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Abstract. We present a framework for verifying safety properties of parameter-
ized systems. Our framework is based on a combination of Abstract Interpreta-
tion and a backward-reachability algorithm. A parameterized system is a family
of systems in which n processes execute the same program concurrently. The
problem of parameterized verification is to decide whether for all values of n
the system with n processes is correct. Despite well-known difficulties in ana-
lyzing such systems, they are of significant interest as they can describe a wide
range of protocols from mutual-exclusion to transactional memory. We assume
that neither the number of processes nor their statespaces are bounded a priori.
Hence, each process may be infinte-state. Our key contribution is an abstract do-
main in which each element (a) represents the lower bound on the number of
processes at a control location and (b) employs a numeric abstract domain to
capture arithmetic relations between variables of the processes. We also provide
an extrapolation operator for the domain to guarantee sound termination of the
backward-reachability algorithm. Our abstract domain is generic enough to be
instantiated by different well-known numeric abstract domains such as octagons
and polyhedra. This makes the framework applicable to a wide range of parame-
terized systems.

1 Introduction
A parameterized system is a family of systems in which n processes execute the same
program concurrently. The problem of parameterized verification is to verify whether
for all values of n the system with n processes is correct. Such systems arise naturally
in many important applications ranging from communication protocols such as mutual-
exclusion and leader election, to distributed systems such as web-services, to cache
coherence, resource sharing, transactional memory, and others.

Parameterized system verification is highly undecidable. Apt and Kozen [3] showed
that even verification of parameterized systems of finite-state processes is undecidable.
This negative result has naturally directed the research in parameterized analysis to-
wards two directions: (i) studying decidability of restricted subclasses (e.g. [17, 16, 15]),
and (ii) developing generally applicable but semi-automated proof principles that uti-
lize induction (e.g. [10, 20]). In all of the cases above, it is assumed that each process is
finite-state.

In this paper, we focus on the analysis of parameterized systems of infinite-state
processes. This is a common setting in practice. For example, even in Lamport’s bakery
protocol [19] each process maintains an integer ticket, and, hence, has an infinite state-
space. In this paper, we are interested in a sound, automated, and terminating procedure



for verifying safety properties of such systems. Since this problem is undecidable, such
a procedure is necessarily incomplete.

Incomplete, but sound and terminating algorithms are commonly used for reasoning
about single-process infinite-state programs. They are typically developed in the frame-
work of Abstract Interpretation [13] (AI). In this paper, we apply such a technique
to parameterized systems. We present a framework that combines AI-style reasoning
with a backward-reachability algorithm. Our key contribution is an abstract domain in
which each element (a) represents the lower bound on the number of processes at a
control location and (b) employs a numeric abstract domain to capture arithmetic rela-
tions between variables of the processes. Our abstract domain is generic enough to be
instantiated by different well-known numeric abstract domains such as octagons [22]
and polyhedra [14].

We present an algorithm to over-approximate backward-reachability in a parame-
terized system using our abstract domain. In its initial form, the algorithm is sound but
it is not guaranteed to terminate. We show that there are two reasons for divergence:
one comes from the fact that the numeric domain is infinite, and the other is due to the
existence of an unbounded number of processes in a parameterized system. We show
that it is possible to enforce sound termination of the algorithm by combining numeric
widening with a new approximation operator developed especially for our purpose. This
results in an algorithm that is incomplete but sound and terminating. That is, if the algo-
rithm does not find an error state, then the system is correct. However, if the algorithm
finds an error state, it is uncertain that the error actually is present in the system and
is not introduced by the over-approximation. We illustrate an implementation of our
algorithm on a variant of Lamport’s bakery mutual-exclusion protocol (Alg. 2 in [21]).

Related work. In recent years there has been substantial interest in verification of pa-
rameterized systems over a finite (or boolean) data domain. The proposed solutions
range from exact model-checking and reachability analysis for restricted classes of sys-
tems [16, 15, 17], to generally applicable, sound, but incomplete procedures, e.g., net-
work invariants [20, 11], and regular model checking [18, 6, 5]. Only a handful deal
with both an infinite data domain and unbounded parameterization of processes [2, 8, 1,
4, 7].

Abdulla and Jonsson [2] consider the case of 1-clock timed systems. They show
that the verification of a class of safety properties is decidable under some restrictions
on the constraints used. Inspired by [2], Bozzano and Delzanno [8] present a safety
verification technique for parameterized systems with unbounded local data variables.
Their approach is based on assertions that combine multiset rewriting over first or-
der formulas and constraints. Decidability is achieved by restricting constraints to a
constant-free subclass of difference constraints (itself a subclass of linear arithmetic).
In [1], the method of [8] is extended to GAP constraints. GAP constraints are linear
constraints of the form: x = y, x ≤ y, or x+ k < y, where x and y are variables and k
is a positive constant.

The method of [8] is generalized into an analysis framework in [7, 4] by using a con-
strained (multiset) rewriting system on words over an infinite alphabet. In this frame-
work, each configuration is composed from a label over a finite set of symbols and a
vector of data in a potentially infinite domain. The constraints are expressed in a logic
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that is an extension of a monadic first order theory of the natural ordering on positive
integers (corresponding to positions on the word). This logic is also parameterized with
a first order theory on the considered data domain such as Presburger arithmetics. In [7,
4] the authors present decidability results for satisfiability of a particular fragment of
this logic. They also prove that this fragment is closed under the computations of post-
and pre-images. This result together with the decidability of the satisfiability problem
can be used for deciding whether a given assertion is an inductive invariant of a system.

In this paper, we present an alternative framework to the multiset rewriting frame-
work of [7, 4]. In our framework, we delegate the reasoning about constraints to Ab-
stract Interpretation. The advantage is two-fold. First, our technique can use any con-
straints for which there are efficient abstract domains available. Second, the termination
of the analysis is guaranteed by combining the widening operator of the abstract domain
with a new approximation operator.

Many of the techniques above are based on counter abstraction (e.g. [23, 12]). The
key idea of this abstraction is to keep track only of the upper bound on the number
of processes that satisfy a certain property. For example, the number of processes in
the critical section. To ensure that the abstract system is finite-state, the work of [23]
restricts the value of counters to either 0, 1 or infinity. In [12], counter abstraction and
predicate abstraction are combined together to achieve more flexibility. However, the
system model is more restrictive than ours. Our abstract domain PD can be seen as a
variant of counter abstraction that maintains the lower bound on the number of pro-
cesses satisfying a certain condition.

In contrast to symbolic methods for finite collections of processes with local integer
variables [9], our abstract domains are defined over an unbounded collection of variables.
The number of variables during the backward-search is not bounded a priori. This al-
lows us to reason about systems with global conditions over any number of processes.

Outline of the paper. The rest of the paper is organized as follows. Syntax and semantics
of parameterized systems are defined in Sec. 2. The abstract domain for parameterized
systems is introduced in Sec. 3, and is followed by the backward-reachability algorithm
in Sec. 4. We discuss techniques to ensure termination of our algorithm and illustrate
our algorithm on Lamport’s bakery protocol in Sec. 5, followed by concluding remarks
in Sec. 6.

2 Parameterized Systems
We describe the system model used in the rest of the paper.

Syntax. A parameterized system P is a triple (Q,V, T ), where Q is a finite set of
control locations, V is a finite set of variables, and T is a finite set of guarded commands
(or rules). Each τ ∈ T is of the form:

τ : q
g→ q′ (guarded command)

where q, q′ ∈ Q, and g is a guard. We allow for three types of guards: local, universal
global, and existential global that are defined below.

We write V ′ for the set {x′ | x ∈ V }, and self.V and other.V for the set
{self.x | x ∈ V } and {other.x | x ∈ V }, respectively. A local guard is an expression
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τ1 : q1
g1→ q2, g1 : (self.x′ = self.x+ 1) ∧ (self.y′ = self.y)

τ2 : q1
g2→ q3, g2 : ∀other 6= self : (other.pc = q3) ∧ (self.x′ = self.x) ∧

(self.y′ = self.y − 2) ∧ (other.x > 0)

τ3 : q3
g3→ q1, g3 : ∃other 6= self : (other.pc = q3) ∧ (self.x′ = self.x) ∧

(self.y′ = self.y) ∧ (other.y − other.x > 2) ∧
(other.x > 1)

Fig. 1. An example of a parameterized system P1 = ({q1, q2, q3}, {x, y}, {τ1, τ2, τ3}).

on self.(V ∪V ′) constraining current and next local states of a single process. The uni-
versal and existential global guards are, respectively, expressions of the following form:

∀other 6= self : (other.pc = qo) ∧ θ ∃other 6= self : (other.pc = qo) ∧ θ

where qo is a control location inQ, other.pc is a special variable, and θ is an expression
over self.(V ∪ V ′)∪ other.V variables. Intuitively, commands with local guards ex-
press how a process behaves independently of other processes in the system, commands
with global guards allow a process to reference variables and control locations of the
other processes in either universal or existential form. These three types of guarded
commands are sufficient to express a wide variety of parameterized systems [1].

An example of a parameterized system where each process manipulates integer vari-
ables is shown in Fig. 1. It consists of three commands: τ1 with a local guard g1, τ2 with
a universal guard g2, and τ3 with an existential guard g3. Informally, a process execut-
ing τ1 changes its control location from q1 to q2, increments local variable x, and does
not change local variable y. Similarly, a process executing τ2 goes from q1 to q3 but
only if all other currently executing processes are in q3 and the value of their copies
of the variable x are positive. Furthermore, execution of τ2 decrements the y variable
of the current process by 2. Finally, a process executing τ3 changes its control location
from q3 to q1 but only if there exists another process that is at q3 and whose variable x
is greater than 1 and the difference between variables y and x of that process is greater
than 2. During this transition, variables x and y of the executing process do not change.

We formalize the semantics of parameterized systems using transition systems.

Semantics. A process state is a pair (q, v), where q ∈ Q and v is a valuation assigning
values to variables in V . We often treat a process state u = (q, v) as a valuation of
variables V ∪ {pc} such that u(pc) = q, and u(y) = v(y) for all y ∈ V . An n-process
configuration is a tuple 〈u1, . . . , un〉, where each ui is a process state. We refer to the
first (left-most) process in a configuration as P1, to the second as P2, etc, and refer to
the number of the process as a process id (PID). So PID of P1 is 1, PID of P2 is 2, etc.
For two configurations c1 = 〈u1, . . . , un〉 and c2 = 〈w1, . . . , wm〉, we use c1 · c2 to
denote their concatenation 〈u1, . . . , un, w1, . . . , wm〉.

For an expression θ, we write θ[x ← y] for the result of substituting y for x in θ.
A valuation σ is a model of an expression θ over V , written σ |= θ, if θ is satisfied
by σ, i.e., θ[x ← σ(x) | x ∈ X] is valid. For example, let σ = {x 7→ 5, y 7→ 10},
then σ |= (x < y), and σ 6|= (x + y = 10). For a triple of valuations σc, σn, and σo
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over V , we write (σc, σn, σo) for a valuation σ over self.V ∪ self.V ′ ∪ other.V
defined as σ(self.y) , σc(y), σ(self.y′) , σn(y), and σ(other.y) , σo(y). We
write (σc, σn) for short when σo is irrelevant.

Let n be a natural number andP = (Q,V, T ) a parameterized system. An n-process
instance of P is a transition system Tn(P) = (Cn,∆n), where Cn is the set of all n-
process configurations, and ∆n ⊆ Cn×Cn is a transition relation. Intuitively, a pair of
configurations c and c′ are in ∆n if c′ is reachable from c via an execution of a guarded
command by a single process. For each τ ∈ T of the form q

g→ q′, let ∆τ
n be defined

such that (c, c′) ∈ ∆τ
n iff c = c1 · 〈u〉 · c2, c′ = c1 · 〈u′〉 · c2, and the following holds:

– g is a local guard and (u, u′) |= g, or
– g is a universal global guard and ∀uo ∈ (c1 · c2) : (u, u′, uo) |= g, or
– g is an existential global guard and ∃uo ∈ (c1 · c2) : (u, u′, uo) |= g.

Then, ∆n ,
⋃

τ∈T ∆
τ
n.

For example, consider the parameterized system P1 given in Fig. 1. Let c1 =
〈(q1, (x 7→ 4, y 7→ 6))〉 and c2 = 〈(q2, (x 7→ 5, y 7→ 6))〉 be 1-process configura-
tions. Then, (c1, c2) ∈ ∆τ1

1 . Let c3 = 〈(q3, (x 7→ 4, y 7→ 5)), (q3, (x 7→ 2, y 7→ 7))〉
and c4 = 〈(q1, (x 7→ 4, y 7→ 5)), (q3, (x 7→ 2, y 7→ 7))〉 be 2-process configurations.
Then, (c3, c4) ∈ ∆τ3

2 .

In this paper, we work with a single transition system instead of many instances.
We use T (P) , (C,∆), where C ,

⋃
n∈N Cn, and ∆ ,

⋃
n∈N∆n. Note that T (P)

contains all n-instantiations of P as sub-systems.

Reachability Problem. The reachability problem of parameterized systems is: given
a set of initial states I ⊆ C, and a set of error states E ⊆ C, decide whether there
exist two configurations ci ∈ I and ce ∈ E such that there is a path from ci to ce in T .
This formulation is equivalent to a more common one of deciding whether there exists
an n ∈ N, such that an error configuration is reachable from an initial configuration in
Tn(P). It is well-known that the verification of any safety property can be reduced to a
reachability problem.

A backward-reachability-based algorithm is: given a set of error configurations E,
compute an over-approximation of the set of all configurations that can reach E, de-
noted by R, then, decide whether the intersection of I and R is empty. In the rest of the
paper, we only focus on computing R. All of the computation of our algorithm is done
using a specialized abstract domain that we describe in the next section.

3 Abstract Domains for Parameterized Systems
We give a brief overview of numeric abstract domains and introduce our new domains
for representing configurations of parameterized systems.

Abstract Domains. We provide a brief overview of the basics of Abstract Interpreta-
tion [13]. For the purpose of this paper, an abstract domain [13] A is a collection of
elements equipped with a concretization function γA that maps each element of A to a
set of concrete elements. We assume thatA is equipped with two computable functions:
an abstract ordering vA: A × A → {true, false}, and a join tA : A × A → A that
over-approximate subset ordering and union, respectively:
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a vA b⇒ γA(a) ⊆ γA(b) a tA b = c⇒ (γA(a) ∪ γA(b)) ⊆ γ(c) (soundness)

A well-known class of numerical abstract domains captures arithmetic (typically
linear) relations between variables in a concrete domain. We use octagon [22] as an ex-
ample of a numeric domain. For a set of variables V , elements of the octagon domain [22]
OCT(V ) are conjunctions of constraints of the form (±x±y ≤ c), where x, y ∈ V and
c is a constant. The concretization γOCT maps a conjunction of constraints to a set of
valuations, e.g., γOCT(x ≤ 3) = {σ ∈ V → N | σ(x) ≤ 3}. Abstract ordering is
implemented with implication, e.g., (x ≤ 3) vOCT (x ≤ 4) since x ≤ 3 ⇒ x ≤ 4.
Join of two octagons is the smallest octagon containing their union. For example, (x =
3)tOCT (x = 5) is an octagon 3 ≤ x ≤ 5 that can also be written as−x ≤ −3∧x ≤ 5.
We use this domain for all of the examples in the paper. However, our results extend to
other domains such as polyhedra [14] (conjunctions of linear inequalities) and sets of
octagons or polyhedra as well.

Parametric Abstract Domain PD. In this section, we define an abstract domain PD,
called the parametric domain, that captures information about control locations of con-
figurations of a parameterized system. In the rest of this section, we fix a parameterized
system P , and use Q to denote its control locations. Elements of PD are called ab-
stract locations. Each element s ∈ PD is a map Q → 2N such that s[q] is finite for all
q ∈ Q and for q, q′ ∈ Q, if q 6= q′ then s[q] ∩ s[q′] = ∅. Intuitively, s[q] represents the
processes that are currently at q. For example, let

s1 = (q1 7→ {1}, q2 7→ {2, 3}) (?)

Intuitively, s1 represents all concrete configurations in which there are at least three
processes: one at q1, and two at q2. Note that the actual numeric PIDs are irrelevant and
are only used for reference as we show below.

Let s be in PD. We write PROC(s) for the set of all PIDs appearing in s. Formally,
PROC(s) ,

⋃
q∈Q s[q]. We write |s| for |PROC(s)|, and PC(i, s) for the control location

of process i, i.e., PC(i, s) = q iff i ∈ s[q]. For example, for s1 above, PROC(s1) =
{1, 2, 3}, |s1| = 3, and PC(1, s1) = q1. Without loss of generality, we assume whenever
|s| = m, then PROC(s) = {1, ..,m}.

In the rest of this section, we formalize the definitions of concretization, abstract
ordering, and join for this domain. Intuitively, γPD(s) is the set of all configurations that
have at least |s[q]| processes at q, for all q ∈ Q. Formally, let c = 〈(q1, v1), . . . , (qn, vn)〉
be a configuration, s ∈ PD such that |s| = m ≤ n, and h : {1, ..,m} → {1, .., n} be
an injection. We say that c satisfies s under h, written c |=h s iff

∀i ∈ PROC(s) : PC(i, s) = qh(i)

We define γPD(s) , {c | ∃h : c |=h s}. It is easy to see that this definition captures our
intuition. For example, let c1 = 〈(q1, v1), (q2, v2), (q1, v3), (q2, v4)〉, where {vi} are ar-
bitrary valuations, and h = {1 7→ 1, 2 7→ 2, 3 7→ 4}. Then, c1 |=h s1; thus, c1 ∈ γPD(s1).

For two abstract locations s and t, if for all q ∈ Q, |t[q]| ≤ |s[q]|, then t approxi-
mates more concrete configurations. We define the ordering vPD as:

s vPD t⇔ (∀q ∈ Q : |t[q]| ≤ |s[q]|)
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For example, let s2 = (q1 7→ {2}, q2 7→ {1}) and s3 = (q1 7→ {1, 2}, q2 7→ {3}).
Then, s3 vPD s2, but s3 6vPD s1 and s1 6vPD s3. Note that the abstract domain PD
is not a lattice. Thus, the Galois connection framework of AI (Example 4.6 in [13]) is
not applicable. Therefore, we follow a more general framework of Abstract Interpreta-
tion [13] that allows for an abstract domain to be a pre-order.

Let >PD be defined as an element s such that for all q ∈ Q, s[q] = ∅. Then, >PD
is the vPD-largest element of PD. For s, t ∈ PD, we define the join as s tPD t = t
if s vPD t and >PD otherwise. At a first glance, our definition of join may look too
imprecise. However, our analysis algorithm (see BACKREACH in Sec. 4) only applies
the join s tPD t under the assumption that s vPD t.

Theorem 1. The abstract ordering vPD and the join tPD are sound.

The proof of the theorems can be found in the appendix. In the next section, we show
how to extend the domain PD with a numeric (or even an arbitrary) abstract domain.

Abstract Domain PD(A). We combine the parametric domain PD with an abstract
domain A. The new domain is called PD(A). For clarity of presentation, we assume
that A is a numerical abstract domain. We call elements of PD(A) abstract global
states (AGS). An AGS is of the form (s, ψ), where s ∈ PD and ψ ∈ A. Intuitively,
s captures the control location information and ψ captures numerical constraints on
process variables. For an AGS r = (s, ψ), we write loc(r) for the abstract location s.

In the rest of the section, we fix a parameterized system P = (Q,V, T ). For x ∈ V ,
we write Pi.x to refer to the variable x of process i. We require that for every element
(s, ψ) ∈ PD(A), ψ is an expression over variables in the set {Pi.x | x ∈ V, i ∈
PROC(s)}. For example, an AGS (s1, P1.x < P2.y), where s1 is as defined in (?),
represents all concrete configurations that satisfy s1 and, additionally, have a process
i in state q1 and a process j in state q2 such that Pi.x < Pj .y. Note that i and j are
not necessarily 1 and 2, since the PIDs in the abstract global states are only used for
reference and do not directly correspond to PIDs in concrete configurations.

We now proceed to define γPD(A) formally. For a function h : N → N and an ex-
pression ψ, we write h(ψ) for the result of permuting all process references in ψ accord-
ing to h, i.e., h(ψ) , ψ[Pi ← Ph(i) | i ∈ N]. Let c = 〈u1, . . . , un〉 be a concrete con-
figuration. We write σc for a valuation corresponding to the configuration c, defined as
follows: σc(Pj .x) , uj(x). Let (s, ψ) be an AGS, such that |s| = m and m ≤ n,
and h : {1, ..,m} → {1, .., n} be an injection. We say that c satisfies (s, ψ) under h,
written, c |=h (s, ψ) iff c |=h s ∧ σc |= h(ψ). Finally, we define γPD(A)((s, ψ)) , {c |
∃h : c |=h (s, ψ)}.

We now describe the orderingvPD(A). Let s, t be in PD, such that s vPD t. We write,
U(s, t) for the set of all functions h such that (a) h is an injection from {1, .., |t|} to
{1, .., |s|}, and (b) for all i ∈ PROC(t) : i ∈ t[q] ⇒ h(i) ∈ s[q]. That is, h maps each
process of t to an equivalent process of s. For example, let s4 = (q1 7→ {1, 2}), and
s5 = (q1 7→ {1}), then U(s4, s5) = {h1, h2}, where h1 = {1 7→ 1} and h2 = {1 7→
2}. Note that if s vPD t, then U(s, t) is not empty. The ordering vPD(A) is defined as:

(s, ψ) vPD(A) (t, ϕ)⇔ s vPD t ∧ ∃h ∈ U(s, t) : ψ vA h(ϕ)
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For example, let ψ1 = ((P1.x > 0) ∧ (P2.x > 4)), and ψ2 = (P1.x > 1), then
(s4, ψ1) vPD(A) (s5, ψ2), since ψ1 implies h2(ψ2) = (P2.x > 1).

The vPD(A)-largest element is (>PD,>A), where >A is the vA-largest element of
A. The join tPD(A) is defined as:

(s, ψ) tPD(A) (t, ϕ) ,

(
(s, ψ tA h(ϕ)) s vPD t ∧ t vPD s

>PD(A) otherwise

where h is any injection in U(s, t). Intuitively, we use the join tA of A to join the
constraints of the variables, while aligning PIDs between s and t. Note that a different
choice for h affects precision but not soundness of the join. In practice, it is best to pick
an h that leads to the vPD(A)-least result. As with PD, it is possible to define join more
precisely, but it was not needed for our algorithm.

Theorem 2. The abstract ordering vPD(A) and the join tPD(A) are sound.

Elements of PD(A) concisely represent (possibly infinite) sets of configurations of
a concrete parameterized system. This domain is the basis of our backward-reachability
algorithm that we present in the next section.

4 Backward-Reachability Analysis
We present the BACKREACH algorithm for over-approximating the backward-reachability
in parameterized systems. We begin with an overview of the algorithm, then discuss its
main step, i.e. computation of the pre-image, and conclude with an example.

Overview. The algorithm BACKREACH is shown in Fig. 2. As inputs, it takes a set
Trans of guarded commands and an AGS e. The output is a set of AGSs that over-
approximates all concrete configurations from which e is reachable.

The algorithm uses the list RL to keep track of all states seen so far, and a work list WL
to keep track of all states to be explored. When WL becomes empty, the algorithm ter-
minates. In each iteration, a state (s, ψ) is chosen from WL (lines 3–4), its predecessors
are computed (lines 6–7), and are added to RL and WL lists if needed (lines 8–19). The
computation of the predecessors is done using the function Pre, which is described in
details below. The algorithm ensures that RL contains only one state for each abstract
location by joining the AGSs with the same abstract locations (line 17).

In the rest of this section, we describe the implementation of the pre-image com-
putation (line 7 of BACKREACH algorithm). First, we describe the operation for the
domain PD, and then extend it to PD(A).

Pre-Image for PD. Let s be an element of PD, τ : q
g→ q′ a guarded command, and

i a PID. The result of pre-image operation PrePD(s, τ, i) is a set B of elements of PD
that over-approximates all states from which a state in γ(s) is reachable by process i
executing τ . There are three cases, based on the type of the guard g.

Case 1 g is a local guard. If s is an abstract location obtained by process Pi executing τ ,
then, Pi is in state q′ in s. Furthermore, Pi must have been in state q before execut-
ing τ . To formalize this, we define a helper function MOVEPROC(s, i, q1, q2) that
moves process i in s from location q1 to location q2: MOVEPROC(s, i, q1, q2) , t,
where t[q1] = s[q1] \ {i}, t[q2] = s[q2] ∪ {i}, and t[q] = s[q] otherwise. Then,
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1: Set of AGS BACKREACH (Set Trans, AGS e)

2: WL← {e}, RL← {e}
3: forall (s, ψ) ∈ WL do
4: WL← WL \ {(s, ψ)}
5: P ← ∅
6: forall {τ ∈ Trans, i ∈ PROC(s) | τ = (q

g→ q′) and i ∈ s[q′]} do
7: P ← P ∪ Pre((s, ψ), τ, i)
8: forall r ∈ P do
9: skip← false, saved← null

10: forall u ∈ RL do
11: if r vPD(A) u then
12: skip← true, break
13: if loc(r) = loc(u) then
14: saved← u
15: if skip = false then
16: if saved 6= null then
17: RL← (RL\{saved})∪{savedtPD(A) r}, WL← WL∪{savedtPD(A) r}
18: else
19: RL← RL ∪ {r}, WL← WL ∪ {r}
20: return RL

Fig. 2. The BACKREACH algorithm.

PrePD(s, τ, i) ,

(
{MOVEPROC(s, i, q′, q)} if i ∈ s[q′]
∅ otherwise.

For example, let s1 = (q1 7→ {1}, q2 7→ {2, 3}), and τ = q1
true→ q2. Then,

PrePD(s1, τ, 1) = ∅, and PrePD(s1, τ, 2) = (q1 7→ {1, 2}, q2 7→ {3}).
Case 2 g is a universal global guard: ∀other 6= self : (other.pc = qo) ∧ θ. Then,

the pre-image computation is similar to Case 1 except that all processes other than i
must be in control location qo in s. Thus, PrePD(s, τ, i) , {MOVEPROC(s, i, q′, q)},
if i ∈ s[q′] and ∀j ∈ PROC(s) \ {i} : PC(s, j) = qo, and ∅ otherwise.

Case 3 g is an existential global guard: ∃other 6= self : (other.pc = qo)∧ θ. Then,
τ can only be executed from an abstract location that has a process different from i
at location qo. The computation of PrePD is partitioned based on the choice of that
other process. The other process can be either a process in PROC(s), or a new
process with PID (|s|+ 1). Let

PrePD(s, τ, i) ,
[

j∈s[qo]\{i}

OPrePD(s, τ, i, j) ∪ OPrePD(s, τ, i, |s|+ 1)

where OPrePD(s, τ, i, j) is the pre-image under the assumption that Pj is the other
process. We define another helper function called MOVEADDPROC(s, i, q1, q2, j, q3)
that in addition to moving process i from q1 to q2 adds a new process j to q3:
MOVEADDPROC (s, i, q1, q2, j, q3) , t, where t[q1] = s[q1] \ {i}, t[q2] = s[q2] ∪
{i}, t[q3] = s[q3] ∪ {j}, and t[q] = s[q] otherwise. Then,

OPrePD(s, τ, i, j) ,

8><>:
{MOVEPROC(s, i, q′, q)} if j ∈ s[qo] \ {i}
{MOVEADDPROC(s, i, q′, q, j, qo)} if j = |s|+ 1

∅ otherwise.
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For example, let τ1 = q1
g1→ q2 and g1 : ∃other 6= self : (other.pc = q2) ∧

θ. Then, PrePD(s1, τ1, 2) is the union of OPrePD(s, τ, 2, 3) and OPrePD(s, τ, 2, 4)
where OPrePD(s, τ, 2, 3) = (q1 7→ {1, 2}, q2 7→ {3}) and OPrePD(s, τ, 2, 4) =
(q1 7→ {1, 2}, q2 7→ {3, 4}).

Theorem 3. The pre-image operation of PD is sound.

Pre-Image for PD(A). We assume that the domain A has a pre-image operation
PreA(ψ,R) that takes an element of the domain ψ ∈ A, and a relation R described
by an expression over primed and unprimed variables. It returns an abstract element
that over-approximates the pre-image of γA(ψ) over R. Many numeric domains satisfy
this assumption. For example, in OCT, PreOCT(x ≥ 1, x′ = x+ 1) is x ≥ 0.

Let (s, ψ) be an element of PD(A) and τ : q
g→ q′ a guarded command. The pre-

image operation in PD(A) is defined using the following templates. If g is either local
or universal, then

PrePD(A)((s, ψ), τ, i) , PrePD(s, τ, i)× PreA(ψ,Ri)

and if g is existential then PrePD(A)((s, ψ), τ, i) is defined similar to PrePD where

OPrePD(A)((s, ψ), τ, i, j) , OPrePD(s, τ, i, j)× PreA(ψ,Ri,j)

where i, j are PIDs, and Ri, Ri,j are relations defined based on g as described below.

Case 1 g is a local guard. Assume g = θ, where θ is an expression over self.(V ∪V ′).
Let Θi and Γi be defined as follows:

Θi , θ[self← Pi] Γi ,
^

j∈(PROC(s)\{i})

^
x∈V

Pj .x
′ = Pj .x

Then, Ri , Θi ∧ Γi. Intuitively, Θi instantiates the guard to process i, and Γi

ensures that the variables of processes other than i are not affected. For example,
let (s1, ψ1) be an AGS where s1 is as defined in (?) and ψ1 = ((P1.x > 0) ∧
(P2.x > 1) ∧ (P3.x > 2)). Let τ1 = q1

g1→ q2 and g1 : x′ = x + 1. Then,
PrePD(A)((s1, ψ1), τ, 2) = ((q1 7→ {1, 2}, q2 7→ {3}), ((P1.x > 0) ∧ (P2.x >
0) ∧ (P3.x > 2)) since process P2 is the self process.

Case 2 g is a universal global guard: ∀other 6= self : (other.pc = qo) ∧ θ, where θ
is an expression over self.(V ∪ V ′) ∪ other.V variables. We need to instantiate
θ with two PIDs: one for self, and one for other. Let Θi,j be defined as:

Θi,j , θ[self← Pi, other← Pj ]

Then, Ri ,
∧

j∈(PROC(s)\{i})Θi,j ∧ Γi. Intuitively, Ri ensures that all processes
other than i satisfy the global guard but only values of process i are affected during
the transition.

Case 3 g is an existential guard: ∃other 6= self : (other.pc = qo) ∧ θ, where θ
is again an expression over self.(V ∪ V ′) ∪ other.V variables. However, in this
case, the pre-image operator provides a PID j to instantiate the other process.
Thus, Ri,j is defined as Ri,j , Θi,j ∧ Γi.
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Name Location Constraints
1 (q2 7→ {1}) (P1.x > 1) ∧ (P1.y > 3)

2 (q1 7→ {1}) (P1.x > 0) ∧ (P1.y > 3)

3 (q3 7→ {1, 2}) (P1.x > 0) ∧ (P1.y > 3) ∧ (P2.y − P2.x > 2) ∧ (P2.x > 1)

4 (q1 7→ {1}, q3 7→ {2}) (P1.x > 0) ∧ (P1.y > 5) ∧ (P2.y − P2.x > 2) ∧ (P2.x > 1)

5 (q1 7→ {2}, q3 7→ {1}) (P1.x > 0) ∧ (P1.y > 3) ∧ (P2.y − P2.x > 4) ∧ (P2.x > 1)

Table 1. An example of a computation of BACKREACH.

Theorem 4. The pre-image operation of PD(A) is sound.

An Example. In this section, we illustrate a run of the BACKREACH algorithm on an
example using abstract domain PD(OCT). We use the parameterized system shown in
Fig. 1, and let e be ((q2 7→ {1}), ((P1.x > 1) ∧ (P1.y > 3))).

We present the AGSs computed by the algorithm in Table 1. Each row in the table
represents a single AGS (s, ψ) where the first column is a numeric reference, the second
is the abstract location l, and the third is the octagon constraint ψ. Row 1 of the table
corresponds to e defined above. We refer to the rows of Table 1 by numeric references.

In the first iteration, the algorithm computes Pre(e, τ1, 1) that results in the AGS
(s2, ψ2) shown in row 2. In the second iteration, the algorithm computes (s3, ψ3) =
Pre((s2, ψ2), τ3, 1) shown in row 3. In the third iteration, τ2 is enabled twice: once
for process P1, and once for process P2. Row 4 shows (s4, ψ4), the result of pre-
image of τ2 with respect to process P1, i.e., Pre((s3, ψ3), τ2, 1). This state is sub-
sumed by (s2, ψ2) since s4 vPD s2 and ψ4 ⇒ ψ2. Thus, it is not added to the list
RL. Row 5 shows (s5, ψ5), the result of pre-image of τ2 with respect to process P2, i.e.,
Pre((s3, ψ3), τ2, 2). This state is subsumed by (s2, ψ2) as well. The reason is slightly
more complicated. First, s5 vPD s2. Second, the process P2 of s5 corresponds to the
process P1 of s2 and ψ5 ⇒ ψ2[P1 ← P2]. Thus, this AGS is not added to the list RL.

At this point, the work list WL becomes empty and the algorithm terminates. Thus,
the RL contains only the AGSs shown in the first three rows of Table 1.

BACKREACH is sound: if it terminates, it always computes the correct result.

Theorem 5. Let P = (Q,V, T ) be a parameterized system and e be an abstract global
state. If BACKREACH(T, e) terminates, it returns an over-approximation of the set of
backward-reachable states from γPD(A)(e).

BACKREACH is incomplete and may run forever. In the next section, we show how
sound termination can be enforced.

5 Enforcing Convergence
There are two reasons for a possible divergence of BACKREACH. First, the numeric
abstract domainAmay be infinite (like octagons or polyhedra), thus BACKREACH may
get stuck in an infinite numeric computation. Second, successive applications of pre-
image to a transition with an existential guard may introduce unbounded numbers of
processes. Here, we illustrate divergence of the BACKREACH algorithm through a set
of examples and show how to enforce termination.

Numeric Divergence. We begin with an example that illustrates numeric divergence
in the abstract domain PD(OCT). Let P = (Q,V, T ) where Q = {q}, V = {x}, and
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T = {τ}where τ is q
g→ q, g : (x ≥ 0)⇒ (x′ = x−1). Let e be ((q 7→ {1}), (P1.x =

5)). Consider the execution of BACKREACH(T, e). In the first iteration, the algorithm
computes the state ((q 7→ {1}), (P1.x = 6)). It is joined to e at line 17, resulting in

((q 7→ {1}), ((P1.x = 5) tOCT (P1.x = 6))) = ((q 7→ {1}), (5 ≤ P1.x ≤ 6))

Similarly, the result of the second iteration is ((q 7→ {1}), (5 ≤ P1.x ≤ 7)), etc. Thus,
the BACKREACH(T, e) diverges.

In AI, a common approach to force sound convergence is to use widening instead of
join to combine the reachable states. A widening operator [13], denoted by 5A, is an
operator that over-approximates join, i.e., ∀x, y ∈ A : xtA y vA x5A y; additionally,
for any increasing chain x0 vA x1 vA . . . vA xn . . . in A, the increasing chain
y0 = x0, . . . , yn+1 = yn 5A xn+1, . . . stabilizes after a finite number of terms. Thus,
replacing join with widening forces convergence of any least fixpoint computation.

We extend the widening operator of A to PD(A) in the following way. Given two
abstract global states (s, ψ) and (t, ϕ), then

(s, ψ)5PD(A) (t, ϕ) ,

(
(s, ψ5A h(ϕ)) if s vPD t ∧ t vPD s

>PD(A) otherwise.

Theorem 6. The operator5PD(A) is a widening on PD(A).

In order to use this widening operator in our algorithm, we replace saved tPD(A) r
with saved5PD(A) (saved tPD(A) r) at line 17. We refer to the resulting algorithm as
BACKREACH with widening.

Consider the previous example. With widening, the result of the first iteration is
computed as follows:

((q 7→ {1}), (P1.x = 5))5PD(OCT) ((q 7→ {1}), (5 ≤ P1.x ≤ 6))
= ((q 7→ {1}), (P1.x = 5)5OCT (5 ≤ P1.x ≤ 6))
= ((q 7→ {1}), (5 ≤ P1.x))

The algorithm converges after a single iteration. In this case, the result happens to be
the exact set of all reachable states.

Successive applications of pre-image to transitions with only local or universal
guards do not increase the number of processes in the reachable abstract global states.
Therefore, systems with no existential guards may only experience numerical diver-
gence. In such systems adding widening is sufficient to enforce convergence.

Theorem 7. Let P = (Q,V, T ) be a parameterized system with no existential transi-
tion and e ∈ PD(A). The BACKREACH(T, e) with widening terminates and returns an
over-approximation of the set of backward-reachable configurations from γPD(A)(e).

Parametric Divergence. Consider the following example. Assume the abstract domain
is PD(OCT). Let P = (Q,V, T ) where Q = {q1, q2}, V = {x}, and T = {τ} where

τ : q1
g→ q2 , g : ∃other 6= self : (other.pc = q2) ∧ (other.x = self.x− 3)

Let e = ((q2 7→ {1}), (2 ≤ P1.x ≤ 5)) as shown in row 1 of Table 2. The first iter-
ation of BACKREACH(T, e) computes an AGS shown in row 2 of Table 2, the second,
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Name Location Constraints
1 (q2 7→ {1}) (2 ≤ P1.x ≤ 5)

2 (q1 7→ {1}, q2 7→ {2}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8)

3 (q1 7→ {1, 2}, q2 7→ {3}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x ≤ 11)

4 (q1 7→ {1, 2, 3}, q2 7→ {4}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x ≤ 11) ∧
(11 ≤ P4.x ≤ 14)

Table 2. An example of a divergent computation of BACKREACH.

computes the AGS shown in row 3 of Table 2, etc. The algorithm does not terminate –
each iteration adds a new AGS with one more process than in any AGS seen so far.

To mitigate this, we introduce an approximation operator called k-compact, Bk,
where k ∈ N. Given an AGS (s, ψ) where |s| > k, Bk computes an AGS (t, ϕ)
such that (s, ψ) vPD(A) (t, ϕ) and |t| = k. The operator k-compact, Bk((s, ψ)), is
implemented by: (a) choosing a process, say i, in s, (b) removing i from s, and (c)
existentially projecting away all variables of the form Pi.x from ψ. Note that the choice
of which process to drop only affects the precision and not the soundness of k-compact.

Theorem 8. The approximation operator k-compact is sound.

To incorporate Bk in the BACKREACH algorithm, we apply it after the pre-image
computation at line 7. This ensures that the number of processes in each AGS never
becomes larger than k.

Consider the previous example. Assume k = 3. Let φ denote the AGS computed in
the third iteration (row 4 of Table 2). Assume B3 drops process P3, then B3(φ) is

((q1 7→ {1, 2}, q2 7→ {3}), ((2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (11 ≤ P3.x ≤ 14)))

The algorithm joins this AGS with the AGS computed in the second iteration (row 3 of
Table 2) using widening and obtains

((q1 7→ {1, 2}, q2 7→ {3}), ((2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x)))

The algorithm terminates with an over-approximation of the set of reachable states.

Theorem 9. Let P = (Q,V, T ) be a parameterized system and e ∈ PD(A). The
BACKREACH(T, e) algorithm with widening and k-compact operator always termi-
nates and returns an over-approximation of the set of backward-reachable configura-
tions from γPD(A)(e).

Lamport’s Bakery Mutual-Exclusion Protocol. Fig. 3 shows a variant of Lamport’s
bakery mutual-exclusion protocol (Alg. 2 in [21]). The algorithm maintains two shared
counters: next and serv, where next is the value of the next available ticket, and serv is
the value of the ticket of the next process to be served. The shared variables belong to
neither self nor other. We extend our framework to accommodate shared variables.

To enter the critical section, a process (i) obtains a ticket by incrementing next (as
shown in τ1), and storing its value in a local variable named tick (τ2), (ii) picks a delay
(τ3) and spins for d steps (τ4) and (τ5), and (iii) enters its critical section when its ticket
is being served (τ6), i.e. its ticket value is equal to serv. When a process leaves the
critical section, it goes back to the idle state and increments serv (τ7).
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τ1 : idle
g1→ choose , g1 : ∀other 6= self : (other.pc 6= choose) ∧ (next′ = next+ 1)

τ2 : choose
g2→ wait , g2 : ∀other 6= self : (other.pc 6= choose) ∧ (self.tick′ = next)

τ3 : wait
g3→ pause , g3 : (self.d′ = self.tick − serv)

τ4 : pause
g4→ pause , g4 : ((self.d > 0)⇒ (self.d′ = self.d− 1))

τ5 : pause
g5→ wait , g5 : (self.d ≤ 0) ∧ (self.tick > serv)

τ6 : pause
g6→ use , g6 : (serv = self.tick) ∧ (self.d ≤ 0)

τ7 : use
g7→ idle , g7 : (next ≥ serv + 1) ∧ (serv′ = serv + 1)

Fig. 3. Lamport’s bakery mutual-exclusion protocol with proportional back-off.

The guards on τ1 and τ2 ensure that no other process changes next while a process
is acquiring a ticket. A delay between consecutive reads of the serv is added to reduce
network contention due to the polling of the common shared variable serv. In [21], the
authors suggest that a reasonable delay is the number of processes already waiting to
enter their critical section. The protocol ensures FIFO service by serving the processes
in the same order in which they first requested it.

We have implemented the BACKREACH algorithm in JAVA using APRON library
for octagon abstract domain1.We have used this implementation to validate that the
state (idle 7→ {1, 2}) is not reachable from (use 7→ {1, 2}). The experiments were
performed on a P4 3.2 GHz machine running Linux SUSE 10.3. The computation with
widening converges after 56 iterations and takes 3.475 seconds. The widening is crucial
for handling τ4 that is similar to the example in the beginning of this section.

6 Conclusion
We present a framework based on Abstract Interpretation for the analysis of safety
properties of parameterized systems where each of the individual processes may be
infinite-state. We introduce a new abstract domain for the parameterized systems that
employs a numeric abstract domain. We describe an algorithm that over-approximates
backward-reachability. We combine widening with an extrapolation operator developed
for this abstract domain to enforce sound termination of the algorithm. We illustrate
our technique by automatically verifying the mutual-exclusion property in a variant of
Lamport’s bakery protocol.

Safety verification of parameterized systems using AI-based frameworks introduces
a whole family of new, sound, automatic, and terminating static analyses procedures for
parameterized systems, each procedure varying the chosen abstraction and widening
operator. We have implemented the BACKREACH algorithm and are currently investi-
gating other protocols to which our analysis framework is applicable. One direction for
future research is to consider other possible operators like k-compact that increase the
precision of approximation by choosing the process to drop based on heuristics derived
from the features of the analyzed system.
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