Epistemic Logic for the Applied Pi Calculus*

Rohit Chadhd, Stéphanie Delaudeand Steve Kremér

L University of lllinois at Urbana-Champaign, USA
2 LSV, ENS Cachan & CNRS & INRIA Saclay, France

Abstract. We propose an epistemic logic for the applied pi calculuscivis
a variant of the pi calculus with extensions for modelingptographic proto-
cols. In such a calculus, the security guarantees are ysstalled asquiva-
lences While process calculi provide a natural means to desclibeptotocols
themselvesgpistemic logicare often better suited for expressing certain security
properties such as secrecy and anonymity.

We intend to bridge the gap between these two approachesg; ths set of traces
generated by a process as models, we define a logic which haswcs for
reasoning about both intruder’s epistemic knowledge aedstt of messages
in possession of the intruder. As an example we consider owodlizations of
privacy in electronic voting and study the relationshipaztn them.

1 Introduction

The applied pi calculus [2] is an extension of the pi calcudasigned for specifying
and verifying cryptographic protocols. The main differeriom the pi calculus is that
it allows one to manipulate complex data, instead of just emnihe data is gener-
ated by an arbitrary abstract term algebra and interpretetuio an equational theory.
This allows one to abstractly specify cryptographic fuoics. For instance the equa-
tion dec(enc(z, k), k) = x models that decryption cancels out encryption if the same
key k is used. As the calculus is parametrized by an arbitraryteanad theory, several
complex cryptographic primitives have been convenientbdeled in literature. For
example, blind signatures were modeled in [14] and nordictere zero-knowledge
proofs were modeled in [3]. This calculus has been succissfied to study a variety
of security protocols, e.g. the direct anonymous attestgdiotocol [3], some electronic
voting protocols [14]. Moreover, there exists tool supgbttfor assisting the verifica-
tion of protocols in the applied pi calculus.

As argued above the applied pi calculus is a convenient arithtiéeformalism for
describing the processes which model the protocol. Howeesurity properties are
more difficult to specify. Some properties may directly bedfied using observational
equivalence, but this is generally not very natural and earent. A more natural ap-
proach to verify protocols for correctness would be to dedisaitable logic interpreted
over the terms of the calculus and express the desired 8eguoél in that logic.

Our main contribution is the definition of an epistemic lofyic the applied pi cal-
culus suitable for expressing important security goals Myic itself is an LTL like

* This work has been partially supported by ANR SeSur AEIhd NSF CCF 0448178

temporal logic with a special predicaltias that models deducibility of messages by
an intruder and an epistemic knowledge oper#&tarhich allows us to reason about
the intruder’'sepistemic knowledg®ther predicates of the logic are defineddwents
which annotate the protocol. Similar annotations haveadlyédeen used for specifying
authentication properties, initially by Woo and Lam [21Hamore specifically in the
applied pi calculus by Blanchet [6]. We emphasize here that@in motivation behind
designing this logic is to express important security gaatinotto study observational
equivalence. In particular, a Hennessy-Milner theorenh mok hold: observationally
equivalent processes may satisfy different security goals

Epistemic logics, going back to the BAN logic [8], are weliited to express com-
plex security properties. At that time, the logic was usereason about authentication
protocols. However, epistemic knowledge is particuladeful when reasoning about
anonymity propertiesg(g, see [19]). Intuitively, an intruder (epistemically) knewhat
a propertyy is true, if ¢ is true on every run which is indistinguishable for the inleu
from the current one. In general epistemic logics this is eded by an arbitrary equiva-
lence relation on runs. In the context of security protogadglivalence of runs is tightly
related to the cryptographic functions used: an intrudeéckwtdoes not knowk, should
regard the runs outputting respectivel(0, k) andenc(1, k) as equivalent. We for-
malize equivalence of runs by lifting the notionsihtic equivalencéo protocol runs.
We emphasize here that our logic contains the epistemic linpdaly for the intruder
and not for other participants. This is primarily becausepghocesses only keep track
of messages in possession of the intruder.

We illustrate the expressiveness of our logic by expressiragnge of security prop-
erties: secrecy, authentication as well as fairness inraongigning protocols. We then
specifyprivacyin voting protocols, which relies on the epistemic knowledd the in-
truder. We show that a definition of vote privacy in terms afqass equivalence as de-
fined in [14] implies vote privacy in terms of epistemic logas defined in [4]. Then we
slightly weaken the equivalence based definition, reptaoinservational equivalence
with trace equivalence. In that case, under reasonablengg®uns, we show that the
converse implication, i.e. epistemic privacy implies pdy as equivalence, also holds.
This result is important in that it clarifies the relationshietween two definitions of
privacy employed in the literature. Furthermore, the resuggests that trace equiva-
lence is more appropriate to model voter privacy even thalgervational equivalence
is convenient to use because of the available tool support.

For the rest of the paper we reserve the phrase “intrudeds/lauge” for his epis-
temic knowledge. We use the word “intruder’s possessionthe set of messages that
an intruder possesses (which is sometimes referred to agdage in security).

2 The applied pi calculus

We present here the syntax and semantics of a slightly eedtiapplied pi calculus [2].
2.1 Syntax

The syntax of the applied pi-calculus assumes an ordeegwdcabulary consisting of
a denumerable set olamesof each sort, a denumerable setvafiablesof each sort

and asignatureX’ consisting of a finite set diunction symbolsvith their arity. The
details of the sort system are unimportant, as long as diffase typesndchannel
types We always suppose that function symbols only operate ornretodn terms of
base type. The grammar of the set of terms is defined as:

M,N,T := terms
a,by...,...k,m,n,... names
TyY, 2y variables
f(My, Ms, ... My) function application

Of course function symbol application must respect sortsaities. We shall use
u,v,...to range over both names and variables. We writes(T") for the set of vari-
ables occurring if. T is said to be groundterm if vars(T') = 0.

Example 1.Let X = {enc/2,dec/2, pair/2, proj, /1, proj,/1} be a signature contain-
ing function symbols for encryption, decryption and paijrieach of arity2, as well as
left and right projection symbols of arity The termenc(a, k) is ground.

There are two kinds of processes in the applied pi calcutlain processes built
up in a similar way to processes in the pi calculus exceptriegsages can contain
terms rather than just names, aextendedorocesses which adakctive substitutions
(explained below) and restriction on variables. Furtheemwe enrich plain processes
with non-deterministic choice and a set of events e. . . (parametrized by a sequence
of terms of the correct sort). These events are “annotdtiwhgch are useful in for-
malizing security properties and (as we shall see lates) ptapart in observational
equivalence. Extended processes are also enrichecewattt storeswhich record the
events that happen along an execution. We do not have repii¢a our calculus.

PQ,R:= plain processes A, B,C:= extended processes
0 null process P plain process
PlQ parallel composition A | B parallel composition
P+Q non-det. choice vn. A name restriction
vn.P name restriction ve.A variable restriction
if M = N thenP else@ conditional {M/.} active substitution
in(u, z).P message input [e(M)] event store
out(u, N).P message output
e(M).P event

{M/.} is the active substitution that replaces the variablgith the termM. Active
substitutions generalize the “let” construet:.({ /,.} | P) corresponds exactly to “let
x = M in P". An event storele())] memorizes that the eventl) happened. As
usual, names and variables have scopes, which are delilntedstrictions and by
inputs. Please note that the “event” construct is not a hpdonstruct. We writgv (A),
bu(A), fn(A) andbn(A) for the sets ofreeandbound variablesindfree andbound
namesof A, respectively. We say that an extended procestosedif all its variables
are either bound or defined by an active substitutionealuation contex’[_] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to amegxtended process
to itsframe denotedr(A), by replacing every plain process and event storéwith 0.

A frame is an extended process built up from 0 and active gutishs by parallel
composition and restriction. The franfe(A) accounts for the set of terms statically
possessed by the intruder (but does not accourt ®odynamic behavior). Thdomain
of a frameyp, dom(y), is the set of variables for which defines a substitution (i.e.
variablesr for which ¢ contains a substitutiof™ /.. } not under a restriction on). In
such a case, i.e. whene dom(y), = allows the intruder to refer to the terfd.

2.2 Semantics

The semantics is defined in terms of a LTS which records tleeantion of an extended
process with the intruder. We associate an equationalytety the signaturel. E' is
defined by a set of equatiodd = N and induces an equivalence relation over terms:
=g is the smallest equivalence relation on terms, which corgdiequations irk and

is closed under substitution of terms for variables ancchije renaming of names.

Example 2.Considering the signatur® of Example 1 we define the equational the-
ory Eenc by the equationdec(enc(z, y),y) = = andproj,(z1, x2) = z; fori € {1,2}.
We have thatlec(enc(a, k), k) =g, a.

enc

We define the relatiog? to be the smallest equivalence relation on extended pro-
cesses that is closed under application of evaluation gtsded such that

PAR-0 Alo=A CHOICEFA P+ (Q+ R)=(P+ Q)+ R
PAR-A A|(B|C)=(A|B)|C CHoICE-C P+Q=Q+R
PAR-C A|B=B|A ALIAS ve{M/.} =0
NeEw-C vu.vv. A X2 vvvu. A SUBST M/ A2 {M/ 3] A{M),)
NEW-PAR A |vu.B = vu.(A|B) REWRITE M/ y={N/}

if ud fn(A)U fu(A) if M =g N

We definestructural equivalence=, to be= closed undet-conversion on names and
variables. In comparison to the original applied pi calsulve dropped the structural
equivalence/n.0 = 0 which will be important for deduction.

Example 3.Consider the following proceds:
vs, k.(out(c, enc(s, k)) | in(cr,y).out(ca, dec(y, k))).

The first component publishes the messag#s, k) by sending it ore;; . The second
receives a message of uses the secret kéyto decrypt it, and forwards the resulting
plaintext onc,. P is structurally equivalent to the following extended presé:

A= wvs, k,z1.(0ut(cr,x1) | in(cr,y).0ut(co, dec(y, k) | {4 /5, })
We havefr(A) = vs, k,21.{"(>F) /. } 2 vs k.0 (sincez; is under a restriction).

Internal reduction— is the smallest relation on extended processes closed under
structural equivalence and application of evaluation extstsuch that

CoMmMm out{a, M).P |in(a,z).Q — P | Q{™/,} THENIf M = N thenP elseQ — P

— — whereM =g N
EVENT e(M).P — P | [e(M)])
ELSE if M = N thenP else@ — @
CHoIcE P+Q—P whereM, N are ground and/ #g N .

As usual—* denotes the reflexive transitive closure-of

The operational semantics is extended bgleeledoperational semantics enabling
us to reason about processes that interact with their envient. Belowa andc are
channel nameg; is a variable of base type ands a variable of any type.

4 .
— A’ wdoes not occur i

In in(a.y).P " POY/Y - Scope)
out(ac) vu.A — vu. A’
OuUT-CH out(a,c).P ——= P bn(6) M fn(B) = 0
n n =
out(a,c) ’ ¢ / —
OPEN-CH A —>w jt(a : c#a AR A=A b)nfu(B)=10
ve A ———— A’ A|B£>A'|B
OuT-T outla, M).P 222 p (M) 4 A=B BLB A=PB

@ ¢ fo(P)Ufo(M) STRUCT h

Example 4.Continuing Example 3, we have that

A vououtler,m), in(oro1) vs, k.(ouf(cg, s) | {enc(s’k)/m}) *a.
The frame associated W/ is fr(A’') = vs, k.{s"(5F) /1.

2.3 Equivalences

In this section we introduce two notions of process equivadstrace equivalencand
labeled bisimulationThese definitions are based static equivalencean equivalence
on frames, andtatic equivalence of tracewhich lifts static equivalence from frames to
traces. Static equivalence is a notion of intruder’s pagsaghat has been extensively
studied (e.g. [1]). Another notion, namely deducibilityiMde discussed in Section 3.
The notion of static equivalence is useful to define labelsuirfarity.

Definition 1 (static equivalence).We say that two term8/ and N are equal in the
frameg, and write(M =g N)o¢, if there exists: and a substitution such that) = vn.o,
AN (fa(M)Ufn(N)) =0,andMo =g No. We say that two closed framgs and ¢
are statically equivalentp; ~ ¢, when:

— dom(¢y) = dom(¢s), and
— for allterms M, N we have thatM =g N)¢, if and only if (M =g N)¢ps.

Example 5.Let ¢ = vk, s.({"CF) /o } | {#/0.}), ¢ = vk ({0 0} [{F/02})
wheres, s’, k are names. We haydec(x1, x2) =g, s')¢’ but(dec(x1,x2) #e,,. s,

enc enc

thusg « ¢ (for Eenc). Howeveryk, s.{enc(s, k)/x1} ~ vk.{enc(s', k)/z1}.

We now define two notions of indistinguishability in the prase of an active in-
truder. The first one itrace equivalencethe second onkabeled bisimulationAs we
are interested in the interactions of a process with thedar (and not just the internal
actions), we use the labeled transition system to definedbsilple “runs” of a process:

Definition 2 (trace). A tracetr is a finite derivationrr = Ag 4, Ap... LR A, such
that eachA; is a closed extended process where egah either empty (and represents

an internal action) or is a labeled actiofy with fv(¢;+1) C dom(A;). The tracetr is
said to be maximal ifd,, # for any/.

We writetr[i] for the processd; andtr[i, j] for the traceA; LN A N Aj. We
shall say thattr| = n.
£; £;

We say that the tracer is of the formA, ety Ay = Ay, oD

A, —* A, if £}, is a labeled action for alk = i;,1 < j < r and the internal action
otherwise.

Given a process! we definerr(A) to be the set of all traces such thatr[0] = A and

trmax(A) to be the set of all the maximal tracessuch thatr[0] = A.

In order to define trace equivalence we lift static equivedeinom frames to traces.
In order to ensure that bisimilar processes are also tragiwagnt we need to define
a-equivalence of traces. Intuitively, we say that a labelgttba ¢ in a tracetr bindsn in
the subsequent tracerifoccurs as a bound namedinA tracetr can ben-renamed tar’
if tr’ can be obtained by am-renaming of the bound name The formal definition is
given in the long version of this paper [9] where its motigatis also discussed. We
write tr —,, tr’ if tr’ is obtained fromtr by ana-renaming of a bound name. The
relation~,, is defined to be the reflexive, symmetric and transitive closi—,, .

Intuitively, we say that two traces are statically equiwleo the intruder if the
intruder performed the same actions in the trace and thedetrcould not “statically”
distinguish the processes resulting from these actionsn&ity,

Definition 3 (static equivalence of trace$~)). Lettr be a trace of the formly, —* b,

/

Ay RN Ajgr... LN A, —* B. Lettr’ be a trace of the formA|, _h,
Ay = Bar ot 4 B Thentr ot if r = 1, and

—foralll <i<r, ¢ =1¢.

—forall0 <i <, fr(4;) ~ fr(A%) (static equivalence).
The relation~; is the transitive closure of, U < .

We can now define trace equivalence.

Definition 4 (trace equivalence £;)). Let A and B be two closed extended processes.
We say that istrace includedh B, written A C, B if for each tracetr4 € tr(A) there
existstrg € tr(B) such thattr4 ~; trp. The processed and B are trace equivalent
written A ~; B, if A C; BandB C; A.

Trace equivalence is an appealing notion for modeling tirdjsiishability in pres-
ence of an active intruder and can be used to formalize manwyrisgeproperties (e.g.
strong secrecy, anonymity properties, ...). Howevernhmigation is often considered
as it has better proof techniques and is easier to manipulate

Definition 5 (labeled bisimilarity (~)). Labeled bisimilarityis the largest symmetric
relation R on closed extended processes, such th& B implies

1. fr(A) ~ fr(B);

2. if A — A’ thenB —* B’ and A’ R B’ for somebB’;
3.if A5 A andfu(¢) C dom(A) andbn(f) N fn(B) = 0 thenB —*-5—* B’ and
A’ R B’ for someB’.

As expected labeled bisimulation implies trace equivadene.~ C ~;. Hence bisim-
ulation can be used as a proof technique to show trace egqooal

3 Epistemic Logic

We shall now present the epistemic logic which allows us tsoa about intruder’s
epistemic knowledge and the set of facts in its possession.

3.1 Syntax

The formulas of our logic consist of two leveBtatic formulagire used to reason about
a “shapshot” of the process. They include predicates fantswbat may have occurred
in the past and a predicate for a set of terms that the intstdécally possesseBpis-
temic formulasallow us to reason about the dynamic behavior of the procedghee
epistemic knowledge that the intruder can deduce from it jpdieractions with the
process. The formulas use a term language which denote®tled messages. The
syntax of the logic is given in BNF form in Table 1 and discukbelow.

Terms.
Te=nlz] f(T...,T)

Static formulas.
§:=T [Has(T) [evt(T,...,T) | =6 [6V || 32.6

Epistemic formulas (with the provisbis a closed formula and has no free names).
p:=0[¢ ove[Ke]DOg[Bo
Table 1. Syntax of the Epistemic Logic
Term languageFor the term language of our logic we shall assume that fdr pamen
in the vocabulary of the applied pi calculus, there is a uaigamen in the logic. Simi-
larly for each function symbof in the vocabulary of the applied pi calculus, we have a
unique function symbofin the logic. However, there is no particular corresponéenc
between the set of variables in the logic and the appliedlputizs. We use;, 21, . . . to
range over the variables of the logic. The set of terms ofdf&Inow consist of names,
variables and function application (the usual restricbarsorts and arity apply here).

Static formulas. Static formulas assume a unary prediddta whose argument is of
base sort. This predicate is used to reason about the setrof that the intruder pos-
sesses. It also assumes that for each euerih the set of events for the calculus there
is predicatevt (of the correct sort and arity). These predicates are useshspn about
events that may have occurred in the past. The static fosanébuilt from these pred-
icates using the connectives negation—, disjunctionv and existential quantification
Jz. The usual connectives | and=- and the universal quantificatiéhcan be derived
from these connectives. We also assume the standard defsdf free and bound vari-
ables and substitution. A static formuleciesedif it does not contain any free variable.

7

Epistemic formulas Epistemic formulas reason about dynamic behavior of a goce
and are constructed froolosedstatic formulas with no free names using the connec-
tives conjunctionA, negation—, disjunctionv, existential quantificatiodlz and the
modalitiesd], 8, K. The reason for using only closed formulas will become dle&ec-

tion 3.2. Disallowing names is not restrictive, as eventstoa used to refer to names.
The formulas are interpreted over the possible “runs” oftifeeess. The formul@e is

true at some pointin a runf is true for all possible future points whereas the formula
H¢ is true if ¢ is true for all past points. The formuk&p is true if the intruder knows

(in the epistemic sens@)to be true based upon its interaction with the process in the
past. The connectives and=- and the modality) can be derived.

3.2 Semantics

We now define the semantics of the logic. We start by the dépataf terms.

Denotation of Terms.The terms of the logic are interpreted as ground terms of the
applied pi calculus and use the concept of an assignmenas8ignmenp is a map
which maps each logic variable € Z to a ground term of the applied pi calculus.
Using the assignmemt the denotation of terms is defined inductively as

[, =n [E,=p) [FT,....T)l, = f(T1l,, ... ([T],)
Satisfaction of static formulasThe models of static formulas are pairs- one part of
which is aname distinciclosed extended procest term, i.e. a process such that
bn(A) N fn(A) = 0 and no name is bound twice; and the other part an assignment.
We need another definition for our semantics which formalzesecond notion of
intruder’s possession (e.g. [1]).

Definition 6 (Deducibility). Let¢ = vii.o be a closed name-distinct frame anf be
aterm. We say that/ is deducible fromyp, denoted by - M if there exists a terniv
such thatfn(N) Nn = 0 and No =g M. Such a termV is arecipeof the termM..

Note that whenn.o - M, any occurrence of names framin M is bound byvn. Itis
for this reason that we introduce the relatisr{cf. Example in Remark 1, item 3).

Example 6.Consider the two framesand¢’ given in Example 5. We have that- k,
¢+ sandg F s'. Indeedrs, dec(x1, z2) ands’ are recipes of the ternis s ands’.

The interpretation of the static formulas given a nameiaisiprocess termi and
an assignmeny is defined in Table 2. The interesting cases are the safisfiaot the
predicateddas andevt. Intumvely, the formuIaHas() is satisfied if the intruder can
deduce the denotation @T The formulaevt(Tl, T) is satisfied if the correspond-
ing eventevt([[fl]] .) has occurred. The other definitions are standard. Note
that the as&gnmem{z — Mf|s the same ag except that on it takes the valué/ and
the formulad[A{/z] is the formula obtained from by substituting the free occurrences
of z by M.

Remark 1.

1. If the formulad is closed,.e., does not contain any free variables, then the satis-
faction of§ depends only on the process and is independent of the assignfor
such formulas we can drop the assignment in the satisfaalation.

ApET always
AplEewt(Th,...,T,) iff A=vi.(A|levt(My,...,M)])AM; =¢ [T;], 1<i<r

A,p | Has(T) iff fr(A)F [T],

Avp':“(s ZﬁAvpbéd

A,p =01 Vo2 iff A,plEdiorA,pkE o

A, p =324 iff 3aground termV/ such that4, p[z — M| = 6[M/z]

Table 2. Satisfaction of static formulas

2. Note that name-distinctness is crucial for the definibbratisfaction of the static
formulas. The name distinctness allows us to uniquely ifletite bound names
and interpretthem. Otherwise, the procdss (vn.[evt;(n)]) | (vn.[evtz(n)]) will
satisfyevt, (72) A evty(7) which is clearly wrong as the two bound names refer to
different nonces.

3. For asimilar reason, we need to forbidenaming when evaluating predicates.
Otherwise, (if we replace with = in the above semantics) we have that

vny, no.([evt(n1)] | [evta(no)]) = Fz. (evti(2) A evta(2)).

4. It can be checked that for any name-distinct closed framié ¢ = vn.c and
¢ =~ vn'.c’ thenf andn’ are the same (upto ordering) and for akysuch that
fm(N)Nnn =0, No =g No’'. Hence, ifA; = A,, we get thatd; and A, satisfy
the same set of static formulas.

5. The previous observation would not have been true if wedilatved the equiv-
alencevn.0 = 0. In particular, the intruder can deduce all ground termshin t
process) while it cannot deduce the termin the processn.0.

Please note that even name-distinct processes which aaereqduloa-conversion
may satisfy different static formula. However, if we limitiselves to closed formulas
with no free namesy-renaming does not affect the satisfaction.

Lemma 1. Letd be a closed static formula with no free names ahdand A, be two
name distinct extended processes suchthat A,. ThenA; = §iff A; 4.

The above Lemma allows us to define the semantics of the epéstermulas.

Satisfaction of epistemic formuladie shall now define the satisfaction relation for
epistemic formulas. As in the case of epistemic logic fotriisted systems [15, 16],
the epistemic formulas will be interpreted over the possiklns” of a process, i.e. the
set of maximal traces (Definition 2). Please note that sine@lavnot have replication
in our process terms, all traces of a process are finite andiefirition of maximal
traces does capture all possible “runs”. The traces aregénimuinterpret the temporal
modalities] andH. In order to interpret the modality, we need to consider an equiv-
alence relation on the set of traces which identifies trdeasdre indistinguishable to
the intruder: static equivalence on traces (Definition 3).epistemic formulab is in-
terpreted over a triple - a closed extended processmaximal tracer € trmax(A) and

a position) < 5 < |tr| in tr as described in Table 3.

Remark 2.0ur use of static equivalent traces as indistinguishabtzes is reminiscent
of what is often callegerfect recallin distributed systems- the intruder distinguishes

Ajtryi =6 iff there is a name-distinct extended procets
such thatr[i] = A’ andA’ = 6

A,tr,i = O¢ iff Vi <j<|tr|. A,tr,j ¢
Atr,i = B¢ iff VO <5 <i Atrjlo
A,tr,i = Ko iff Vtr' € trmax(A),V0 < j < [tr/|

such thatr[0, i] ~; tr'[0,j] = A,tr',j E ¢
A,tryi = —d iff A tr,i ¢
A,tr,i|:q51\/(;52 iff A,tr,i|:q510rA,tr,i|:q52

Table 3. Satisfaction of epistemic formulas

traces based upon the complete history of its interactigh thie process. We could
have, of course, chosen to define coarser equivalenceoredatror example, we could
have declared two traces to be equivalent if the intrudencgfstatically” distinguish
the last processes in the respective traddswever, a coarser relation would result in
intruder “knowing” a smaller set of formulas to be true whitlay lead to declaring
a protocol secure which otherwise will be insecure. Besidasall powerful intruder
should be able to record its history of interaction with tihetpcol.

Definition 7. We say thatd |= ¢ if for all tr € trmax(A) we haved, tr, 0 = ¢.

Not that Lemma 1 will not be true if we replace structural @glénce with static
equivalence. One reason is the presence of the predisatas static equivalence does
not depend on presence/absence of such formulas. Howeeriif /e were to consider
the fragment of the logic without these predicates, stiyiemuivalent processes may
satisfy different static formulas (and thus Hennessy-Btilhiheorem does not hold).

Lemma 2. There are closed extended procesdesnd A, and an epistemic formula
such thatd; ~ A; and A, |= ¢ but A, |~ ¢.

Proof. Consider the two processels = vn.{"»h(™) / 1 and A, = vn.{"/,} where
hash is unary function symbol which models a cryptographic hasictfion and hence
cannot be inverted. We assume that the set of equatioissempty. We have that
A; =~ A;. We have also thatl; = 3z.(Has(hash(z)) A —Has(z)) (the intruder has
the hash of the noneebut cannot invert it) whiled, = 3z.(Has(hash(z)) A —Has(z))
(the intruder has every free name and can create its hash). a

3.3 Examples

We now give some simple examples of security protocols thatie modeled in our
logic. These examples do not use the knowledge operatore¥e to Section 4 for

such an example. We only consider closed formulas (no freaablas) and formulas
without names. The idea is to annotate the process and thhegm@tametric events to
refer to bound names. Specifically, we will show how to spesé#crecy, authentication
and fairness in exchange protocols in our formalism.

! This is similar in spirit to what is commonly called “knowlge!” in security.

10

Example 7.This is a way to express the secret (in the sense of dedugjhili the
names in P = vs.evt(s).out(c, s). Let ¢ = OVz.(evt(z) = —Has(z)). Obviously,

we haveP £ ¢ asP — A, “22". 4o is a trace intrma(P) where A, —
vs.(out(c, s) | [evt(s)]), A2 = vs.({*/=} | [evt(s)]) and (P, tr,2) |= evt(s) A Has(s).

Another classical example is authentication modeled agereaent property.

Example 8.Consider the following simple handshake protocol wheiga shared key
and f any free symbol: A — B:enc(n,k)

B — A:enc(f(n) k)
The goal of this protocol is to authenticate B from A’s poifti@w. In the applied
pi calculus this protocol is modeled by:.(A | B) where
A = vn. outlenc(n, k)). in(z). if dec(x, k) = f(n) thenend(n)
B =in(y). begin(dec(y, k)). out(enc(f(dec(y, k)), k))
The eventbegin andend are used to annotate the protocol. The authentication of B
to A is then modeled by = [0Vz.(end(z) = begin(z)).

Yet another, less classical example of property is fairiressntract signing protocols.

Example 9.1In a fair contract signing protocols two agents want to excfeetheir cor-
responding signatures on a given contract in such a way thlaé @nd of the protocol
either both participants obtain the signed contract or rafrteem does so. Describing
a complete example of such a protocol would be out of the sobpigs paper and we
refer the reader to [10] for more details. These protoctkeeterminate in a final state
where the exchange has been aborted or in a final state wiesggthange did succeed.
For the purpose of our example, we suppose that the processlimpthe participan®
(eitherA or B) is annotated as follows: the evelPdnd(c) indicates thaP is in a final
state for some contract the evenPcontract(c) indicates thaf’ successfully received
the signed contract. Thefairness forA can be modeled as

¢ = OVc.(Aend(c) = (—Bcontract(c) V Acontract(c))).

The formula says that for any contract whenefeis in a final state Aend(c)),
eitherB did not obtain the contract signed By(—Bcontract(c)) or A did obtain the
contract signed b (Acontract(c)). Fairness fo3 can be modeled in a similar way.

4 Privacy in electronic voting protocols

Many electronic voting protocols have been proposed in itkeature and their for-
mal analysis has received considerable attention [14,A§ @portant security goal
is privacy of votes an intruder should not be able to learn (by its interactidth the
protocol) how an honest voter Alice voted. This property hasn formulated both
as an observational equivalence, e.g. in [14], and as ateepisproperty, e.g. in [4],
although never within the same formalism. Our formalisnovadl us to consider both
the formalizations and compare them within the same framlevir the sake of sim-
plicity, we only consider single protocol instances in whtao voters Alice and Bob
participate and we assume that there are only two votingpgtvailable to Alice and
Bob and we represent these optionognd1.

11

Electronic voting protocols in applied pi calculusdie refer the reader to [14] for a
detailed formal definition of electronic voting protocafsdapplied pi calculus. Herein,
we state the salient points of the definition. We assume llgaétis a sortoteoption in
our signature which contains at least two constafiary function symbols), denoted
by 0 and1, that do not occur irk. Furthermore, we assume that the protocol can be
expressed as a parametpi@in processV (z,,) with two free variables:, andx;,
of the sortvoteoption.? Forv,,v;, € {0,1}, the voter procesk (v,, v;) represents the
process in which Alice and Bob vote for optionsandv, respectively. Although these
assumptions are sufficient to model privacy as observdtenavalence, the definition
in terms of epistemic logic requires us to introduce eventarinotate the individual
voter preferences and consider all possible traces witkingle process.

Towards this end we introduce a parametric ewenés(-, -) with two arguments of
the sortvoteoption which is not present in the voting procdgéz,,, z;). From now on,
we consider the following voting process which considelrsating scenarios:

V= Z?),,,,vbe{o,l} votes(va, vp).V (Va, V).
The proces® shall henceforth be calledwting process

Privacy as observational equivalencié/e are ready to state the formalization of pri-
vacy as proposed in [14], which we shall cattong privacyfor the rest of this sec-
tion. Intuitively, the voting protocol represented Esrespects strong privacy if the
intruder cannot distinguish the two protocol instances lniclv Alice and Bob’s votes
are swapped.

Definition 8. The voting proces¥ respectsstrong privacyif V(0,1) ~ V(1,0).

Privacy as epistemic formulaNe need a few definitions to state privacy as an epistemic
formula. An inspection of the construction Bfshows that since the eventstes do
not occur inV, any maximal trace op consists of only one evenbtes(v,, vy) in the
store and corresponds to Alice and Bob voting for optigrandv, respectively. Also
(from construction of the epistemic logic in Section 3), vesume that there is a binary
predicate in our logic corresponding to the evestes which we shall (again in the
interest of keeping the syntax simple) denotevbyes. We also assume that there are
two 0-ary function symbols corresponding to the two voting opsievhich shall again
denote byo and1. Now, givenv € {0, 1} consider the formula

Avote(v) = votes(v, 0) V votes(v, 1).

Intuitively the formula s true in a state reachable fronf Alice votes for optiono.
Similarly we can define formulBvote(v).

Now, according to [4], a protocol respegigvacy for Aliceif the intruder cannot
(epistemically) know which voting option Alice exercisédprotocol respects privacy
if it respects privacy for both Alice and Bob. Please notd thes definition does not
usually hold for voting protocols in which the final tally dig¢ votes are announced—
a unanimous election always reveals each individual’s.\1é&mce, a more appropriate
formulation is that whenever Alice and Bob vote differenthe intruder cannot learn
how each of them voted. This gives us the following definitigrich states that intruder
can learn how a voter voted only if the other voter voted thmeesaption.

2V being a plain process is a simplification and we could hawéestavith a non-empty frame.

12

Definition 9 (privacy). The voting proces® respectsprivacy if ¥V = Aprivacy A
Bprivacy where

— Aprivacy o Avego,1}(K(Avote(v)) — Bvote(v)), and

— Bprivacy oof Avego,130(K(Bvote(v)) — Avote(v)).
Strong privacy implies privacyWe now show that privacy in terms of observational
equivalence implies privacy in terms of epistemic formulagact we show a stronger

statement, namely, that If (0, 1) ~; V'(1,0) then the protocol will respect privacy.
The proof of the statement is given in the long version of paper [9].

Theorem 1. If V(0,1) ~; V (1, 0) then the voting process respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Now, privacy in terms of epistemic formulas does not implpsg privacy. One can
construct examples which respect privacy but not strongapyi based on the fact that
bisimulation is a finer relation than trace equivalence. ey, a partial converse of
Theorem 1 holds— under reasonable assumptions privaciesip(0, 1) ~; V(1,0).

Privacy implies trace equivalencén order to state these assumptions, we need a few
definitions. First we need the definition of a publishing &aatuitively, we say that a
maximal tracetr is a publishing trace if the intruder learns which votes weast (but
not the link between the voters and individual votes) anddiatinguish it from any
other trace when the set of votes cast are different. For pbara publishing trace in
which Alice and Bob vote and1 is distinguishable from one in which they cdst
andO but not necessarily from one in which they casind0 respectively. A maximal
trace that is not publishing is said to be an abort traceitimély, this says that the
protocol could not be completed and hence votes are notgheuf?
Definition 10 (publishing and abort traces).Givenv,, v, € {0,1}, a maximal trace
tr € trmax(V (va, v3)) is said to be gublishing tracef for any v/, v; € {0,1} such
that{vy, vy} # {v,,v,}, thereis natr’ € tr(V(v,,v;)) such thatr ~; tr’. Otherwise
tris anabort trace

We say that a protocol is equivalent for aborts if an abokeraan be mimicked
irrespective of how Alice and Bob decided to vote.
Definition 11 (equivalentfor aborts).Givenv,, v, € {0,1} andtr € trmax(V (va, v3))
an abort trace. We say that is equivalent for aborts for any v/, v, € {0,1} there is
atr’ € trmax(V (vl v})) such thatr ~; tr'.

We have the partial converse of Theorem 1. The proof is gind8]i

Theorem 2. LetV = }° 101} votes(va, vs).V(vq, V) be a voting process such
thatV is equivalent for aborts and respects privacy. Th&®, 1) ~, V' (1,0).

Theorem 1 and Theorem 2 suggest that trace-equivalence imahe appropriate
notion for defining privacy of votes in electronic voting eviough the bisimulation-
based definition (which implies privacy) has better prooht@ques.

3 We believe that a good electronic voting protocol shouldhante abort traces. However, this
property has not been studied in literature.

13

5 Related and Future Work

Related work. Several authors (e.g. [17, 13, 20]) have recognized the mgntary
nature of the process algebraic and epistemic approaclietharbenefit to combine
them. Different approaches have been proposed to bridgegtp. In [17],function
viewsare used to represent partial information and make thefauebetween protocol
and properties. In order to get epistemic specificationseclto a behavioral specifica-
tion, van Eijck and Orzan [20] propose a dynamic epistenicloHowever, it seems
that no mediation is necessary [16, 13] and it is possibleitigk this gap by proposing
a combined framework as it is also suggested in this papeveMer, in the works cited
above, the authors study abstract versions of protocolshadin not take into account
cryptographic primitives (e.g. encryption, signature) and their specific properties.
Some recent works [18, 11] have been devoted to designingia to character-
ize static equivalencen [18], they build upon the logic for frames and extend ithwi
Hennessy-Milner modalities, yielding a logic for appliedpgpocesses which charac-
terizes labeled bisimilarity. However, as we already pedriut in the Introduction, our
goal is different and we want to define a logic that is expwesshough to state a variety
of security properties in a natural way. The advantage sfdpproach is evident in our
example of formalizing privacy in e-voting protocols in whiwe were able to establish
the exact relationship between two formal definitions o¥gey in e-voting protocols.

Another similarity between our work and the work in [11] isatithey also have
epistemic modalities. The work in [11] has another advaataghat they reason about
multiple agents and hence their logic has epistemic magfior multiple agents and
not just the intruder. This is however achieved by inteiipgethe logic over an agent-
indexed family of frames with a frame representing the sehe$sages in an agent’s
possessions. Since they are mostly interested in studtatig squivalence, they do not
mention how these frames are obtained. An applied pi-cadquiocess only keeps track
of the messages in intruder’s possession and thus we hayemakpistemic modality.

The problem of having a suitable language which allows foexgressive property
logic is a well-known problem in the context of cryptograpprotocols verification.
In [7,12], such a language and logic is proposed and allowsifipation of a large
class of security properties. However, none of the undeglyirotocol languages is as
expressive as the applied pi calculus. We are able to modebea klass of protocols
which may use less classical cryptographic primitivescege by an equational the-
ory, in an intuitive way. Therefore, our framework can bedusa protocols such as
electronic voting protocols, contract signing protocols,

Future Work. The formalism presented in this paper is a starting poird,\vaa intend
to study stronger anonymity properties such as coercisisteace that arise in security
protocols. Another line of investigation is to extend thenialism to allow for reasoning
about epistemic knowledge of multiple agents, and this digwlolve extension of both
the calculus and the logic. We also intend to study modetkihg algorithms to verify
whether a process satisfies a given formula. Finally, we ialgmd to investigate an
axiomatization of the logic presented in the paper.

14

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Abadi and V. Cortier. Deciding knowledge in securitpfarcols under equational theo-
ries. Theoretical Computer Scienc@87(1-2):2—32, 2006.

. M. Abadi and C. Fournet. Mobile values, new names, andreezsmmmunication. IfProc.

28th Symposium on Principles of Programming Languageges 104-115, 2001.

. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in tippléed pi-calculus and auto-

mated verification of the direct anonymous attestationquait InProc. 29th IEEE Sympo-
sium on Security and Privac2008.

. A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledgettmasdelling of voting proto-

cols. InProc. 11th Conference on Theoretical Aspects of Rationafid Knowledgepages
62-71, 2007.

. B. Blanchet. An Efficient Cryptographic Protocol Verif@ased on Prolog Rules. Rroc.

14th Computer Security Foundations Workshpages 82—-96, 2001.

. B. Blanchet. From Secrecy to Authenticity in SecuritytBeols. In9th International Static

Analysis Symposiympages 342—-359, 2002.

. J. Borgstrom, S. Kramer, and U. Nestmann. Calculus optographic Communication. In

Proc. Workshop on Foundations of Computer Security andrAated Reasoning for Security
Protocol Analysis2006.

. M. Burrows, M. Abadi, and R. M. Needham. A logic of autheation.ACM Trans. Comput.

Syst, 8(1):18-36, 1990.

. R. Chadha, S. Delaune, and S. Kremer. Epistemic logich@rapplied pi calculus. Re-

search Report LSV-09-06, Laboratoire Spécification etfiéation, ENS Cachan, France,
Mar. 2009.

R. Chadha, S. Kremer, and A. Scedrov. Formal analysisulfi-party contract signing.
Journal of Automated Reasonirgs(1-2):39-83, 2006.

M. Cohen and M. Dam. A complete axiomatization of knowk@nd cryptography. In
Proc. 22nd IEEE Symposium on Logic in Computer Scigpages 77-88, 2007.

R. Corin, A. Saptawijaya, and S. Etalle. PS-LTL for caoaisit-based security protocol anal-
ysis. InProc. 21st International Conference on Logic Programmipages 439—-440, 2005.
F. Dechesne, M. R. Mousavi, and S. Orzan. Operationatpistemic approaches to protocol
analysis: Bridging the gap. IRroc. 14th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoningages 226—241, 2007.

S. Delaune, S. Kremer, and M. D. Ryan. Verifying privéypye properties of electronic
voting protocols.Journal of Computer Securit008. To appear.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Varfdeasoning About Knowledg®!IT Press,
1995.

J. Y. Halpern and K. R. O'Neill. Anonymity and informatididing in multiagent systems.
Journal of Computer Securityt3(3):483-512, 2005.

D. Hughes and V. Shmatikov. Information hiding, anortynaind privacy: a modular ap-
proach.Journal of Computer Securityt2(1):3—-36, 2004.

H. Hittel and M. D. Pedersen. A logical characterisatibstatic equivalenceElectr. Notes
Theor. Comput. S¢i173:139-157, 2007.

H. Jonker and W. Pieters. Receipt-freeness as a spas@&bf anonymity in epistemic logic.
In Proc. IAVOSS Workshop On Trustworthy Electid2G06.

J.van Eijck and S. Orzan. Epistemic verification of amoity. Electr. Notes Theor. Comput.
Sci, 168:159-174, 2007.

T.Y.C. Woo and S. S. Lam. A semantic model for autheniogprotocols. InProc. 14th
IEEE Symposium on Security and Privat993.

15

