
On Model-Checking Optimistic Replication Algorithms

Hanifa Boucheneb1 and Abdessamad Imine2

1 Laboratoire VeriForm,́Ecole Polytechnique de Montréal, Canada
hanifa.boucheneb@polymtl.ca

2 INRIA Grand-Est & Nancy-Universit́e, France
imine@loria.fr

Abstract. Collaborative editors consist of a group of users editing a shared doc-
ument. The Operational Transformation (OT) approach is used for supporting
optimistic replication in these editors. It allows the users to concurrently update
the shared data and exchange their updates in any order since the convergence of
all replicas,i.e. the fact that all users view the same data, is ensured in all cases.
However, designing algorithms for achieving convergence with the OT approach
is a critical and challenging issue. In this paper, we address the verification of OT
algorithms with a model-checking technique. We formally define, using toolUP-
PAAL, the behavior and the convergence requirement of the collaborative editors,
as well as the abstract behavior of the environment where these systems are sup-
posed to operate. So, we show how to exploit some features of such systems and
the toolUPPAALto attenuate the severe state explosion problem. We have been
able to show that if the number of users exceeds 2 then the convergenceproperty
is not satisfied for five OT algorithms. A counterexample is provided for every
algorithm.

1 Introduction

Collaborative editors are a class of distributed systems, where two or more users (sites)
may manipulate simultaneously some objects like texts, images, graphics, etc. In or-
der to achieve an unconstrained group work, the shared objects are replicated at the
local memory of each participating user. Every operation isexecuted locally first and
then broadcast for execution at other sites. So, the operations are applied in different
orders at different replicas of the object. This potentially leads to divergent (or differ-
ent) replicas, an undesirable situation for replication-based collaborative editors.Oper-
ational Transformation(OT) is an approach which has been proposed to overcome the
divergence problem [4]. This approach consists of an algorithm which transforms an
operation (previously executed by some other site) according to local concurrent ones
in order to achieve convergence. It has been used in many collaborative editors such
as Joint Emacs [9] (an Emacs collaborative editor), CoWord [14] (a collaborative ver-
sion of MicroSoft Word) and CoPowerPoint [14] (a collaborative version of MicroSoft
PowerPoint).

As established in [12], an OT algorithm consists of two parts: (i) an integration
procedurethat is responsible for generating and propagating local operations as well
as executing remote operations; (ii) atransformation function(called IT function) that

2

determines how an operation is transformed against another. This function depends
on the semantics of the shared document. However, if an OT algorithm is not correct
then the consistency of shared data is not ensured. Thus, it is critical to verify such an
algorithm in order to avoid the loss of data when broadcasting operations. According
to [9], only the transformation function of a shared data needs to fulfill two properties
TP1 andTP2 (explained in Section 2) in order to ensure convergence. Finding such
a function and proving that it satisfiesTP1 andTP2 is not an easy task. This proof
is often unmanageably complicated due to the fact that an OT algorithm has infinitely
many states.

In this paper, we investigate the use of a model-checking technique [1] to verify
whether an OT algorithm satisfies the convergence property or not. Model-checking is
a very attractive and automatic verification technique of systems. It is applied by rep-
resenting the behavior of a system as a finitestate transition system, specifying prop-
erties of interest in a temporal logic and finally exploring the state transition system
to determine whether they hold or not. The main interesting feature of this technique
is the production of counterexamples in case of unsatisfied properties. Several Model-
checkers have been proposed in the literature. The well known areSPIN3, UPPAAL4

andNuSMV5. Among these Model-checkers, we consider here the toolUPPAAL.
UPPAAL is a tool suite for validation and symbolic model-checking of real-time

systems. It consists of a number of tools including a graphical editor for system de-
scriptions, a graphical simulator, and a symbolic model-checker. This choice is moti-
vated by the interesting features ofUPPAAL tools [8], especially the powerful of its
description model, its simulator and its symbolic model-checker. Indeed, its description
model is a set of timed automata [1] extended with binary channels, broadcast channels,
C-like types, variables and functions (functions can be used to abstract some compli-
cated treatments). Its simulator is useful and convivial asit allows to get and replay, step
by step, counterexamples obtained by its symbolic model-checker. Its model-checker6,
based on a forward on-the-fly method, allows to compute over 5millions of states.

In this work, we deal with OT algorithms that have the same integration proce-
dure but differ only by their transformation functions. To verify these algorithms, we
formally describe, usingUPPAAL, the behavior and the requirements of the replication-
based collaborative editors, as well as the abstract behavior of the environment where
these systems are supposed to operate. Two main models are studied and proposed for
the verification of the convergence properties of OT algorithms: theconcrete model
and thesymbolic model. The concrete model is very close to the system implementa-
tion in the sense that the selection and the effective execution of editing operations are
performed during the construction of execution traces. However, this model runs up
against a severe explosion of states (the number of signatures increases exponentially
with the number of operations). We have not been able to verify some OT algorithms.
The symbolic model aims to overcome the limitation of the concrete model by delay-
ing the effective selection and execution of editing operations until the construction of

3 http://spinroot.com
4 http://www.uppaal.com
5 http://nusmv.irst.itc.it
6 The model-checker is used without the graphical interface

3

symbolic execution traces of all sites is completed. Using the symbolic model, we have
been able to show that if the number of sites exceeds 2 then theconvergence property
is not satisfied for all OT algorithms considered here. A counterexample is provided for
every algorithm.

The paper starts with a presentation of the OT approach and one of the known OT al-
gorithms proposed in the literature for synchronizing shared text documents (Section 2).
Section 3 is devoted to the description of the symbolic modeland its model-checking.
Related work and conclusion are presented respectively in sections 4 and 5.

2 Operational Transformation Approach

2.1 Background

OT is an optimistic replication technique which allows manyusers (or sites) to concur-
rently update the shared data and next to synchronize their divergent replicas in order to
obtain the same data. The updates of each site are executed onthe local replica imme-
diately without being blocked or delayed, and then are propagated to other sites to be
executed again. Accordingly, every update is processed in four steps: (i)generationon
one site; (ii)broadcastto other sites; (iii)receptionon one site; (iv)executionon one
site.

The shared object.We deal with a shared object that admits a linear structure. To
represent this object we use thelist abstract data type. Alist is a finite sequence of
elements from a data typeE . This data type is only a template and can be instantiated by
many other types. For instance, an element may be regarded asa character, a paragraph,
a page, a slide, an XML node, etc. LetL be the set of lists.

The primitive operations. It is assumed that a list state can only be modified by the
following primitive operations: (i)Ins(p,e) which inserts the elemente at positionp;
(ii) Del(p) which deletes the element at positionp. We assume that positions are given
by natural numbers. The set of operations is defined as follows:

O = {Ins(p,e)|e∈ E andp∈ N}∪{Del(p)|p∈ N}∪{Nop}
whereNopis the idle operation that has null effect on the list state. Since the shared ob-
ject is replicated, each site will own a local statel that is altered only by local operations.
The initial state, denoted byl0, is the same for all sites. The functionDo : O ×L → L ,
computes the stateDo(o, l) resulting from applying operationo to statel . We say that
o is generatedon statel . We denote by[o1;o2; . . . ;on] an operation sequence. Applying
an operation sequence to a listl is defined as follows: (i)Do([], l) = l , where[] is the
empty sequence and; (ii)Do([o1;o2; . . . ;on], l) = Do(on,Do(. . . ,Do(o2,Do(o1, l)))).
Two operation sequencesseq1 and seq2 are equivalent, denoted byseq1 ≡ seq2, iff
Do(seq1, l) = Do(seq2, l) for all lists l .

Definition 1. (Causality Relation) Let an operation o1 be generated at site i and an operation o2
be generated at site j. We say that o2 causally dependson o1, denoted o1 → o2, iff: (i) i = j and
o1 was generated before o2; or, (ii) i 6= j and the execution of o1 at site j has happened before
the generation of o2.

Definition 2. (Concurrency Relation) Two operations o1 and o2 are said to beconcurrent, de-
noted by o1 ‖ o2, iff neither o1 → o2 nor o2 → o1.

4

site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

$$
IIIIIIIIIII

o2 = Del(5)

uuuuu

zzuuuuu“effecte” “efect”

Del(5) Ins(1, f)

“effece” “effect”

Fig. 1. Incorrect integration.

site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

((QQQQQQQQQQQQQQQQ
o2 = Del(5)

mmmmmmmm

vvmmmmmmmm“effecte” “efect”

IT (o2,o1) = Del(6) IT (o1,o2) = Ins(1, f)

“effect” “effect”

Fig. 2. Integration with transformation.

As a long established convention in OT-based collaborativeeditors [4,12], thetimes-
tamp vectorsare used to determine the causality and concurrency relations between op-
erations. Every timestamp is a vectorV of integers with a number of entries equal to the
number of sites. For a sitej, each entryV[i] returns the number of operations generated
at sitei that have been already executed on sitej. Leto1 ando2 be two operations issued
respectively at sitesso1 andso2 and equipped with their respective timestamp vectors
Vo1 andVo2. The causality and concurrency relations are detected as follows: (i) o1 → o2

iff Vo1[so1] > Vo2[so1]; (ii) o1 ‖ o2 iff Vo1[so1] ≤Vo2[so1] andVo1[so2] ≥Vo2[so2].

2.2 Transformation principle

A crucial issue when designing shared objects with a replicated architecture and arbi-
trary messages communication between sites is theconsistency maintenance(or con-
vergence) of all replicas.

Example 1.Consider the following group text editor scenario (see Fig.1): there aretwo users (on
two sites) working on a shared document represented by a sequence of characters. These char-
acters are addressed from 0 to the end of the document. Initially, both copies hold the string “
efecte”. User 1 executes operationo1 = Ins(1, f) to insert the characterf at position 1. Concur-
rently, user 2 performso2 = Del(5) to delete the charactere at position 5. Wheno1 is received
and executed on site 2, it produces the expected string “effect”. But, wheno2 is received on site
1, it does not take into account thato1 has been executed before it and it produces the string
“effece”. The result at site 1 is different from the result of site 2 and it apparently violates the
intention ofo2 since the last charactere, which was intended to be deleted, is still present in the
final string. Consequently, we obtain adivergencebetween sites 1 and 2. It should be pointed out
that even if a serialization protocol [4] was used to require that all sites executeo1 ando2 in the
same order (i.e. a global order on concurrent operations) to obtain an identical resulteffece, this
identical result is still inconsistent with the original intention ofo2.

To maintain convergence, the OT approach has been proposed by [4]. When UserX
gets an operationop that was previously executed by UserY on his replica of the shared
object UserX does not necessarily integrateop by executing it “as is” on his replica.
He will rather execute a variant ofop, denoted byop′ (called atransformationof op)
that intuitively intends to achieve the same effect as op. This approach is based on a
transformation functionIT , calledInclusive Transformation, that applies to couples of
concurrent operations defined on the same state.

5

Example 2.In Fig.2, we illustrate the effect ofIT on the previous example. Wheno2 is received
on site 1,o2 needs to be transformed according too1 as follows:IT ((Del(5), Ins(1, f)) = Del(6).
The deletion position ofo2 is incremented becauseo1 has inserted a character at position 1, which
is before the character deleted byo2. Next,op′2 is executed on site 1. In the same way, wheno1 is
received on site 2, it is transformed as follows:IT (Ins(1, f),Del(5)) = Ins(1, f); o1 remains the
same becausef is inserted before the deletion position ofo2.

2.3 Transformation function

We present here an IT function known in the literature for synchronizing linear ob-
jects [10] altered by insertion and deletion operations. Inthis work, the signature of in-
sert operation is extended by two parameterspre andpost. These parameters store the
set of concurrent delete operations. The setpre contains operations that have deleted a
character before the insertion positionp. As for post, it contains operations that have
removed a character afterp. When an insert operation is generated the parameterspre
andpostare empty. They will be filled during transformation steps.

In Fig.3, we give the four transformation cases forIns and Del proposed
by Suleiman andal [10]. There is an interesting situation in the first case (Ins
and Ins), called conflict situation, where two concurrentIns(p1,c1, pre1, post1) and
Ins(p2,c2, pre2, post2) have the same position (i.e. p1 = p2). To resolve this conflict,
three cases are possible:

1. (pre1∩ post2) 6= /0: characterc2 is inserted before characterc1,
2. (pre1∩ post2) 6= /0: characterc2 is inserted after characterc1,
3. (pre1∩ post2) = (post1∩ pre2) = /0: in this case functioncode(c), which computes a total

order on characters (e.g. lexicographic order), is used to choose amongc1 andc2 the char-
acter to be added before the other. Like the site identifiers,code(c) enables us to tie-break
conflict situations [3].

Note that when two concurrent operations insert the same character (e.g. code(c1) =
code(c2)) at the same position, the one is executed and the other one isignored by
returning the idle operationNop. In other words, only one character is kept. The re-
maining cases ofIT are quite simple.

2.4 Transformation Properties

Definition 3. Let seq be a sequence of operations. Transforming any editing operation o accord-
ing to seq is denoted by IT∗(o,seq) and is recursively defined as follows:

IT ∗(o, []) = o where[] is the empty sequence;

IT ∗(o, [o1;o2; . . . ;on]) = IT ∗(IT (o,o1), [o2; . . . ;on])

We say that o has been concurrently generated according to all operations of seq.

Using an IT function requires us to satisfy two properties [9]. For all o, o1 ando2
pairwise concurrent operations:

• Condition TP1: [o1 ; IT (o2,o1)] ≡ [o2 ; IT (o1,o2)].
• Condition TP2: IT ∗(o, [o1 ; IT (o2,o1)]) = IT ∗(o, [o2 ; IT (o1,o2)]).

6

IT(Ins(p1,c1, pre1, post1), Ins(p2,c2, pre2, post2)) =






















































Ins(p1,c1, pre1, post1) if p1 < p2

Ins(p1 +1,c1, pre1, post1) if (p1 > p2)∨ (p1 = p2∧pre1∩post2 6= /0)

Ins(p1,c1, pre1, post1) if p1 = p2∧post1∩pre2 6= /0
Ins(p1,c1, pre1, post1) if (pre1∩post2 = /0∨pre1∩post2 = /0) ∧

p1 = p2∧code(c1) > code(c2)

Ins(p1 +1,c1, pre1, post1) if (pre1∩post2 = /0∨post1∩pre2 = /0) ∧

p1 = p2∧code(c1) < code(c2)

Nop() otherwise

IT((Ins(p1,c1, pre1, post1),Del(p2))=

{

Ins(p1,c1, pre1, post1∪{Del(p2)}) if p1 ≤ p2

Ins(p1−1,c1, pre1∪{Del(p2)}, post1) otherwise

IT((Del(p1), Ins(p2,c2, pre2, post2)) =

{

Del(p1) if p1 < p2

Del(p1 +1) otherwise

IT(Del(p1),Del(p2)) =











Del(p1) if p1 < p2

Del(p1−1) if p1 > p2

Nop() otherwise

Fig. 3. IT function of Suleiman andal.

PropertyTP1 defines astate identityand ensures that ifo1 ando2 are concurrent,
the effect of executingo1 beforeo2 is the same as executingo2 beforeo1. This property
is necessary but not sufficient when the number of concurrentoperations is greater than
two. As forTP2, it ensures that transformingo along equivalent and different operation
sequences will give the same operation.

PropertiesTP1 andTP2 are sufficient to ensure the convergence forany number
of concurrent operations which can be executed inarbitrary order [9]. Accordingly, by
these properties, it is not necessary to enforce a global total order between concurrent
operations because data divergence can always be repaired by operational transforma-
tion. However, finding an IT function that satisfiesTP1 andTP2 is considered as a hard
task, because this proof is often unmanageably complicated.

It should be noted that, using our model-checking technique, we detected subtle
flaws in the IT function of Fig.3. These flaws lead to divergence situations (see Section
3).

2.5 Consistency criteria

A stable state in an OT-based collaborative editor is achieved when all generated op-
erations have been performed at all sites. Thus, the following criteria must be en-
sured [4,9,12]:

Definition 4. (Consistency Model) An OT-based collaborative editor isconsistentiff it satisfies
the following properties:

1. Causality preservation:if o1 → o2 then o1 is executed before o2 at all sites.
2. Convergence:when all sites have performed the same set of updates, the copies of the shared

document are identical.

To preserve the causal dependency between updates, timestamp vectors are used. The
concurrent operations are serialized by using IT function.As this technique enables

7

concurrent operations to be serialized in any order, the convergence depends onTP1
andTP2 that IT function must verify.

2.6 Operational Transformation algorithms

Every site is equipped by an OT algorithm that consists of twomain components [4,9]:
theintegration procedureand thetransformation component. The integration procedure
is responsible for receiving, broadcasting and executing operations. It is ratherindepen-
dentof the type of the shared objects. Several integration procedures have been pro-
posed in the groupware research area, such as dOPT [4], adOPTed [9], SOCT2,4 [11,15]
and GOTO [12]. The transformation component is commonly an IT function which
is responsible for merging two concurrent operations defined on the same state. This
function isspecificto the semantics of a shared object. Every site generates operations
sequentially and stores these operations in a stack also called ahistory (or execution
trace). When a site receives a remote operationo, the integration procedure executes
the following steps:

1. From the local historyseqit determines the equivalent sequenceseq′ that is the concatenation
of two sequencesseqh andseqc where (i)seqh contains all operations happened beforeo
(according to Definition 1), and; (ii)seqc consists of operations that are concurrent too. For
more details, see [3].

2. It calls the transformation component in order to get operationo′ that is the transformation
of o according toseqc (i.e. o′ = IT ∗(o,seqc)).

3. It executeso′ on the current state.
4. It addso′ to local historyseq.

The integration procedure allows history of executed operations to be built on every
site, provided that the causality relation is preserved. Atstable state, history sites are
not necessarily identical because the concurrent operations may be executed in different
orders. Nevertheless, these histories must be equivalent in the sense that they must lead
to the same final state. This equivalence is ensured iff the used IT function satisfies
propertiesTP1 andTP2.

In this work, we deal with OT algorithms that have the same integration procedure
but differ only by their transformation functions. Five IT functions have been considered
(see [3]).

The rest of the paper is devoted to the specification and analysis of OT algorithms,
by means of model-checkerUPPAAL. We show how to exploit some features of OT
algorithms and the specification language ofUPPAALto attenuate the state explosion
problem of the execution environment of such algorithms.

3 Modelling OT algorithms with UPPAAL

3.1 UPPAAL’s model

In UPPAAL, a system consists of a collection of processes which can communicate via
some shared data and synchronize through binary or broadcast channels [8]. Each pro-
cess is an automaton extended with finite sets of clocks, variables (bounded integers),
guards and actions. In such automata, locations can be labelled by clock conditions and

8

edges are annotated with selections, guards, synchronization signals and updates. Selec-
tions bind non-deterministically a given identifier to a value in a given range (type). The
other three labels of an edge are within the scope of this binding. An edge is enabled in
a state if and only if the guard evaluates to true. The update expression of the edge is
evaluated when the edge is fired. The side effect of this expression changes the state of
the system. Edges labelled with complementary synchronization signals over a common
channel must synchronize. Two or more processes synchronize through channels with
a sender/receiver syntax [2]. For a binary channel, a sendercan emit a signal through a
given binary channelSyn(Syn!), if there is another process (a receiver) ready to receive
the signal (Syn?). Both sender and receiver synchronize on execution of complemen-
tary actionsSyn! andSyn?. For a broadcast channel, a sender can emit a signal through
a given broadcast channelSyn(Syn!), even if there is no process ready to receive the
signal (Syn?). When a sender emits such a signal via a broadcast channel, it is synchro-
nized with all processes ready to receive the signal. The updates of synchronized edges
are executed starting with the one of the sender followed by those of the receiver(s).
The execution order of updates of receivers complies with their creation orders.

3.2 Modelling execution environment of OT algorithms

A collaborative editor is composed of two or more sites (users) which communicate
via a network and use the principle of multiple copies, to share some object (a text).
Initially, each user has a copy of the shared object. It can afterwards modify its copy by
executing operations generated locally and those receivedfrom other users. When a site
executes a local operation, it is broadcast to all other users. The execution of a non local
operation consists of integration and transformation steps as explained in the previous
section (see sub-section 2.6).

Two main models are proposed for the verification of the convergence properties
of OT algorithms: theconcrete modeland thesymbolic model. The main difference
between these models concerns the effective execution of operation signatures. Indeed,
in the concrete model, effective execution of editing operations is performed during the
generation of traces (see Fig. 4) while, in the symbolic model, it is delayed until the
construction of symbolic execution traces of all sites is completed (see Fig 5). In this
paper, we focus on the symbolic model. For further details about the concrete model
and the different variants of the concrete and symbolic models, we refer to [3].

System definition.A collaborative editor is modelled as a set of variables, functions,
processes (one per user) and a broadcast channel. Note that the network is abstracted
and not explicitly represented. This is possible by puttingvisible (in global variables) all
operations generated by different sites and timestamp vectors of sites. In this way, there
is no need to represent and manage queues of messages. Behaviors of sites are similar
and represented by a type of process namedSite. The only parameter of the process is
the site identifier namedpid. With UPPAAL, the definition of the system is given by
the following declarations which mean that the system consists ofNbSitessites of type
Site:
Sites(const pidt pid) = Site(pid);
system Sites;

9

Input data and Variables. Variables are of two kinds: those used to store input data
and those used to manage the execution of operations. Note that almost all variables are
defined as global to be accessible by any site (avoiding duplication of data in the repre-
sentation of the system state). In addition, this eases the specification of the convergence
property and allows to force the execution, in one step, someedges of different sites.
The system model has the following inputs and variables:

1. The number of sites(const int NbSites); Each site has its own identifier, denotedpid for
process identifier (pid ∈ [0,NbSites−1]).

2. The initial text to be shared by users and its alphabet. The text to be shared by users is
supposed to be infinite but the attributePositionof operations is restricted to the window
[0,L−1] of the text. The length of the window is set in the constantL (const int L).

3. The number of local operations of each site, given in arrayIter[NbSites]
(const int Iter[NbSites], Iter[i] being the number of local operations of sitei).
We also use and set in constant namedMaxIter the total number of operations
(const int MaxIter= ∑

i∈[0,NbSites−1]
Iter[i]);

4. The IT function (const int algo).
5. The timestamp vectors of different sites (V[NbSites][NbSites]).
6. VectorOperations[MaxIter] to store the owner and the timestamp vector of each operation.
7. VectorsTrace[NbSites][MaxIter] to save the symbolic execution traces of sites (the execu-

tion order of operations).
8. Boolean variableDetectedto recuperate the truth value of the convergence property.
9. VectorSignatures[MaxIter] to get back signatures(operator, position,character) of opera-

tions which violate the convergence property.
10. List[2][MaxIter] to save operation signatures as they are exactly executed in two sites (after

integration steps).
11. The broadcast channelSyn

Behavior of each site.The process behavior of each site is depicted by the automa-
ton shown in Fig.5. Each user executessymbolically, one by one, all operations (local
and non local ones), on its own copy of the shared text. The symbolic execution of
an operation (local or non local) is represented by the loop on locationl0 which con-
sists of 3 parts: the selection of a process identifier (k : pid t), the guardguard(k) and
the updateSymbolicExecution(k). The guard part verifies whether a sitepid can ex-
ecute an operation of sitek. The update part is devoted to the symbolic execution of
an operation of a sitek. The execution order of operations must, however, respect the
causality principle. The causality principle is ensured bythe timestamp vectors of sites
V[NbSites][NbSites]. For each pair of sites(i, j), elementV[i][j] is the number of oper-
ations of sitej executed by sitei. V[i][i] is then the number of local operations executed
in sitei. Note thatV[i][j] is also the rank of the next operation of sitej to be executed by
site i. Timestamp vectors are also used to determine whether operations are concurrent
or dependent. Initially, entries of the timestamp vector ofevery sitei are set to 0. After-
wards, when sitei executes an operation of a sitej (j ∈ [0,NbSites−1]), it increments
the entry ofj in its own timestamp vector (i.e.,V[i][j]++).

Symbolic execution of a local operation.A local operation can be executed by a site
pid if the number of local operations already executed by sitepid does not yet reach
its maximal number of local operations (i.e.V[pid][pid] < Iter[pid]). In this case, its
timestamp vector is set to the timestamp vector of its site. Its owner and the timestamp
vector are stored in arrayOperations. Its entry inOperationsis stored inTrace[pid].

10

l2l1

pid==0
pid!=0 && forall (i:pid_t)
forall (k:pid_t)
V[i][k]==Iter[k]
Syn?k:pid_t

k!=pid && guard(k)
Execution(k)

oper: operator, p: position, c: alphabet
V[pid][pid]<Iter[pid] &&
c== oper*c && p < Length
Operations[ns].Owner=pid,
Operations[ns].opr=oper,
Operations[ns].ipos=p,
Operations[ns].x=c,
ns++, Execution(pid)

pid==0 &&
forall (i:pid_t) forall (k:pid_t)
V[i][k]==Iter[k]
Syn!

Fig. 4.The concrete model

l1l0

pid!=0 && forall (i:pid_t)
forall (j:pid_t) V[i][j]==Iter[j]

Syn?

k:pid_t
guard(k)

SymbolicExecution(k) pid==0

pid==0 && forall (i:pid_t)
forall (j:pid_t) V[i][j]==Iter[j]

Syn !

EffectiveExecution()

Fig. 5.The symbolic model

Its broadcast to other sites is simulated by incrementing the number of local operations
executed (V[pid][pid]++).

Symbolic execution of non local operations.A site pid can execute an operation of
another sitek if there is an operation ofk executed byk but not yet executed bypid
(i.e.: V[pid][k] < V[k][k]) and its timestamp vector is less or equal to the timestamp
vector of sitepid (i.e.:∀ j ∈ [0,NbSites−1],V[pid][j] >= Operations[num].V[j], num
being the identifier of the operation). Recall that, the transformation and effective
execution of operations (Insert and Delete) are not performed at this level. They are
realized when the construction of all traces is completed.

Effective execution of operations.When all sites complete the construction of their re-
spective traces, they are forced to perform synchronously,via the broadcast channelSyn,
their respective edges connecting locationsl0 andl1 (synchronization on termination).
The update part of edge connecting locationsl0 andl1 of site 0 is devoted to testing all
signatures possibilities of operations and then verifyingthe convergence property. The
test of all these possibilities is encapsulated in a C-function, calledE f f ectiveExecution
which is stopped as soon as the violation of the convergence property is detected. This
property is violated if there exist two sites which have completed the same set of op-
erations but their texts are not identical. In this case, signatures of operations and ex-
act traces of both sites which violate the convergence property are returned in vectors
SignaturesandList, and the variableDetectedis set totrue. The integration steps (see
sub-section 2.6) are treated at this level (i.e., in this function).

11

3.3 Verification of the convergence property

The convergence property states that whenever two sites complete the execution of the
same set of operations, their resulting texts must be identical. A stable state of the
system is a situation where all sent operations are receivedand executed (there is no
operation in transit). A sitei is in a stable state if all operations sent to sitei are received
and executed byi (i.e. f orall(k : pid t) V[i][k] == V[k][k]). The convergence property
can be rewritten using the notion of stable state as follows:”Whenever two sitesi and
j are in stable state, they have identical texts”. For the concrete model [3], we use the
negation of this property specified by the followingUPPAAL’s CTL formulaφ1:

E3 (exists(i : pid t) exists(j : pid t)

i! = j && f orall(k : pid t) V[i][k] == V[k][k] && V[j][k] == V[k][k])

&& exists(l : int[0,L−1]) text[i][l]! = text[j][l]

This formula means that there is an execution path leading tosome situation where two
sitesi and j are in stable states and their copies of texttext[i] andtext[j] are different.
For the symbolic model, the verification of the convergence propriety is based on a
variable namedDetected. This variable is set totruewhen the convergence propriety is
violated. Therefore, the convergence propriety is violated iff UPPAAL’s CTL formula
φ′1 : E3 Detectedis satisfied.

We have tested five IT functions known in the literature for synchronizing linear ob-
jects. Each IT function produces a new instance of OT algorithm, where only the trans-
formation function changes. These OT algorithms are denoted respectively:Ellis [4],
Ressel[9], Sun[13], Suleiman[10] andImine [6]. Two models are used : concrete and
symbolic models.

Alg. Prop. Val. Expl./Comp./Time Val. Expl./Comp./Time
Ellis 3 3 φ1/φ′1 true 825112/1838500/121.35true 1625/1739/0.14
Ellis 3 3 φ2 ? ? true 1837/1837/0.68

Ressel3 3 φ1/φ′1 true 833558/1851350/122.76true 1637/1751/0.25
Ressel3 3 φ2 ? ? true 1837/1837/1.63
Sun3 3 φ1/φ′1 true 836564/1897392/122.33true 1625/1739/0.14
Sun3 3 φ2 ? ? true 1837/1837/0.38

Suleiman3 3 φ1/φ′1 false 3733688/3733688/365.06false 1837/1837/0.83
Suleiman3 3 φ2 ? ? true 1837/1837/2.22
Suleiman3 4 φ1/φ′1 ? ? true 18450/19380/2.45

Imine3 3 φ1/φ′1 false 3733688/3733688/361.16false 1837/1837/0.81
Imine3 3 φ2 ? ? true 1837/1837/2.18
Imine3 4 φ1/φ′1 ? ? true 18401/19331/2.45

Table 1.Model-checking the concrete and the symbolic models

We report in Table 1 the results obtained, for two properties: absence of deadlocks
(φ2 : A[] notdeadlock) and the violation of the convergence property (φ1 or φ′1) defined
above, in case of 3 sites (NbSites= 3), 3 or 4 operations (MaxIter= 3 orMaxIter= 4),
and a window of the observed text of lengthL = 2∗MaxIter. A stateq of a model is in

12

deadlock iff there is no edge enabled inq nor in states reachable fromq by time progres-
sion. Propertyφ2 is always satisfied and allows us to compute the size of the entire state
space. Note that all tests are performed using the version 4.0.6 of UPPAAL 2k on a 3
Gigahertz Pentium-4 with 1GB of RAM. We give, in column 4, foreach algorithm and
each property, the number of explored states, the number of computed states and the
execution time (CPU time in seconds). A question mark indicates a situation where the
verification was aborted due to a lack of memory. We report in Table 2, the counterex-
amples obtained for the convergence property and the symbolic model (each operation
oi, for i = 1,3, is generated bySitei, o11 ando12 are generated in this order bySite1).
Note that counterexamples obtained for the concrete and thesymbolic models may be
different. These results show that the symbolic model allows a significant gain in both
time and space comparatively to the concrete model. With thesymbolic model, we have
been able to prove that the convergence property is not satisfied for five OT algorithms
and to provide counterexamples.

Alg. Operations Traces
Ellis o1: Ins(1,0), o2: Ins(1,1), o3: Ins(1,0)Site1: o1; o2; o3 Site3: o3; o2; o1
Ressel o1: Ins(2,0), o2: Ins(1,1), o3: Del(1)Site1: o1; o2; o3 Site3: o3; o2; o1
Sun o1: Ins(1,0), o2: Ins(2,0), o3: Ins(2,1)Site1: o1; o2; o3 Site3: o3; o1; o2
Suleimano11: Del(1), o12: Ins(1,0), Site2 : o2; o3; o11; o12

o2: Ins(1,0), o3: Ins(2,0) Site3 : o3; o2; o11; o12
Imine o11: Ins(1,0), o12: Ins(2,0), Site1 : o11; o12; o2; o3

o2: Ins(2,0), o3: Del(1) Site3 : o3; o2; o11; o12

Table 2.Counterexamples obtained for the tested IT functions

For instance, in Fig.6, we report a divergence scenario for OT algorithm based on
transformation function proposed by Suleiman andal [10] (see Fig.3), whereo0, o2 and
o3 are pairwise concurrent ando0 → o1.

State space reduction.To reduce the size of the state space to be explored, we propose
some reductions (see [3] for more details) which preserve the convergence property. The
first reduction consists of synchronization of the execution of non local operations in
sites which have finished the execution of their local operations. This synchronization
preserves the convergence property since when a site completes the execution of all
local operations, it does not send any information to other sites and the execution of non
local operations affects only the state of the site. With this synchronization, intermediate
states resulting from different interleavings of these operations are not accessible. This
reduction has been implemented in the variant models of the concrete and the symbolic
models [3]. The second reduction forces to stop the construction of concrete/symbolic
traces as soon as two any sites have completed the construction of their own traces. As
sites have symmetrical behaviors, this reduction does not alter the convergence property.
In the concrete and the symbolic models, edges connecting location l0 to l1 and the
broadcast channelSyn, implement this reduction.

Another factor which contributes to the state explosion problem is the timestamp

13

site 1
”0000”

site 2
”0000”

site 3
”0000”

o0 = Del(3)

##
**

o2 = Ins(3,0,{},{})

''OOOOOOOOOOOOOO
o3 = Ins(4,1,{},{})

wwoooooooooooooo

000 00000 00001

o1 = Ins(3,0,{},{})

**

o′3 = Ins(5,1,{},{}) o′2 = Ins(3,0,{},{})

0000 000001 000001

o′0 = Del(4) o′′0 = Del(4)

00001 00001

Nop() Ins(5,0,{},{})

00001 000010

Fig. 6.Complete divergence scenario for Suleiman’s algorithm.

vectors of different sites and operations. These vectors are used to ensure the causality
principle. To attenuate this state explosion problem, we offer the possibility to replace
the timestamp vectors by a relation of dependence over operations. This model allows to
test whether an OT algorithm works or not under some relationof dependence (see [3]
for more details).

4 Related Work

To our best knowledge, there exists only one work on analyzing OT algorithms [7].
In this work, the authors proposed a formal framework for modelling and verifying IT
functions with algebraic specifications. For checking the propertiesTP1 andTP2, they
used a theorem prover based on advanced automated deductiontechniques. For all IT
functions considered here, they showed that: (i)TP1 is only satisfied for Suleiman’s
and Imine’s IT functions; (ii)TP2 is always violated.

For example, consider the IT function proposed by Suleiman et al. [10] (see Fig.3).
A theorem prover-based verification revealed aTP2 violation in this function [5], as
illustrated in Fig.7. As this is related toTP2 property, there are three concurrent opera-
tions (for all positionsp and all charactersx andy such thatCode(x) < Code(y)):
o1 = Ins(p,x,{},{}), o2 = Ins(p,x,{},{Del(p)}) and o3 = Ins(p,y,{Del(p)},{})
with the transformationso′3 = IT (o3,o2), o′2 = IT (o2,o3), o′1 = IT ∗(o1, [o2;o′3]) and
o′′1 = IT ∗(o1, [o3;o′2]).

However, the theorem prover’s output gives no information about whether thisTP2
violation is reachable or not. Indeed, we do not know how to obtaino2 ando3 (their pre1

and post2 parameters are not empty respectively) as they are necessarily the results of
transformation against other operations that are not givenby the theorem prover. Using
our model-checking-based technique, we can get a complete and informative scenario

14

site 1 site 2 site 3

o1 = Ins(p,x,{},{})

)) ++

o2 = Ins(p,x,{},{Del(p)})

**UUUUUUUUUUUUUUUUU
o3 = Ins(p,y,{Del(p)},{})

ttiiiiiiiiiiiiiiiii

o′3 = Ins(p+1,y,{Del(p)},{}) o′2 = Ins(p,x,{},{Del(p)})

o′1 = Nop() o′′1 = Ins(p+2,x,{},{})

Fig. 7.TP2 violation for Suleiman’s algorithm.

when a bug is detected. Indeed, the output contains all necessary operations and the
step-by-step execution that lead to divergence situation.Thus, by model-checking veri-
fication, the existence of theTP2 violation depicted in Fig.7 is proved (or certified) by
the complete scenario given in Table 2.

As they are the basis cases of the convergence property,TP1 andTP2 are sufficient
to ensure the data convergence for any number of concurrent operations which can be
performed in any order. Thus, a theorem prover-based approach remains better for prov-
ing that some IT function satisfiesTP1 andTP2. But it is partially automatable and, in
the most cases, less informative when divergence bugs are detected. A model-checking-
based approach is fully automatable for finding divergence scenarios. Nevertheless, it
is more limited as the convergence property can be exhaustively evaluated on only a
specific finite state space.

5 Conclusion

We proposed here a model-checking technique, based on formalisms used in tool UP-
PAAL, to model the behavior of replication-based collaborative editors. To cope with
the severe state explosion problem of such systems, we exploited their features and
those of tool UPPAAL to establish and apply some abstractions and reductions to the
model. The verification has been performed with the model-checking module of UP-
PAAL. An interesting and useful feature of this module is to provide, in case of failure
of the tested property, a trace of an execution for which the property is not satisfied.
We used this feature to give counterexamples for five OT algorithms, based on different
transformation functions proposed in the literature to ensure the convergence property.
Using our model-checking technique we found an upper bound for ensuring the data
convergence in such systems. Indeed, when the number of sites exceeds 2 the conver-
gence property is not achieved for all OT algorithms considered here. We think that our
work is a forward step towards an efficient framework for formally developing shared
objects based on the OT approach.

15

However, the serious drawback of the model-checking is the state explosion. So, in
future work, we plan to investigate the following directions: (i) It is interesting to find,
under which conditions, the model-checking verification problem can be reduced to a
finite-state problem. (ii) Combining theorem-prover and model-checking approaches in
order to attenuate the severe state explosion problem.

References

1. R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–
235, 1994.

2. B. Bérard, P. Bouyer, and A. Petit. Analysing the pgm protocol with uppaal.International
Journal of Production Research, 42(14):2773–2791, 2004.

3. H. Boucheneb and A. Imine. Experiments in model-checking optimistic replication algo-
rithms. Research Report 6510, INRIA, April 2008.

4. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. InSIGMOD Con-
ference, volume 18, pages 399–407, 1989.

5. A. Imine. Conception formelle d’algorithmes de réplication optimiste. Vers l’édition Col-
laborative dans les ŕeseaux Pair-̀a-Pair. Phd thesis, University of Henri Poincaré, Nancy,
France, December 2006.

6. A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctnessof transformation
functions in real-time groupware. InECSCW’03, Helsinki, Finland, 14.-18. September 2003.

7. A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of oper-
ational transformation algorithms for copies convergence.Theoretical Computer Science,
351(2):167–183, 2006.

8. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell.Journal of Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

9. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser. An integrating, transformation-
oriented approach to concurrency control and undo in group editors.In ACM CSCW’96,
pages 288–297, Boston, USA, November 1996.

10. M. Suleiman, M. Cart, and J. Ferrié. Serialization of concurrent operations in a distributed
collaborative environment. InACM GROUP’97, pages 435–445, November 1997.

11. M. Suleiman, M. Cart, and J. Ferrié. Concurrent operations in a distributed and mobile
collaborative environment. InIEEE ICDE’98, pages 36–45, 1998.

12. C. Sun and C. Ellis. Operational transformation in real-time group editors: issues, algorithms,
and achievements. InACM CSCW’98, pages 59–68, 1998.

13. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality-
preservation and intention-preservation in real-time cooperative editing systems.ACM Trans.
Comput.-Hum. Interact., 5(1):63–108, March 1998.

14. C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent adaptation of single-user
applications for multi-user real-time collaboration.ACM Trans. Comput.-Hum. Interact.,
13(4):531–582, 2006.

15. N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence in a distributed real-time
collaborative environment. InACM CSCW’00, Philadelphia, USA, December 2000.

