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Abstract. TiMo is a process algebra using timeouts for interactions
and adaptable migration between explicit locations. Starting from this
formalism, we have implemented a software platform for agent migra-
tion, separating the migration mechanism such that it can be reused for
other systems with mobility. We describe the platform architecture and
functionalities, the software modules and some implementation details,
emphasizing the novel aspects and comparing with similar implemen-
tations. The implementation corresponds rigorously to the semantics of
TiMo. An example illustrates the use of the migration platform for a
simple problem.

1 Introduction

Mobile applications represents an important topic in distributed system field.
Mobility is difficult in both the modeling part and in implementation, espe-
cially when time is also considered. To address the modeling part, many for-
malisms have been proposed over the years such as π-calculus [8], distributed
π-calculus [6], timed distributed π-calculus [4], TiMo [3]. Concerning the imple-
mentation, there are several architectures and different programming languages
(Telescript [11], Java) which support or facilitate code mobility or mobile agents
programming. Although there are several papers on both aspects (theoretical
and practical) addressing mobility, the link between the theoretical specification
and effective implementation is not clearly defined.

Our aim is to provide a platform for agent migration which corresponds to
a formal model. Starting from TiMo, we implement such a platform. To ensure
that it corresponds with the high-level operational semantics of TiMo, we define
a formal notion of configuration and use it to describe and reason about the
evolution of a system.

Since mobility is the main concept, we separate the low-level mobility con-
cerns and the high-level model aspects into two layers. Thus, our implementation
consists of an extensible basic framework which can be used to implement various
systems based on mobility and a framework inspired by TiMo which facilitates to
specify mobile agents. The lower layer is named MobileCalculi framework and,
besides a migration mechanism, it offers generic implementations of common



concepts needed to implement mobile systems. The upper layer is inspired by
TiMo and it is referred as the software framework for T iM o; it also provides a
compiler for an intermediate language in which someone can specify systems of
mobile agents. In order to prove the extensibility of MobileCalculi framework we
also implemented a software framework for dπ-calculus [6]. The whole system
is named MCTools. Thus, MCTools represents a software platform for mobile
calculi implementation.

MCTools system is developed according to a choreography based distributed
architecture. It is working without a central coordinator. Agents are free to roam
and travel in a network of machines which have the system installed, without
being orchestrated by a central entity.

The paper is structured as follows. We first briefly present the TiMo model in
Section 2, then we describe some implementation details in Sections 3 and 4. We
present the correspondence between TiMo and the implementation in Section
5. Before ending with conclusion and related works, an illustrating example is
presented in Section 6.

2 TiMo

TiMo [3] is a simple process algebra in which one can formally model distributed
systems with explicit locations, migration and temporal constraints. It is a part
of the π-calculus family [8], close to the distributed π-calculus [6] and timed
distributed π-calculus [4]. TiMo features a simple syntax, dropping the type
aspects of distributed π-calculus and focusing on interaction and migration. The
time is local and modeled by timers which are associated with basic actions.
The result is that the interaction and migration time is no longer indefinite.
Moreover, if an action does not happen in a predefined time, then the process
continues with a “safety” alternative.

T iMo Syntax is given below. It is assumed that Chan is a set of channels, Loc
is a set of locations, Var is a set of location variables and Ident is a finite set of
process identifiers (each identifier I ∈ Ident has a fixed arity mI ≥ 0).

P,Q ::= 0 | a∆t ! 〈v〉 thenP else Q | a∆t ? (u) thenP else Q |
golt∆mt v thenP else Q | I(v1, . . . , vmI

) | P |Q | #P
M,N ::= k[[P ]] | M |N

In the above description it is assumed that a ∈ Chan; t, lt,mt ∈ N,; v, v1, . . . ,
vmI

∈ Loc∪V ar; k ∈ Loc and u ∈ V ar. Moreover, each process identifier I ∈
Ident has a unique definition of form I(u1, . . . , umI

) = PI where ui 6= uj (for
i 6= j) are variable acting here as parameters.

Process a∆t ! 〈v〉 thenP else Q attempts to send v over channel a for t units
of time. If the communication takes place then it continues as P , otherwise it
continues as Q. Input process a∆t ? 〈u〉 thenP else Q has a similar behaviour.
Process golt∆mt v thenP else Q implements mobility. It first waits lt units of



time which represents the local time dedicated to local work, then it moves to
location v in mt units of time (mt stands for migration time). If the move is
accomplished within the specified time, then the process behaves as P (at v),
otherwise it continues as Q at current location. Processes are further constructed
from the basic processes together with the terminating process 0 by using the
parallel composition P |Q. A located process k[[P ]] is a process running at lo-
cation k. The symbol # from #P is a purely technical notation used in the
formalization of structural operational semantics of TiMo. Intuitively, it says
that the process has finished its action and it is temporally waiting for the next
tick of the clock.

Operational Semantics of TiMo is given by the rules presented in Table 1.

go: k[[go0∆mt l thenP else Q ]]
k:l
−−−−−→ l[[#P ]]

com: l[[a∆t ! 〈l〉 thenP else Q

| a∆t
′
? (u) thenP ′ else Q′ ]]

k:a(l)

−−−−−→
l[[#P |#{l/u}P ′]]

par:
N

β
−−−−−→ N ′

N |M β−−→ N ′ |M

struc:
N ≡ N ′ N

β
−−−−−→M M ≡M ′

N ′ β−−→M ′

time:
N 6→

N

√

−−−−−→ φ(N)
Table 1. TiMo operational semantics

Looking to the labels of the transitions, there are two kinds of transition

rules: M
β−−→ N and M

√
−−→ N . The first one corresponds to the execution of

an action β, while the second one represents a timing tick. The action β can be
either k : l or k : a(l), where k is the location where the action takes place, l is
either the location where the process goes, or the location transmitted along the
channel a. In rule Time, N 6→ denotes that no other rule can be applied.

φ is the time-passing function which acts in the following way. Each top-level
expression I(l1, . . . , lmI

) is replaced by the corresponding definition {l1/u1, . . . ,
lmI

/umI
}PI . Each top-level expression of the form a∆0... thenP else Q or

go0∆0...then P elseQ is replaced by #Q. For the top-level communication
expressions with ∆t > 0, t is decreased by 1. Each top-level expression of the
form golt∆mt thenP else Q is replaced by golt

′∆(mt′) thenP else Q where
lt′ = max{0, lt − 1} and mt′ = mt if lt > 0 or mt′ = max{0,mt − 1} if lt = 0.
All occurrences of the special symbol # are deleted.

A top-level expression is not containing a symbol #. Note that only after the
lt timer reaches 0, the process migrates to the destination.



3 MobileCalculi Framework

As stated in the introduction MobileCalculi framework represents the lower level
of the MCTools system. Its purpose is to be the low-level link between the
theoretical part of mobility (represented by various formalisms such as those
from π-calculus family) and the practical part which deals with mobile code
and mobile systems implementations. It was designed to abstract the concepts
used in the formal models, and to handle low-level details such as network or
location management. The correspondence between location names and physical
locations, represented by an IP address plus a port, is done at this level.

The framework serves as a base for implementation of models for mobil-
ity, dealing with the common part of such formalisms: names, locations, agents,
migration, fresh name generation, etc. It provides a default mechanism for migra-
tion which makes possible to migrate an agent by its code and data. Moreover,
it provides the architecture of an engine for simulation of the formal evolution
of a process. It also handles communications with other machines, and thus it
can create and initialize a distributed environment from a global specification,
making it a useful tool for distributed experiment. The global specification of a
system is represented by the agent distribution at their initial locations.

The framework is based on an extensible architecture so that the majority
of components can be customized according to needs. It is implemented in Java
language, the main reason being the infrastructure offered by Java for working
with mobile code and dynamic classes. A formalism is implemented by extend-
ing structures from the framework and adapting them to its specific features.
The software framework for TiMo serves as an example, but we can also use
other formalism implementation. To prove the extensibility of the MobileCalculi
framework we also implemented a software framework for dπ-calculus.

We developed a generic purpose GUI in order to ease the user interaction
with MCTools platform, in particular with the MobileCalculi framework. Using
the GUI one can easily access the majority of framework functionalities without
any coding. It is possible to start or stop the system, change the active formalism
(the upper layer), compile, load and execute specific formalism specifications and
interact with other MCTools platforms.

We describe the implementation from a functional viewpoint. A global view
of the platform architecture can be seen in Figure 1, where it is presented the
interaction between the two layers, the lower layer represented by MobileCal-
culi framework, and the upper layer represented by a formalism framework (in
particular TiMo framework). It also present the dependency inside the layers.

The functionality of MobileCalculi framework is divided into several mod-
ules. The most important ones are the core module which deals with common
functionalities and general patterns, and the mobility module which encapsu-
lates the mobility mechanism. These modules are presented below. To keep the
presentation clear and simple the rest of the modules are omitted.
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Fig. 1. MCTools Functional Architecture

Core Module The core module is the heart of the MobileCalculi framework.
It contains the main functionalities and propose the patterns which must be
followed by a formalism implementation. The implementation of a formalism
either extends these patterns and enhances agent execution with specific features,
or just uses some of the basic functionalities.

The main entities in a formalism for mobility are agents, locations and names.
An agent is represented by an object which contains a main method with its ac-
tions/instructions. This representation defines an execution pattern by assuming
that agent execution is equivalent with its main method execution. The agent
runs at a specific location, in a private thread. The location acts as an execution
environment for agents. It keeps a list with resources, such as communication
channels, which can be used by agents. All the entities (including resources) are
referred by name, so the name concept is also defined as a separate entity.

A formalism implementation must provide at least an execution model and an
execution environment. The execution model is defined by the formalism primi-
tives (such as migration, communication) which have to be described according
to the formal specification. One must focus only on these primitives since the
basic ones such as starting or stooping the execution, joining with other ex-
ecution threads or spawning addition workers are implemented in the default
pattern. This model runs inside a specific execution environment and uses a
naming structure. For example the execution environment for TiMo defines a
virtual clock and the agents defined in TiMo are governed by this clock. Again,



some basic functionalities of an execution environment are implemented at the
framework low-level (adding or removing new agents, generating unique names).

Since the framework is built for mobility formalism, it assumes that migration
primitives are present in every formalism implementation. Considering this, the
core module facilitate the use of the mobility mechanism presented in Section 3,
by managing the low level details and acting as a mobility façade.

It is worth noting that this module also incorporates many other function-
alities which are transparent to the developer of a certain formalism implemen-
tation. It handles communication with other machine, not just for transmitting
agents, but also for synchronization and control. It manages the execution envi-
ronment, and it sets up a distributing environment from a global specification.
Moreover, it manages the several formalisms providing a way to switch between
them dynamically; this enable the possibility to change the execution model (in
other words the upper layer of MCTools system) without shutting down the
platform and independently of other platforms.

Another important functionality which can be use directly by the upper layer
is the formal evolution engine. Given a formal specification, this engine enables
to execute locally the evolution of a formal specification corresponding to the
formalism semantic rules. Using this feature one can detect possible discrepancies
between formal specifications and their implementations.

Mobility Module This module creates the needed infrastructure for agent
migration. It also provides a default migration mechanism based on bytecode
migration. This module abstracts the migration objects by providing an interface
which must be implemented by all the entities which want to migrate. This
maintains a decoupled architecture and makes it possible to easily change the
migration mechanism. The main feature of this module is the proposed migration
architecture.

Among the possible alternatives we consider the solution based on bytecode
migration. It ensure the dependencies migration by using special class loaders.
The main idea is to retain the bytecode of agents in a local repository. In or-
der to access a class bytecode, the class must be loaded with a special class
loader which saves the bytecode at loading. At migration the agent definition
and dependencies are searched in this repository. The definitions of agent and its
dependencies are stored at destination in a similar repository from where they
can be loaded. After loading the agent, data can be recovered.

Note that we preferred to migrate the dependencies together with the agent
rather than implementing a lazy mechanism. The motivation behind this is given
by the fact that after a valid migration the agent should work correctly inde-
pendent of other locations. In a lazy situation it is possible that the location
containing the dependencies does not work when the agent needs a certain de-
pendency. Thus, bringing the dependency in a lazy way determines the failure
of the agent. Having all the dependencies transported together with the agent,
we avoid this scenario and let the agent to execute independently of previous
locations. Our choice has also the advantage of simplifying the handling of dis-
connected operations (the agent can execute even if the owner is not connected).



4 Software Framework for TiMo

The main features of TiMo implementation are:

– creating and executing TiMo agents in a distributed environment;
– the possibility of introducing native Java code into the agents body;
– an intermediate language TLang and a (typed) compiler which can generate

the Java code from a simple syntax;
– an operational correspondence between implementation and its formal model.

In order to help writing the TiMo agents, we develop a language called TLang
to intermediate between the high-level TiMo and the low-level Java code. TLang
uses only a limited set of Java types and instructions. Even if TLang does not
include all Java functionalities, it provides several important advantages like
type checking, syntax for agents distribution, possibility to embed Java code,
mechanisms for simulation of strong mobility. We also create a compiler which
translates TiMo agents (written in a simple syntax) into the appropriate Java
code. The compiler also builds the objects necessary to run the agents in a
distributed environment using MobileCalculi framework.
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Fig. 2. Migration of a TiMo agent

Before presenting the implementation, we analyze some constraints imposed
by the transition from theory to practice. We allow other values than locations to



be transmitted on channels. Only allowing locations to be transmitted, our im-
plementation would serve mainly for theoretical simulation and not for practical
use. The communication values can be of any Java type if the agent is writ-
ten directly in Java, and of some restricted type if it is developed with TLang.
Communication on channel is well typed. This means that a channel has an as-
sociated type. For instance, if an agent wants to sent or receive a location on a
channel dedicated to strings, an error appears (more exactly, a compile error if
the compiler is used, or a runtime error if Java is used). The safety process is
activated either when time expires for a communication (as in the formalism),
or when an exception is thrown out and the agent is about to fail.

More implementation details are presented in [2]. Here we briefly summarize
TiMo primitives and temporal aspects. The temporal aspects are implemented
with the help of a virtual clock. The clock is local to each location, and so has a
predefined frequency. At each tick it triggers an event, and the subscribers take
the appropriate actions. One subscriber is the TimoLocation which analyzes at
every tick the requests it has received.

Migration uses the infrastructures provided by the MobileCalculi frame-
work. Since the framework implements a ”weak” mobility mechanism, it falls
to the programmer to retain the program counter and manage the point from
which the execution of agents is restarted at destination. The semantic of mi-
gration timers is implemented by using a distributed protocol. The local timer
lt is represented as the waiting time before the migration. It is the first one
which is decremented. The migration timer mt is implemented as a distributed
protocol. After the local time reaches 0, the migration procedure is initiated
and the migration timer starts to be decremented. After the agent arrives at
its destination, a receive message is sent back. If the message is receive before
the migration timer becomes 0 the agent is remove from its initial location and
another message, a confirmation message is sent to destination; otherwise the
agent activates its safety process at the current location. At destination the agent
restarts only after receiving the confirmation message. The default behaviour if
this message is not received is to remove the agent (at destination). A successful
migration can be visualized in Figure 2.

Communication between agents respects faithfully the TiMo definition,
and it is based on the rendez-vous mechanism [7].

5 Implementation Soundness

In this section we show that our implementation corresponds with TiMo high-
level semantics. We first define an abstract notion of configuration and then use it
to reason about the implementation soundness with respect to TiMo semantics.

Definition 1. Given a process R specified in T iM o, we define the process stack
S(R), or simply S, as in Table 2.

Remark 1. This definition is consistent with both the theoretical view which
presents the process as a sequence of actions, and the practical view where



R 7→ S(R)

golt∆mt l thenP else Q 7→ P

Q

(go, (lt,mt), l)

a∆t ? (v) thenP else Q 7→ P

Q

(in c, t, v)

a∆t ! 〈u〉 thenP else Q 7→ P

Q

(out c, t, u)

P |Q 7→ S(P) and S(Q) distinct stacks

Table 2. Process Stack Definition

each process has a stack from where the next action is executed. Moreover, it
is consistent with the software framework for TiMo. In implementation, only
the primitives of communication and migration are considered when the virtual
clock ticks. All the other actions are internal. Thus, from a temporal point of
view, we can abstract the process as being composed only from primitives of
communication and migration presented as a stack.

The configuration of a location is represented by the set of stacks S1
1 , S

2
2 , ..., S

n
n

of the processes which run at that location l, and it is written as l[S1
1 , S

2
2 , ..., S

n
n ].

The configuration of a distributed system is a network of location configurations
where each node contains the set of stacks corresponding to the local processes.
We denote by l1[S1

1 , ..., S
1
n1

] × ... × ln[Sn1 , ..., S
n
nn

] a network with n locations,
where for each location li the number of processes is provided by ni.

We denote by Config the set of all possible configurations, and usually refer
to a configuration only thinking to the top of its stacks. We write 0 for the empty
stack corresponding to a terminated process. When it is not explicitly specified,
by configuration we understand the configuration of a system.

Definition 2. Over the configuration set, we define the transition function δ :
Config × CT → Config, where CT = {tick, subst, go, failcom, failgo}.

In the following we write δ(c, ctype) = c′ as c
ctype−−−→ c′.

– l[S1, ...,#(chAct a, t, x), ..., Sn] tick−−−→ l[S1, ..., (chAct a, t− 1, x), ..., Sn]
where chAct ∈ {in, out} and x ∈ V al ∪ V ar.

– l[S1, ...,#(go, (lt, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (lt− 1, mt), l), ..., Sn]
provided that lt > 0 and l ∈ Loc.

– l[S1, ...,#(go, (0, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (0, mt), l), ..., Sn]
provided that mt ≥ 0 and l ∈ Loc.

– l[S1, ..., (in a, t, v), ..., (out a, t′, u), ..., Sn] subst−−−→ l[S1, ...,#S({u/v}P ), ...,
#S(P ′), ..., Sn] provided that min(t, t′) ≥ 0, the stack of in action is [(in a,
t, v), P, Q] and that of out action is [(out a, t′, u), P ′, Q′].



– l[S1, ..., (in a, t, x), ..., Sn]
failcom−−−−−→ l[S1, ..., #S(Q), ..., Sn]

provided that t < 0 and the stack of in action is [(in a, t, v), P , Q].
– l[S1, ..., (out a, t′, u), ..., Sn]

failcom−−−−−→ l[S1, ..., #S(Q), ..., Sn]
provided that t < 0 and the stack of out action is [(out a, t, u), P, Q].

– l[Sl1, ..., (go, (lt,mt), k), ..., Slnl]× k[Sk1 , ...S
k
nk]

go−−→
l[Sl1, ..., 0, ..., S

l
nl]× k[Sk1 , ..., S

k
nk, #S(P )]

provided that lt = 0, mt = 0 and the stack of go at l is [(go, (lt, mt), l), P, Q].

– l[Sl1, ..., (go, (lt,mt), k), ..., Slnl]
failgo−−−−→ l[Sl1, ...,#S(Q), ..., Slnl]

provided that lt = 0, mt = 0, location k is unreachable and the stack of go
at l is [(go, (lt, mt), l), P, Q].

– if none of the above rules can be applied, we apply one of the following rules:
• l[S1, ..., (chAct a, t, x), ..., Sn] tick−−−→ l[S1, ..., (chAct a, t− 1, x), ..., Sn]

where chAct ∈ {in, out} and x ∈ V al ∪ V ar.
• l[S1, ..., (go, (lt, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (lt− 1, mt), l), ..., Sn]

provided that lt > 0 and l ∈ Loc.
• l[S1, ..., (go, (0, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (0, mt), l), ..., Sn]

provided that mt ≥ 0 and l ∈ Loc.

Note that the rules are maximally applied for all possible stacks of a configuration.

Proposition 1. The implementation of migration and communication primitive
corresponds operationally to the rules go and com of the T iM o formalism.

Proof. We prove this by showing that for each process R and for each possible
evolution rule of type go or com which takes R into R′, there exists a sequence of
transitions which takes the configuration corresponding to R into a configuration
which corresponds to R′. This is summarized in the following diagram, where
β = k : l or k : a(l).

R
β−→ R′

↓ ↓
config −→∗ config′

There are several cases which must be analyzed including success actions,
failed actions, and actions that come right next after a blocking.

– We first consider the communication case: k[[a∆t ? (v) thenP elseQ | a∆t′ !

(u) then P ′ elseQ′]]
k:a(u)−−−−→ k[[#{u/v}P | #P ′]]. The configuration k[(in a,

t, v), (out a, t′, u)] corresponds to process R. We apply subst rule: k[(in a, t,
v), (out a, t′, u)] subst−−−→ k[#S(P ), #S(P ′)]. It is easy to see that the result-
ing configuration corresponds to the process R′.

– The migration case is as follows: k[[got,∆t
′
m thenP else Q ]] k:l−−→ m[[#P ]].

The corresponding configuration of the left-hand side is k[(go, (t, t′), m)].
We apply go rule and get k[(go, (t, t′), m)] ×m[0]

go−−→ k[0] ×m[#P ]. The
resulting configuration is the corresponding one for the right-hand side which
proves this case.



– The failure cases are similarly treated, and not presented here.
– When an action comes after a #, we add an extra tick transition in order to

keep the consistency between processes and configurations. Suppose that we
have the following case: k[[got,∆t

′
m thenP else Q ]] k:m−−−→ m[[#P ]] with P =

a∆t?(v) thenP1 else Q1 | a∆t
′
!(u) thenP ′1 else Q

′
1 . The evolution contin-

ues with the tick rule: m[[#P ]] tick−−−→ m[[a∆t−1?(v) thenP1elseQ1 | a∆t
′−1!

(u) thenP ′1 else Q′1 ]]
m:a(u)−−−−−→ m[[#P1 |#P ′1]]. The corresponding configu-

ration transitions are: k[(go, (t, t′), m)] × m[0]
go−−→ k[0] × m[#S(P )]. Ex-

panding S(P ) we get: m[#S(P )] = m[#(in a, t, v),#(out a, t′, u] subst−−−→
m[#S(P1), #S(P ′1)] which corresponds to the resulting process.

– The other cases are similarly treated, and not presented here.

Remark 2. Each syntactic structure from TiMo can be represented in TLang
(the compiler language) which then can be translated into a Java implementa-
tion.

golt∆mt l thenP else Q try (go[lt,mt] l) {P} else {Q}
a∆t ? (u) thenP else Q try (on C read[t] u) {P} else {Q}
a∆t ! 〈v〉 thenP else Q try (on C write[t] v) {P} else {Q}

k[[P |Q]]

system sys−name
@locat ion k
P | Q

end loca t i on
endsystem

Table 3. timo2lang function

We show how a high-level structure from TiMo becomes a low-level imple-
mentation by defining two functions, timo2lang and lang2impl, which trans-
late a process expression into a TLang program, and then a TLang program
into a Java implementation. Let TimoProc be the set of all TiMo processes,
TLangProg the set of all programs/specifications which can be written in TLang
language, and JavaCode the set of correct Java programs. The functions are de-
fined as follows:

timo2lang : TimoProc→ TLangProg
lang2impl : TLangProg → JavaCode
Since the TiMo processes are built structurally, it is enough to show how the

basic syntactic structures are handled. For the basic cases, functions timo2lang
and lang2impl are presented in Tables 3 and 4. The left column represents the
argument, and the right one is the result of function application.

TiMo processes can also be encoded directly in Java without using the inter-
mediate language TLang. This can easily be proved by composing the functions
lang2impl and timo2lang; lang2impl◦timo2lang takes a process expression and
returns its Java program. Note that timo2lang(TimoProc) ⊂ TLangProg and
timo2lang(TLangProg) ⊂ JavaCode, thus not every program written in TLang
or Java encodes a TiMo process.

Proposition 1 and Remark 2 show a sound way of deriving Java code for
mobility starting from TiMo specification. Thus we conclude with the following
statement.



try (go[lt,mt] l){P} else {Q}

try{
i f ( ! moved){
moved = true ; go ( l , l t , mt ) ;
} else {
try {

//P body
}catch ( Exception e ){
// agent f a i l e d
}
}catch ( Exception e1 ){ //Q body}

try (on C read[t] u){P} else {Q}
try {
u = in ( c , u . ge tC la s s ( ) , t ) ;
// P code
}catch ( Exception e ){ // Q code}

try (on C write[t] v){P} else {Q}
try {

out ( c , v , t ) ;
// P code
}catch ( Exception e ){ // Q code}

system sys−name
@locat ion k
P | Q

end loca t i on
endsystem

specific functions which create an ob-
ject containing the system description
(agents and their distribution).

Table 4. lang2impl function

Remark 3. Each agent specified in TiMo can be implemented by the software
platform defined by MCTools, and its execution reflects the operational semantics
of TiMo.

6 Example

We present a simple problem which demonstrates the usability of the migration
platform and timing constraints. The scenario is given by the discovery of a
specific resource, in our case a shop location (though it could be any other like a
printer, a scanner etc). We first describe the problem, then we show how it can
be encoded into TiMo. Then, we briefly discuss the TLang implementation, and
the running Java code.

Suppose that we have a Client who wishes to find the best Shop for a specific
product. Although the client does not know where to find the specific product, it
knows a location where a Broker may inform about the right place. The problem
is that the Broker is available only for some limited amount of time. Moreover,
the best shop changes over time in such a way that in the first 4 units of time
the best one is shopA and then, in the next 7 units of time the best one is shopB.
Besides, the Client has to do some internal work and cannot leave its location in
the first 2 units of time. After that, it may move in 3 units of time to the Broker
location, and it cannot afford to spend more than 2 units of time at the Broker
location. The communication channel between the Client and the Broker is A.
The Client is located initially at home, and the Broker at location info. The
whole system is named Shops. The TiMo specification for Shops is as follows:

Client = go2∆3 info then (A∆2 ? (u) thengo0∆0 u else go0∆3 home )

Broker = A∆4 ! 〈shopA〉 then 0 else A∆7 ! 〈shopB〉
Shops = home[[Client]] | info[[Broker]]



Minimally, the Shops system may be encoded in TLang as in Figure 3. We say
minimally because we do not see any result from this, and the agent does not
do anything besides communicating and migrating. A possible running result of
this system, completed with some output, is presented in Figure 4. We say ”a
possible running” because if the agent does not arrive in time at location info,
or a destination is unreachable, then the output would be different.

#extended−language
#l o c a t i o n home ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 0 0 , 0 ) ;
#l o c a t i o n i n f o ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 0 9 , 0 ) ;
#l o c a t i o n shopA ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 9 9 , 0 ) ;
#l o c a t i o n shopB ( 1 9 2 . 1 6 8 . 1 . 2 : 9 9 9 9 , 0 ) ;

const channel<l o ca t i on> A;

agent C l i en t
l o c a t i o n shop ;
t ry ( go [ 2 , 3 ] i n f o ){

t ry ( on A read [ 2 ] shop ) {
t ry ( go [ 0 , 0 ] shop ){}
} e l s e {

t ry ( go [ 0 , 3 ] home){}
}
}

endagent

agent Broker
t ry ( on A wr i t e [ 4 ] shopA )
{
} e l s e {

t ry ( on A wr i t e [ 7 ] shopB )
{
}
}

endagent

system Shops
@locat ion home

Cl i en t
end loca t i on
@locat ion i n f o

Broker
end loca t i on

endsystem

Fig. 3. TLang encoding of Shops system

Some explanations are needed in order to understand the implementation.
The first line tells the compiler that the program will use Java types and in-
structions. The next line describes the location addresses and communication
ports. For example home (192.168.1.2: 9000, 0) tells that home location has the
IP address 192.168.1.2, it runs the basic framework at port 9000 and has no
preferred port for receiving agents. The next line declare a global channel named
A for messages of type location. The rest of the specification deals with agents
code and distribution.

Figure 4 presents the result of system execution after the agents were com-
pleted with some text output. Each window corresponds to a location which is
written in the status bar. The text boxes contains system messages and agents
output, providing useful information about the system evolution. The Client
starts at location home, and after 5 units of time it moves to location info. At
info he communicates with the Broker and receives the name shopB along chan-
nel A. It is important to observe that he does not interact at local time 6, when
he arrives, but after another tick. To understand why this happens it is enough

to follow the Client configuration evolution: home[(go, (2, 3), info)] tick−−−→
5 go−−→

info[#(inA, 2 shop)] tick−−−→ info[(inA, 2, shop)]. This emphasizes the corre-
spondence between the implementation and the TiMo semantics. Then the agent
moves to location shopB where it prints a confirmation message. Location shopA
remains empty during the entire period of time. If we describe the system by
a configuration perspective, we get the following evolution which abstracts the
system execution and follows the TiMo semantics:



Fig. 4. Running of the Shops system

home[(go, (2, 3), info)]×info[(outA, 4, shopA)] tick−−−→
4 comfail−−−−−→ home[(go, (0, 1),

info)] × info[ #(outA, 7, shopB)] tick−−−→ go−−→ tick−−−→ home[0] × info[(outA, 6,
shopB), (inA, 2, shop)] com−−−→ tick−−−→ info[(go, (0, 0), shopB), 0B ]

go−−→ tick−−−→ info[0B ]
×shopB[0C ]. By 0C we denote the terminated Client process and by 0B the ter-
minated Broker process. We omit the empty location configuration.

7 Related Work and Concluding Remarks

The paper presents a software platform for timed migration. We develop this
platform starting from a process algebra which uses time constraints to control
both the communication between processes and movement between locations.

We design this platform in two layers. The lower layer deals with low-level
details and provides the migration mechanism. It also implements the general
concepts used in process algebra of the upper layer, and so it can be re-used for
the implementation of other formalisms with mobility. We emphasize the upper
layer implementing TiMo, a process algebra with communication, migration and
temporal aspects. An intermediate language called TLang is used to specify a
TiMo distributed systems. The novel features of the lower layer are given by a
reusable mobility mechanism using various Java class-loading techniques, as well
as the possibility to see the formal evolutions (defined by their semantics) for



both TiMo and dπ-calculus which can emphasize possible discrepancies between
formal specifications and their implementations. Another feature is represented
by the implementation of a distributed protocol without a central coordinator; it
allows a sound development methodology of agents on a single machine followed
by their distribution among locations.

In TiMo the novelty is provided by the use of two timers lt and mt, and
a safety process depending on the the migration timer mt. This aspects are
reflected in the corresponding implementation of TiMo.

A similar platform called IMC is presented in [1]. Based on this platform, the
authors have implemented the distributed π-calculus. MCTools lower layer corre-
sponds to IMC, and offers more functionalities based on a different architecture.
Let us mention few differences: the naming mechanism, an integrated formal
evolution engine, remote actions which allow to initialize a distributed environ-
ment based on a specification. Moreover, using two layers, MCTools implements
a handling mechanism of various formalism which is not available with IMC.

Several formalisms and implementations have been proposed in the recent
years. Among them, we mention Facile [10], join calculus [5] and nomadic π-
calculus [9]. Compared to these works, MCTools provide a flexible migration
layer which could be used by several formalisms. The migration is based on the
movement of the agent class and its dependencies from each location to any
other location using MCTools lower layer.
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