, 2004.

. H. Boucheneb and A. Imine. Experiments in model-checking optimisptication algo-

rithms. Research Report 6510, INRIA, April 2008.

. C. A. Ellisand S. J. Gibbs. Concurrency control in groupware systdn SIGMOD Con-

ference volume 18, pages 399-407, 1989.

. A. Imine. Conception formelle d’algorithmes dépilication optimiste. Vers &dition Col-

laborative dans les@seaux Paim-Pair. Phd thesis, University of Henri Poin@rNancy,
France, December 2006.

. A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctnesgansformation

functions in real-time groupware. ECSCW’03Helsinki, Finland, 14.-18. September 2003.

. A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design andfieation of oper-

ational transformation algorithms for copies convergentheoretical Computer Science
351(2):167-183, 2006.

. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshiurnal of Software Tools for

Technology Transferd(1-2):134-152, 1997.

. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser. An integyratamsformation-

oriented approach to concurrency control and undo in group edifor&dCM CSCW’96
pages 288-297, Boston, USA, November 1996.

M. Suleiman, M. Cart, and J. Feari Serialization of concurrent operations in a distributed
collaborative environment. IACM GROUP’'97 pages 435-445, November 1997.

M. Suleiman, M. Cart, and J. Ferri Concurrent operations in a distributed and mobile
collaborative environment. IFEEE ICDE’98, pages 36—45, 1998.

C. Sun and C. Ellis. Operational transformation in real-time groupredigsues, algorithms,
and achievements. IARCM CSCW’98pages 59-68, 1998.

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving cogmece, causality-
preservation and intention-preservation in real-time cooperative edytitgras ACM Trans.
Comput.-Hum. Interact5(1):63-108, March 1998.

C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transpadaptation of single-user
applications for multi-user real-time collaboratioMCM Trans. Comput.-Hum. Interagct.
13(4):531-582, 2006.

N. Vidot, M. Cart, J. Feré, and M. Suleiman. Copies convergence in a distributed real-time
collaborative environment. IACM CSCW'00QPhiladelphia, USA, December 2000.

