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Abstract: Conformance testing with the guaranteed fault coverage is based on 

distinguishing faulty system implementations from the corresponding system 

specification. We consider timed systems modeled by timed possibly non-

deterministic finite state machines (TFSMs) and propose algorithms for 

distinguishing two TFSMs. In particular, we present a preset algorithm for 

separating two separable TFSMs and an adaptive algorithm for r-distinguishing 

two possibly non-separable TFSMs. The proposed techniques extend existing 

methods for untimed non-deterministic FSMs by dealing with the fact that 

unlike untimed FSMs in general, a TFSM has an infinite number of timed 

inputs. Correspondingly we state that the upper bounds on the length of 

distinguishing sequences are the same as for untimed FSMs.  

1. Introduction 

Timed systems are used in various application areas such as telecommunication 

systems, plant and traffic controllers and others. A number of formal models have 

been proposed for testing and verification of timed systems (see, for example, [1], [5], 

[22]) including systems modeled as timed Finite State Machines (FSMs) [9], [15], 

[16]. FSMs are widely used in many application areas; in particular, they are used as 

the underlying models for formal description techniques, such as SDL and UML State 

Diagrams, and many conformance test derivation methods are based on a 

specification given in the form of a finite state machine. For surveys see [3], [11] and 

for some related experiments see [4]. Most of the past work on FSM-based 

conformance testing has been done for deriving tests for deterministic FSMs w.r.t. the 

equivalence relation. In addition, there also exist methods for deriving tests for non-

deterministic FSMs w.r.t. a number of conformance relations, such as the 

equivalence, reduction, and the non-separability relations [6], [7], [8], [12], [17], [18], 

[21]. Two FSMs are equivalent if they have the same input/output behavior and an 

FSM P is a reduction of FSM S if the behavior of P is contained in the behavior of S. 

Moreover, two FSMs are non-separable [23] if the sets of output responses of these 

machines to each input sequence intersect. If there exists an input sequence, called a 

separating sequence, such that the output responses of the two FSMs to the sequence 

are disjoint then the machines are separable. Two complete FSMs are r-
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distinguishable if they have no common complete reduction. This fact can be checked 

by a finite set of sequences which is called an r-distinguishing set of the two FSMs. In 

this paper, we say that two FSMs are distinguishable if they are separable or r-

distinguishable. Experiments that distinguish two FSMs can be classified as adaptive 

and preset [10]. In an adaptive experiment the next input of an experiment depends on 

the outputs to previous input sequences and in a preset experiment the whole input 

sequence is predetermined independently of the intermediate outcome of an 

experiment. Separating two FSMs can be done in a preset experiment; however, two 

non-separable FSMs can be still distinguished by an adaptive experiment using the r-

distinguishability relation.  

Testing based on timed FSM models is a difficult task since it requires checking 

the time constraints of the system in addition to input and output behavior. In the past 

few years some work has been carried out on deriving test suites based on timed 

automata. For example, Springintveld et al. [22] proposed a rigorous method that 

derives test suites with the guaranteed fault coverage w.r.t. the equivalence relation 

when the system specification and an Implementation Under Test (IUT) are 

deterministic. The results were extended in [5] to non-deterministic timed automata 

w.r.t. the equivalence relation under the assumption of ―all weather conditions‖ [13], 

[14], also called complete testing assumption in [12]. According to this assumption, if 

an input sequence (a test case) is applied a number of times to a non-deterministic 

IUT, then all possible output sequences of the IUT to this test case are observed while 

testing. Similar to FSM-based methods, the methods in [5], [22] use so-called 

distinguishing sequences in test derivation; however, these sequences are derived for 

the equivalence relation. Recently, Merayo et al. [15], [16] considered a timed 

possibly non-deterministic FSM model. Time constrains limit a time elapsed when an 

output has to be produced after an input has been applied to the FSM. When an output 

is produced the clock variable is reset to zero. The model also takes into account time-

outs; if no input is applied at a current state for some time-out period, the (timed) 

FSM moves from current state to another state using a time-out function. Various 

conformance relations are introduced for such a timed FSM model; however, the 

problem of deriving distinguishing sequences w.r.t. the proposed relations is not 

tackled in the papers. A timed model of a stochastic FSM is considered in [9] where 

the authors propose a method for deriving a complete test suite for the considered 

model w.r.t. the reduction relation. Distinguishing sets used for deriving a complete 

test suite extend corresponding sets for untimed FSMs based on related random 

variables.   

When an IUT has a limited controllability, as happens, for instance, in remote 

testing, the complete testing assumption cannot be satisfied. In this case, the only 

relation that can be used for the preset testing with the guaranteed fault coverage is 

the separability relation [19], defined by Starke in [23], and the only relation that can 

be used for the adaptive testing with the guaranteed fault coverage is the r-

distinguihability relation. Derivation methods and upper bounds on length of 

distinguishing sequences for untimed non-deterministic FSMs based on the 

separability relation can be found in [2], [20] and derivation methods based on the r-

distinguishability relation can be found in [8], [17], [18]. However, methods given for 

the derivation of distinguishing sequence for untimed FSMs cannot be directly 

applied to timed FSMs, since in timed FSMs, in general, the number of timed inputs 



       

is infinite; thus, the extension of these methods is not a trivial problem. Accordingly, 

in this paper, we propose algorithms for distinguishing timed non-deterministic FSMs 

(TFSMs) w.r.t. the separability and r-distinguishability relations. In particular, given 

two TFSMs, we present a preset algorithm for deriving a shortest (timed) sequence 

that separates the two machines, when such a sequence exists. For two non-separable 

but r-distinguishable TFSMs, we present an adaptive algorithm for deriving 

sequences that r-distinguish these machines. We also state that upper bounds on the 

length of such distinguishing sequences coincide with those of untimed FSMs and 

similar to untimed FSMs those bounds are reachable. As usual, the algorithms 

presented in this paper can be used as well for fault diagnosis of timed FSMs.  

We note that the TFSM model considered in this paper is somehow similar to that 

given in [15], [16]. In particular, as in [15], [16], we consider non-deterministic timed 

FSMs where time constraints are used to limit time elapsed at states and we also use 

one clock variable that is reset at every transition; however, unlike [15], [16], we do 

not consider time-outs at states. According to this fact, more complex time constraints 

can be described by the model in [15], [16]. Another timed model that is used as basis 

for test derivation is given in [5], [22]. This model is very close to the popular 

automaton based model presented by Alur and Dill [1]. However, we recall that the 

work in [22] considers only deterministic input/output behaviors of a timed I/O 

automaton while the authors in [5] consider non-deterministic behaviors only w.r.t. 

the equivalence relation under ―all weather conditions‖ assumption. In comparison to 

the models used for test derivation in [5], [22], the models presented in this paper and 

in [15], [16] have less modeling capability since one clock is used and the clock is 

reset at every transition. However, unlike the timed model used in [5], [22], the timed 

models of this paper and in [15], [16] consider non-determinism and have an FSM as 

the underlying model. Correspondingly, for such TFSMs, FSM-based methods can be 

adapted for deriving distinguishing sequences as well as for deriving test suites with 

the guaranteed fault coverage. 

This paper is organized as follows. Section 2 includes preliminaries. Sections 3 

and 4 include algorithms, propositions and examples related to the derivation of 

separating and r-distinguishing sequences for timed non-deterministic FSMs. Section 

5 concludes the paper. 

2. Preliminaries 

In this section, we introduce a timed non-deterministic Finite State Machine (TFSM) 

with some related notions and definitions.  

Definition 1.  An FSM S is a 5-tuple (S, I, O, S, s0), where S, I, and O are finite 

sets of states, inputs and outputs, respectively, s0 is the initial state and S  S  I  O 

 S is a behavior relation.  

A timed possibly non-deterministic and partial FSM (TFSM) is an FSM annotated 

with a clock, a time reset operation and time guards associated with transitions. The 

clock t is a real number that measures the time delay at a state and the time reset 

operation resets the value of the clock t to zero at the execution of a transition. A time 

guard gi describes the time domain when a transition can be executed and is given in 



       

the form min, max, where   {(, [},  {), ]} and min and max are non-negative 

rationales such that min  max. When min = max we consider the only interval [min, 

min] = {min}. An output delay describes the time domain when an output has to be 

produced after an input is applied and is also given in the form min, max over 

rational bounds min and max where min  max. Here we assume that the time reset 

operation is specified at every transition of a given TFSM.  

Definition 2.  A timed FSM (TFSM) S often called simply a machine throughout 

the paper, is a 5-tuple (S, I, O, S, s0); the transition relation S  S  I  O  S    

 where  is the set of time guards over [0, ) and  is the set of output delay 

intervals over [0, ). 

The behavior of a TFSM S can be described as follows. If (s, i, o, s, gi = min, 

max, go = min, max)  S  I  O  S    , we say that TFSM S when being at 

state s and accepting input i at time t satisfying the time guard t  min, max, 

responds (after the input i has been applied) with output o within the time delay 

specified in go and moves to the state s. The clock is reset to zero and starts 

advancing at s.  

A zero output delay, i.e. go = [0, 0], indicates that the output is produced instantly at 

the time when the input is applied. For simplicity, for a transition with go = [0, 0] and 

input guard gi over [0, ), we omit go and gi from the description of the transition. 

Thus, a transition (s, i, o, s) indicates that being at state s and accepting input i at any 

time, S responds with output o instantly when i is applied. In this paper, we consider 

only functional distinguishability [15], [16] between TFSMs and thus, we do not 

consider output delays. In other words, the transition relation is a 5-tuple, S  S  I  

O  S  . 

TFSM S is well-defined if for each two transitions (s, i, o, s, min1, max1), (s, i, o, 

s, min2, max2)  S s.t.  min2  min1, max1 or min1  min2, max2 it holds that o 

 o or s  s. In this paper, we consider only well-defined TFSMs. In this case, we 

cannot merge two guards, out of the same state and under the same input, without 

changing the behavior of the TFSM. 

A TFSM S is observable if for each two transitions (s, i, o, s, min1, max1), (s, i, 

o, s, min2, max2)  S it holds that if min1, max1  min1, max1   then o = o 

implies s = s. 

The machine S is (time) deterministic if for each two transitions (s, i, o, s, min1, 

max1), (s, i, o, s, min2, max2)  S, it holds that min1, max1  min2, max2 = ; 

otherwise, the machine S is (time) non-deterministic. Each deterministic TFSM is 

observable. 

The TFSM S is input enabled if the underlying FSM is complete, i.e., if for each 

pair (s, i)  S  I, S has a transition (s, i, o, s, min, max). 

The TFSM S is complete if the underlying FSM is complete and for each pair (s, i) 

 S  I of TFSM S, the union of time guards over all transitions (s, i, o, s, min, 

max)  S equals to [0, ); otherwise, the machine is called partial. Given a 

complete TFSM, the behavior of the TFSM is defined at each state for each input that 

can be applied at any time instance in [0, ). 

Definition 3.  Given a TFSM S = (S, I, O, S, s0), a pair (i, t), i  I, t is a 

nonnegative rational, is a timed input that states that an input i is applied at time t. 



       

Given a state s, there is a clocked transition (s, (i, t), o, s) in S if there exists a 

transition (s, i, o, s, min, max)  S with t  min, max.  

A TFSM S = (S, I, O, S, s0) is a submachine of TFSM P = (P, I, O, P, p0) if S  P, 

s0 = p0 and each clocked transition (s, (i, t), o, s) of S is a clocked transition of P. 

Definition 4. Given TFSM S = (S, I, O, S, s0), state s and a (time) guard g = min, 

max, state s   is an (i, g)-successor of state s if there exists t  g s.t. (s, (i, t), o, s) is a 

clocked transition of S. Generally, the set of (i, g)-successors of state s can be empty 

as well as can have several states. Given a set of states M   S and a timed guard g = 

min, max, the set M  of states is an (i, g)-successor of the set M if M  is the union of 

the sets of (i, g)-successors over all states of the set M.  

Given a TFSM S = (S, I, O, S, s0) and a pair (s, i)  S  I, let G = {j1 = 0, j2, …, 

jm}, ja < ja+1,  a = 1, …, m - 1, be the finite ordered set of boundaries of guards over all 

transitions (s, i, o, s, gj)  S. We denote (s, i) the (finite) set {(j1, j2), …, (jm-1, jm), 

(jm, ), {j1},{j2}, {j3}, ..{jm}}, i.e., the set (s, i) has singletons for all boundaries and 

all (infinite) domains with consecutive boundaries of the set G. By definition, the set 

(s, i) is finite and items of the set are very close to regions of the region graph in [1]. 

Each item of the set (s, i) describes a time domain (or region) where the TFSM has 

the same behavior for the pair (s, i). If there is no transition (s, i, o, s, min, max)  

S then, by definition, (s, i) is the empty set. By definition of the set (s, i), the 

following statement holds. 

Proposition 1. Given a TFSM S = (S, I, O, S, s0), a pair (s, i)  S  I s.t. the set 

(s, i) is not empty, g  (s, i) and t1, t2  g, the sets of (i, t1)- and (i, t2)-successors of 

state s coincide.  

We note that a TFSM can have the same behavior for the pair (s, i) in different 

domains of the set (s,i). For example, suppose that S has transitions (s, i, o1, s1, [0, 

2)), (s, i, o2, s2, [2, )), (s, i, o3, s1, [0, 3)), (s, i, o2, s1, [3, )) for (s, i). The set (s, i) = 

{(0, 2), (2, 3), (3, ), {0}, {2}, {3}}. The set of (i, 1)-successors of state s coincides 

with the set of (i, 0.5)-successors. Moreover, the TFSM at state s has the same 

behavior for timed inputs (i, 0) and (i, 1) despite of the fact that time instances 0 and 1 

belong to different domains of the set (s, i).  

Definition 5.  Given a TFSM S, a sequence over the input (output) alphabet is 

called an input (output) sequence. A sequence (i1, t1) … (il, tl) of timed inputs is a 

timed input sequence. The set of all timed sequences is denoted It*. We also introduce 

the function outS that maps the set S  It* into the set of output sequences. Given state 

s and a timed input sequence  = (i1, t1) … (il, tl), an output sequence o1 … ol  

outS(s, ) if there exist states s1 = s, …, sl+1 s.t. for each j {1, …, l} the TFSM S has 

a clocked transition (sj, (ij, tj), oj, sj+1) and as usual, we say that the pair (, outS(s, )) 

can take the machine S from state s to state sl+1. A pair 

―timed_input_sequence_/output_sequence_‖ is a timed I/O sequence or a timed 

trace of S at state s if  = outS(s, ). 

If TFSM S is deterministic then for each state s and each timed input sequence , 

the set outS(s, ) has at most one item. If TFSM S is complete then the set outS(s, ) 

is not empty. 

The set of all timed traces of S at state s is denoted TTrS(s), also denoted TTrS for 

short if s is the initial state of S. As usual, the TFSM S is initially connected if for 



       

each state s, there exists a timed trace that can take the machine from the initial state 

to state s. 

As usual, the behavior of two TFSMs can be compared using their intersection. The 

intersection of two TFSMs S and P is not defined at state (s,p) for a timed input (i, t) 

when S and P at states s and p produce disjoint sets of outputs to this timed input. 

Definition 6.  Given TFSMs S and P, the intersection S  P is the largest 

connected submachine of the TFSM (S  P, I, O, SP, (s0,p0)) where ((s,p), i, o, 

(s,p), min1, max1 )  SP if there are transitions (s, i, o, s, min2, max2)  S and 

(p, i, o, p, min3, max3)  P s.t. min2, max2   min3, max3    and min1, max1 

= min2, max2   min3, max3.  

Similar to untimed FSMs [18], a number of compatibility and distinguishability 

relations can be defined between two complete non-deterministic timed FSMs. The 

only difference is that these relations are defined w.r.t. timed input sequences.  

Definition 7.
 1
  

- TFSMs S and P are equivalent if TTrS = TTrP; otherwise, the machines are 

distinguishable.  A timed input sequence  s.t. outS(s0, )  outP(p0, ) is 

said to distinguish machines S and P. 

- TFSM S is a reduction of TFSM P if TTrS  TTrP; otherwise, S is not a 

reduction of TFSM P. If a complete TFSM S is not a reduction of a 

complete TFSM P then there exists a timed input sequence  such that 

outS(s0, )  outP(p0, ) and  is said to r-distinguish the TFSM S from the 

TFSM P 
. 

- TFSMs S and P are non-separable if for each timed input sequence  it 

holds that outS(s0, )  outP(p0, )  . If there exists a timed input 

sequence  s.t. outS(s0, )  outP(p0, ) =  then TFSMs S and P are 

separable and  is said to separate machines S and P.  

- TFSMs S and P are r-compatible if there exists a complete TFSM that is a 

reduction of both machines S and P. If TFSMs S and P are not r-compatible 

then they are r-distinguishable. Similar to untimed FSMs, r-distinguishable 

TFSMs are not necessary r-distinguishable by a single sequence.  

In this paper, we propose methods for deriving separating and r-distinguishing 

sequences for two complete and observable TFSMs (when such sequences exist). As 

the number of timed inputs of a complete TFSM is infinite, the methods used for 

untimed FSMs cannot be directly used. 

 
Figure 1.a Timed FSM S   Figure 1.b Timed FSM P 

                                                           
1 In the same way, the compatibility and distinguishability relations can be introduced for two 

states of two TFSMs or for two states of a TFSM. 



       

 
Figure 2. Timed FSM S  P 

3. Separability Relation and Separating Sequences 

Similar to untimed FSMs, the separability of TFSMs S and P can be checked by using 

the intersection S  P. The following statement holds.  

Proposition 2. Given complete TFSMs S and P, if the intersection S  P is 

complete then the TFSMs S and P are non-separable.  

In fact, state s of TFSM S and state p of TFSM P can be separated by a timed input 

(i, t) if and only if outS(s, (i, t))  outP(p, (i, t)) = . If the intersection S  P is 

complete then for each state (s, p) and each timed input (i, t) it holds that outS(s, (i, t)) 

 outP(p, (i, t))  . Correspondingly, for each timed input sequence  it holds that 

outS(s0, )  outP(p0, )  .  

We now present an algorithm for deriving a minimum length separating sequence 

for two complete observable TFSMs. Algorithm 1 uses the intersection of two 

partitions. Given two partitions (q, i) and (s, i) over [0, ), the intersection of these 

partitions contains non-empty intersections g  h, g  (q, i), h  (s, i).  

 

Algorithm 1: Deriving a minimum length separating sequence of 

two TFSMs 

Input: Complete observable TFSMs S = (S, I, O, S,  s0) and P = (P, I, O, P,  p0) 

Output: A separating sequence of TFSMs S and P (when such a sequence exists)  

Derive the intersection Q = S   P;  

If Q is a complete TFSM then END Algorithm 1. TFSMs S and P are non-

separable. 

Otherwise, assign 

k : = 0;  

Edge: = ;  

Q k 0 : = {(s0 ,p 0)}; 



       

Q k : = {Q k 0}; 

While  

(for some Q k j Q k , j  0, there exists a timed input (i, t) such 

that for each state (s,p) of the set Q k j , states s and p are 

separated by (i, t) (Rule  1)   

or  

for each Q k j   Q k , there exists Qa m   Q a , a < k, s.t. each state 

(s,p)  Q k j  is a reduction of some state (s,p)  Q a m  (Rule 2)) 

Do: 

Q k + 1 : = ; 

For each subset Q k j   Q k , j = 0, ..., |Q k | - 1, for which there 

is no Q a m   Qa , a < k, s.t. each state (s,p)  Q k j  is a 

reduction of some state (s,p)  Q a m  and for each input i,  

Do: 

Derive the set  as the intersection of (q, i) over all 

state pairs q  Q k j ; 

For each guard g  , derive the set M as the union 

of (i, g)-successors over all q  Q k j  of the TFSM 

Q ; 

Add M to Q k + 1 ; 

Add a triple (Q k j , (i, g), M) to the set Edge;  

Increment k by 1; 

 

If for some 
kjkQ ,  j  0, there exists a timed input (i, t) such that for 

each state (s,p) of the set Q k j , states s and p are separated by (i, t) 

(Rule  1)  then derive a timed sequence  as follows. Given the set 

Edge, derive the sequence (Q 0 0 , (i1, g1), 
1

1 j
Q ), (

1
1 j

Q , (i2, g2), 
2

2 j
Q ), 

…, (
1

)1(



kj

kQ , (ik, gk), 
kjkQ ) such that (

1
)1(




lj
lQ , (il, gl), 

ljlQ )  

Edge for each l  {1, …, k} and then derive a sequence of timed inputs 

 = (i1, t1) … (ik, tk) s.t. tj  gj, j = 1, …, k. The sequence  is a shortest 

separating sequence of TFSMs S and P. 

 

If for each Q k j   Q k , there exists Qa m   Qa , a < k, s.t. each state (s,p) 

 Q k j  is a reduction of some state (s,p)  Qa m  then TFSMs S and P 

are non-separable.      

 

Proposition 3. If TFSMs S and P are separable then Algorithm 1 returns a shortest 

separating sequence of S and P.  

In fact, in [20] an algorithm is given for deriving a shortest separating sequence for 

two untimed FSMs based on the successor tree of the intersection of two FSMs. 

Algorithm 1 uses also the intersection and successor tree when deriving a shortest 

separating sequence of two timed FSMs. However, for TFSMs, the number of timed 

inputs is infinite and thus, each state has an infinite number of timed successors. In 

order to make this number finite we introduce and then use in Algorithm 1 the notion 



       

of a partition (q, i). According to Proposition 1, given a state q of the intersection S  

P, an input i, and a region g  (q, i), for each t1, t2  g, the set of (i, t1)- and (i, t2)-

successors of state q coincide. Correspondingly, all such successors coincide with the 

set of (i, g)-successors of state q. 

Proposition 4.  Given two complete TFSMs S and P with n and m states, if the 

machines are separable then there exists a separating sequence with length at most 

2
mn– 1

 and the upper bound 2
mn – 1

 is reachable.  

The first part of the statement is implied by Algorithm 1, as by construction, 

according to Rule 2, k cannot be greater than 2
mn – 1 

+ 1. The second part holds since 

the upper bound is reachable for untimed FSMs [20] which can be considered as a 

particular case of timed FSMs where for each pair (s, i) the set (s, i) has a singleton 

[0, ). 

In order to show that the upper bound in Proposition 4 is reachable it is enough to 

show that is reachable for untimed complete non-deterministic FSMs. For any n and 

m, there exist observable untimed FSMs S and P with n and m states which can be 

separated only by a timed input sequence of length 2
nm-1

. As an example, we can 

consider such untimed FSMs from [20]; these machines have the input alphabet I, |I| = 

2
nm−1

, and the output alphabet O, |O| = 2nm. However, determining the minimal 

number of inputs, for separating two separable machines, such that the upper bound of 

Proposition 4 is reachable is still an unsolved problem. 

Example: As an application example for Algorithm 1, consider TFSMs S (Fig. 1a) 

and P (Fig. 1b) with initial states a and 1 defined over inputs {i1, i2}, outputs {o1, o2, 

o3}. The intersection S  P is shown in Fig. 2. By definition, the set Q0  = {Q0 0}, 

where Q0 0  = {(a ,1)}. Given the intersection S  P, the set (a 1 ,  i 1 ) = {(0, 1), (1, 2), 

(2, 3), (3, ), {0}, {1}, {2}, {3}}, and thus, for Q 0 0  and i 1 ,  = {(0, 1), (1, 2), (2, 

3),(3, ), {0}, {1}, {2}, {3}}, while for Q0 0  and i2 ,  = {(0, ), {0}}. 

Correspondingly, we obtain the set Edge = {(Q0 0 , ( i1, 0 < t < 1), {(b,2)}); (Q0 0 , ( i1, 

1 < t < 2), {(a,2), (b,1)}); (Q0 0 , (i1, 2 < t < 3), {(a,1), (b,1)}); (Q0 0 , (i1, t > 3), 

{(a,1)}); (Q 0 0 , (i1, 0), {(b,2)}); (Q0 0 , (i1, 1), {(a,2), (b,1)}); (Q 0 0 , (i1, 2),{(a,2), 

(b,1)}), (Q 0 0 , (i1, 3), {(a,1), (b,1)}), (Q0 0 , (i2, t > 0), {(a,1)}), (Q0 0 , (i2, {0}), 

{(a,1)})}. Therefore, the set Q1= {{(b,2)}, {(a,2), (b,1)}, {(a,1), (b,1)}, {(a,1)}, 

{(b,2)}, {(a,1), (b,1)}, {(a,1)}}. 

For states (a,1) and (b,2), the union of time guards in the intersection S  P is [0, 

) for both inputs i1 and i2, and thus, states a and 1 and states b and 2 are not 1-

separable. However, we observe that the behavior of the intersection S  P is not 

defined at states (a,2) and (b,1) for timed inputs (i1, t > 3). Thus, states a and 2 and 

states b and 1 are separable by a timed input (i1, 4). Given timed input (i1, 1), the 

intersection reaches from the initial state (a,1) states (a,2) and (b,1) and thus, the 

sequence of timed inputs (i1, 1) (i1, 4) separates TFSMs S and P. 

In order to distinguish two separable timed FSMs we do not need the ―all weather 

conditions‖ assumption. It is enough to apply a separating input sequence once since 

the sets of outputs of the machines to this sequence are disjoint. However, it is well-

known that when a common reduction of non-separable complete non-determinisitic 

untimed FSMs does not exist such machines can be distinguished without ―all 

weather conditions‖ assumption [18] by a so-called r-distinguishing set. Similar to 

untimed non-deterministic FSMs, if two timed complete observable FSMs do not 



       

have a common complete reduction then these machines can be distinguished by an 

adaptive experiment using the r-distinguishability relation. In the following section, 

we present an algorithm for an adaptive experiment that checks the r-

distinguishability of two observable TFMSs and if the machines are r-distinguishable 

an r-distinguishing set is derived. 

4. R-distinguishability Relation and r-distinguishing Sets 

Two complete TFSMs S and P which have no common complete reduction are r-

distinguishable. If TFSMs S and P have a common complete reduction then these 

TFSMs are r-compatible. Generally the number of pair-wise non-equivalent complete 

reductions of a timed FSM is infinite and thus, it is not trivial to decide if two 

complete timed TFSMs are r-distinguishable. However, if TFSMs S and P are 

observable then, similar to observable untimed non-deterministic FSMs, we can use 

another (equivalent) definition of the r-distinguishability relation that helps us when 

checking r-distinguishability by an adaptive experiment.  

Given observable timed FSMs S and P and their intersection Q = S  P, states s and 

p are 1-r-distinguishable if states s and p can be separated by a timed input, i.e. the 

intersection is partially specified at state q = (s,p). In other words, there exists an input 

i s.t. in the intersection S  P the union  of guards over all transitions ((s,p), i, o, 

(s,p), g)  SP is different from [0, ). A set Rsp = {(i, t)/o: o  outS(s, (i, t)) or o  

outP(p, (i, t))} where t  [0, )\, is an r-distinguishing set of states s and p. We note 

that one timed input (i, t) is sufficient for r-distinguishing 1-r-distinguishable states s 

and p. 

Consider k  >  1  and assume that all pairs of (k -1)-r-distinguishable states are 

determined and for each pair of (k -1)-r-distinguishable s and p an r-distinguishing set 

Rsp is also determined. States s and p are k-r-distinguishable if these states are (k -1)-

r-distinguishable or for some input i there exists t  [0, ) such that for each transition 

((s,p), i, o, (s,p), g)  TSP, g  t, states s and p are (k-1 )-r-distinguishable. In this 

case, an r-distinguishing set for states s and p is constructed as the concatenation of (i, 

t)/o, t  g, o  outSP((s,p), (i, t)), with each sequence of each set Rsp such that S  P 

has the transition (s,p)  (i, t)/o  (s,p). We refer to such a timed input (i, t) as a k-

r-distinguishing timed input of states s and p. 

Similar to untimed FSMs, it can be shown that observable TFSMs S and P are r-

distinguishable if there exists an integer k  s.t. their initial states are k-r-

distinguishable. A set of sequences that r-distinguish the initial states of TFSMs is an 

r-distinguishing set of TFSMs S and P. 

Let observable TFSMs S and P be r-distinguishable. Then they can be distinguished 

based on an r-distinguishing set of TFSMs S and P by using an adaptive experiment. 

For TFSMs with n and m states length of each sequence in the r-distinguishing set is 

at most nm and this upper bound is reachable. Moreover, during an adaptive 

experiment only one sequence of timed inputs of an r-distinguishing set will be 



       

applied to r-distinguish considered machines. However, the following proposition 

shows that the total length of an r-distinguishing set can be exponential. 

Proposition 5. Given integers n and m, n  1, m  1, there always exist r-

distinguishable TFSMs S and P with n and m states s.t. the total length of all 

sequences of some r-distinguishing set is at most (nm+2)2
nm−3

 and this upper bound is 

reachable.  

In fact, the proposition is a corollary to the similar proposition [24] for untimed 

FSMs which can be considered as a particular case of timed FSMs where for each pair 

(s, i) the set (s, i) has a singleton [0, ). However, below we show that similar to 

untimed FSMs, an r-distinguishing set can be represented as the set of traces of a 

partial timed FSM that has at most nm + 2 states and thus, there exists a representation 

of an r-distinguishing set with the polynomial complexity.  

Algorithm 2: Deriving an r-distinguishing set of two TFSMs  

Input: Complete observable TFSMs S =  (S ,  I ,  O ,  S ,  s 0)  and 

P =  (P ,  I ,  O ,  P ,  p 0)   

Output: Partial initially connected TFSM R(S,P) if TFSMs S and  P are r-

distinguishable  

Derive the tuple R = (R ,  I ,  O ,  R)  where,  R  is empty and R contains 

two states which we call rS and rP; 

Derive the intersection Q  = S  P of TFSMs S and P;   

k: = 1;  

Q k : = Q , where Q  is the set of states of S  P ; 

While ((s0 ,p 0)   Q k  and the set Q k  has pairs of k-r-distinguishable 

states), do: 

Determine all pairs of the set Q k  which have k-r-

distinguishable states; 

For each pair (s,p) of the set Q k  s.t. s and p are k-r-

distinguishable  

Determine a k-r-distinguishing timed input (i, t) of 

states s and p;  

Add state (s,p) into set R ;   

For each o   O  s.t. there is the transition ((s,p), i, o, 

(s,p), g)   Q  where g   t, add the tuple ((s,p), 

i, o, (s,p), [t]) to R ;  

 For each o   O  s.t. there is no transition ((s, p), i, o, 

(s,p), g)   Q  where g   t, add to R  the tuple 
((s,p), i, o, rS, [t]) if o  outS(s, (i, t)). If o  

outP(p, (i, t)) add the tuple ((s,p), i, o, rP, [t]);  

Delete state (s,p) from the set Q k ; 

Increment k by 1; 

Q k : = Q k - 1 ; 



       

If (s0 ,p 0)   Q k  then convert the tuple R into TFSM by claiming state 

(s0 ,p 0)  as the initial state of the TFSM. The largest initially connected 

submachine of TFSM R is TFSM R(S,P); END Algorithm 2. 

If states of each pair of Q k  are not k-r-distinguishable then End 

Algorithm 2. TFSMs S and  P are r-compatible, i.e. are not r-

distinguishable.        

  

By construction of TFSM R(S,P), the following statement holds. 

Proposition 6. Given two r-distinguishable observable TFSMs S and P with 

n and m states, Algorithm 1 returns an acyclic partial TFSM R(S,P) such that for 

each state (s,p) of R(S,P) there exists exactly one input i for which (s, i) is not 

empty. Moreover, no input is defined at states rS and rP.   

According to Proposition 6, if Algorithm 2 returns a TFSM R(S,P) then an r-

distinguishing set R of TFSMs S and P is the set of all timed traces, which take 

the TFSM R(S,P) from the initial state to states rS and rP. Correspondingly, the 

final state of an executed trace uniquely indicates which TFSM S or P is under 

experiment. In other words, if the final state of an executed trace is rS (rP) then 

the TFSM under experiment is S (P). 

Example: As an example of Algorithm 2, consider TFSM S with the initial 

state 1 and also TFSM S with the initial state 3 (Figure 3). Since in this example 

we consider two submachines of S starting from initial states 1 and 3, we denote 

the first machine as S1  and the second as S3  and we add into R two states rS1 and 

rS3 with subscripts indicating the initial states of the TFSMs. Part of the 

intersection Q = S 1 S3  is shown in Figure 4. Set Q 1  = Q (for k = 1) includes 

all states of the TFSM Q. States 3 and 2 of Q1  are 1-r-distinguishable by a timed 

input (i2, 1) and states 2 and 4 are 1- r-distinguishable by a timed input (i1, 2). 

Thus, we remove states (3, 2) and (2, 4) from Q1  and obtain Q2  which does not 

include states (3, 2) and (2, 4). States 1 and 3 of the initial state (1, 3) in Q2  are 

2-r-distinguishable. By direct inspection, one can observe  that states (3, 2) and 

(2, 4) are reached from the initial state by a timed input (i1, 3) and thus, TFSM 

R(S1, S3), shown in Figure 5, represents an r-distinguishing set {(i1, 3)/o1.(i2,  

1)/o1, (i1, 3)/o1.( i2, 1)/o2, (i1, 3)/o2.( i1, 2)/o1, (i1, 3)/o2.( i1, 2)/o2}.  

 



       

 
Figure 3. TFSM S where states 1 and 3 are not separable but they are r-

distinguishable 

 

Q  = S1  S3 (1,3) (3,2) (2,4) (2,2) 

i1, t ≤ 2 (1,3) / o1 (3,1) / o1 - (1,1) / o1 

i1, 2 < t ≤3 (3,2) / o1 

(2,4) / o2 

(2,2) / o1 - (2,2) / o1 

i1, t > 3 (3,1) / o1 (1,3) / o1 - (3,3) / o1 

 

i2, t ≤ 1 

(1,3) / o1 - (1,3) / o2 (1,1) / o2 

i2, 1 < t < 2 (1,3) / o1 - (2,2) / o2 (2,2) / o2 

i2, t = 2 (1,3) / o1 - (4,4) / o2 (4,4) / o2 

i2, t > 2 (1,3) / o1 - (4,4) / o2 (4,4) / o2 

 

Figure 4. Part of the intersection TFSM Q  = S  P 
 

R(S1,S3)  (1,3) (3,2) (2,4) rS1 rS3 
i1,  t=3 

 

i1,  t=2 

 

(3,2) / o1 

(2,4) / o2 

- rS1/o1 

 

rS3/o2 

- - 

i2, t = 1  

- 

rS1/o1 

rS3/o2 

- 

 

- - 

 

Figure 5. TFSM R(S1,S3)  



       

5. Conclusion and Further Research Work 

In this paper, we present algorithms for distinguishing timed non-deterministic finite 

state machines (TFSMs). More precisely, we present a preset algorithm for separating 

two separable TFSMs and an adaptive algorithm for distinguishing two r-

distinguishable possibly non-separable TFSMs. The algorithms take into account the 

fact that in general, unlike untimed FSMs, in a TFSM the number of timed inputs is 

usually infinite. We also state that the upper bounds on length of distinguishing 

sequences are as those of untimed FSMs. In this paper, we only consider complete 

TFSMs where for every state and input action of the TFSM the set of outgoing 

transitions of the state under the input action is not empty and the time guards of these 

outgoing transitions are defined over [0, ). In order to apply our work to partial 

TFSMs, one can complete a TFSM in the well-known way: for every state and input 

action where there is no outgoing transitions under the input action at some time 

instance, add a self-loop transition to the state with the Null output and with a 

corresponding time guard. 

The work presented in this paper can be extended in various ways. For example, 

the presented algorithms can be used as a basis for test derivation of TFSMs with the 

guaranteed fault coverage. In addition, the algorithms can be adapted for other 

distinguishability relations as those defined for untimed non-deterministic FSMs. 
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