
Modeling, validation, and verification of PCEP
using the IF language?

Iksoon Hwang1, Mounir Lallali1, Ana Cavalli1, and Dominique Verchere2

1 TELECOM & Management SudParis, 9 Rue Charles Fourier, 91011 Évry Cedex,
FRANCE

{Iksoon.Hwang, Mounir.Lallali, Ana.Cavalli}@it-sudparis.eu
2 Alcatel-Lucent R&I, Route de Villejust, 91620 Nozay, FRANCE

Dominique.Verchere@alcatel-lucent.com

Abstract. In this paper, we present the modeling, validation, and veri-
fication of an industrial protocol for constraint-based path computation,
called PCEP. From the PCEP specification defined by IETF, we divide
the functionalities of PCEP into two parts: application and protocol.
The protocol part of PCEP is then described in the IF language which
is based on communicating timed automata. A number of basic require-
ments are identified from the PCEP specification and then described as
properties in the IF language. Based on these properties, the validation
and verification of the formal specification are carried out using the IF
toolset. Test cases are generated by using an automatic test generation
tool, called TestGen-IF, which uses partial state space exploration guided
by test purposes. As a result of the modeling, validation, and verifica-
tion, some errors and ambiguities are found in the PCEP specification.
Also a number of test cases are obtained which will be used for testing
implementations.

1 Introduction

Formal methods are mathematically rigorous techniques that can be used to de-
scribe and analyze the behavior of systems. A number of advantages arise from
the use of formal methods during the software development procedure. Less am-
biguous specifications are provided and these can be used in model checking
and model-based testing. Validation is the process of evaluating software dur-
ing or at the end of the development process to determine whether it satisfies
specified requirements [1]. Model checking and model-based testing have been
widely used for validation and verification of systems. Recently, there have been
a number of industrial case studies that use formal methods in validation and
verification. Bozga et al. [2] presented the verification and test generation for the
SSCOP protocol and Jia and Graf [3] performed the verification experiments on
the MASCARA protocol using IF (Intermediate Format) [4]. Hessel and Pet-
tersson [5] provides model-based testing of a WAP gateway using Uppaal [6].
? This work has been supported by the French competitiveness cluster SYSTEM@TIC,

through CARRIOCAS project.



2

The CARRIOCAS project [7] aims at providing a distributed pilot network
for industrial applications with high complexity, scope, and scale. A number
of hardware and software components are developed in the project in order
to provide the connectivity services for such large-scale distributed, data, and
computing intensive applications. One of the important activities of the CAR-
RIOCAS project is the validation experiment on the proposed pilot network. As
a part of the validation activities, a communication protocol for constraint-based
path computation which is called Path Computation Element Communication
Protocol (PCEP) [8] is chosen for validation and verification.

In this paper, we present the modeling, validation, and verification of PCEP,
which are carried out in the CARRIOCAS project. From the PCEP specification
defined by IETF (Internet Engineering Task Force), we divide the functionalities
of PCEP into two parts: application and protocol. The protocol part is then de-
scribed in the IF language. A number of basic requirements are identified from
the PCEP specification and then described as properties in IF. Based on these
properties, the validation and verification of the formal specification are car-
ried out using the IF toolset [9]. From the basic requirements, a number of test
purposes are defined and test cases are generated by using an automatic test
generation tool, called TestGen-IF [10]. As a result of the modeling, validation,
and verification, we found some errors and ambiguities in the PCEP specifica-
tion. Also we obtained a number of test cases which will be used for testing
implementations in the CARRIOCAS project.

The paper is organized as follows. In Section 2, we explain briefly about
the CARRIOCAS project and PCEP. The IF language and the IF toolset are
explained in Section 3. In Section 4, we describe how to model PCEP in the IF
language and the validation of the formal specification is carried out in Section
5. The test generation methods and results are discussed in Section 6 and finally
Section 7 concludes the paper.

2 CARRIOCAS project and PCEP

2.1 CARRIOCAS project

Large scale distributed applications (often termed as Grid applications) chal-
lenge the performance of the existing telecom network infrastructures. In the
CARRIOCAS project, a number of research and industrial applications are con-
sidered such as car design with crash simulations for safety analysis and energy
production with atomic reactor models for central problem simulations. These
applications require ultra-high performance computers to execute their simu-
lation application workflows during the life-cycle of the project and also need
exchange of massive amounts of data in order to enable local and distant groups
of engineers to work collaboratively while viewing and analyzing their results.

The purpose of the CARRIOCAS project is to design and develop the com-
ponents of high-throughput capacity system and flexible network architectures
that can adapt its connectivity services dynamically for the data-intensive and



3

delay sensitive distributed applications. The pilot network aggregates the Eth-
ernet data flows issued from client networks to be transported by carrier grade
Ethernet Virtual Circuits. The CARRIOCAS project is attempting to develop a
common service management component based on the Scheduling, Reconfigura-
tion, and Virtualization (SRV) functions to allow the compositions of different
connection service elements from a network infrastructure. The SRV functions
can be extended above different types of infrastructures including computational
servers and data storage centers to deliver bundles of service elements. These
extensions require advanced Network Management capabilities based on Path
Computation Element (PCE) functions which provide the routes of the con-
nection services, e.g. the routes on GMPLS (Generalized Multi-Protocol Label
Switching)-capable carrier grade Ethernet switches.

In addition to the design and development of the network, one of the impor-
tant activities of the CARRIOCAS project is the validation experiment on the
proposed pilot network. As a part of the validation activities, a communication
protocol for constraint-based path computation which is called PCEP is chosen
for validation and verification.

2.2 Path Computation Element Communication Protocol

In large scale and multi-domain networks, path computation can be complex
and may require specific computational components and cooperation between
elements in different nodes. In order to address these problems, an architecture
based on PCE model has been proposed [8]. In this PCE-based architecture,
a PCE is an entity that computes a network path based on a network graph
and computational constraints and a Path Computation Client (PCC) is any
kind of client application requesting a path computation to be performed by
a PCE. PCEP is a communication protocol between a PCC and a PCE, or
between two PCEs in order to exchange path computation requests and path
computation replies as well as notifications of specific events related to the use
of a PCE. PCEP operates over TCP [11] which provides reliable messaging and
flow control. The following PCEP messages are defined:

– Open message is used to initiate and negotiate a PCEP session.
– Keepalive message is used to establish and maintain a PCEP session.
– PCReq message is sent to request a path computation.
– PCRep message is sent in reply to a path computation request.
– PCNtf message is sent to notify a specific event.
– PCErr message is sent upon the occurrence of a protocol error condition.
– Close message is used to close a PCEP session.

A PCC may have PCEP sessions with more than one PCE and similarly a
PCE may have PCEP sessions with multiple PCCs. Once the TCP connection is
established between a PCC and a PCE, the PCC and the PCE (also referred to
as “PCEP peers”) initiate PCEP session establishment. Various session param-
eters including the Keepalive timer, the Deadtimer, other detailed capabilities,



4

and policy rules are carried within Open messages. If the session parameters
are agreed, Keepalive messages are used to acknowledge Open messages. Once
the PCEP session has been successfully established, Keepalive messages may be
exchanged between PCEP peers to ensure the liveness of the PCEP session. If
the session parameters are not acceptable but negotiable, session negotiation
can be performed where the proposed session parameters are contained within
PCErr messages. If the PCEP peers disagree on the session parameters or one
of the PCEP peers does not answer after the expiration of the establishment
timer, the TCP connection is immediately closed. Figure 1 shows the scenario
of PCEP session establishment after negotiation.

PCCPCE

Open Open

TCP Connection

Established

Error Keepalive

Keepalive

Open

PCEP Session

Established

Session parameters

not acceptable

Prepare new 

session parameters

Fig. 1. PCEP session establishment after negotiation

After establishment of a PCEP session, when an event is triggered that re-
quires the computation of a set of paths, the PCC sends a PCReq message which
contains a set of constraints and attributes for the path for computing. Upon
receiving a path computation request from a PCC, the PCE triggers a path com-
putation, the results are sent back to the PCC in a PCRep message where they
can be either positive (one or more computed paths) or negative (no path found).
When a PCE wants to notify a specific event to PCCs such as possible unaccept-
able delay because of overload, it sends a PCNtf message to PCCs. Similarly,
a PCC may desire to notify a PCE of a particular event such as the cancela-
tion of pending requests. A PCErr message is sent in several situations: when
a protocol error condition is met or when the request is not compliant with the
PCEP specification, e.g. reception of malformed messages or unexpected mes-
sages. When one of the PCEP peers desires to terminate a PCEP session, it first
sends a Close message and then closes the TCP connection. When the PCEP
session is terminated, the PCC and the PCE cancel all pending operations and
clear corresponding resources.



5

3 IF language

3.1 IF model

IF [4] is a formal method based on communicating timed automata in order to
model asynchronous communicating real-time systems. In IF, a system is ex-
pressed by a set of parallel processes communicating asynchronously through a
set of buffers. A process instance can be created and destroyed dynamically dur-
ing system execution. An IF process is described as a timed automaton extended
with discrete data variables. A process has a set of control states and a private
buffer for input messages, and can have local data such as discrete variables and
clocks. There are two types of control states: stable states and unstable states.
An unstable state is a temporary state where no interleaving between processes
is possible. In other words, if a process moves to an unstable state by an action,
the atomicity of the execution is guaranteed until it reaches a stable state.

Transitions describe the behavior of a process on stimuli. A transition can
be triggered either by (timed) guards or by an input message where an urgency
attribute (eager, delayable or lazy) defines the priority of the transition over time
progress. When an eager transition is executable, time progress is blocked until
the transition is executed. If there is an executable delayable transition, time can
progress as long as the transition is executable. If time progress makes the de-
layable transition non-executable, time progress is blocked until the transition is
executed. For lazy transitions, time can progress although the transitions become
non-executable. The action of a transition may include sending output messages,
setting/resetting clocks, assignment of variable values, and creation/destruction
of processes.

3.2 IF toolset

The IF toolset [9] provides an environment for modeling and validation of an IF
specification. The core components of the toolset are the IF static analyzer and
the IF exploration platform. The IF static analyzer transforms an IF specifica-
tion into an abstract syntax tree which is a collection of C++ objects. The IF
exploration platform performs the simulation of process executions by using the
abstract syntax trees. A set of APIs is provided by the IF exploration platform,
which allows implementation of user-specific exploration. Through these APIs,
CADP [12], a tool for validation of LTS models and TGV [13], for test case
generation using on-the-fly technique can be connected to the IF toolset.

In the IF toolset, it is possible to check if given properties hold for an IF
specification by using observers. Once a property is described in the IF language
using a specific syntax for observers, e.g. monitoring of events and cutting off
generation of irrelevant states, it is executed in parallel with the target system.
The communication between the system and the observer process is synchronous
and the observer process has always the highest priority during exploration so
that monitoring of an event is triggered immediately when the event occurs.



6

4 Formal description of PCEP

4.1 Overall architecture

In our experiments, we divide the functionalities of PCEP into two parts: appli-
cation and protocol. The functionalities of the application part include session
initiation, session parameter negotiation, request/reply of path computation,
notification of specific events, closing the session, etc. The functionalities of the
protocol part include the handling of finite state machines including local vari-
ables and timers, collision resolution procedure, keeping the current session by
exchanging Keepalive messages, etc. In our formal specification of PCEP, the pro-
tocol part is modeled by a system. PCEP applications and the lower layer (TCP)
are, therefore, considered to be an environment. A complete set of service prim-
itives are defined between PCEP applications and the system and between the
system and the lower layer. As a PCEP application can communicate with more
than one peer PCEP applications, it is necessary to model multiple instances
of the PCEP protocol. The system consists of a main process and multiple in-
stances of a child process where each instance of the child process handles a
PCEP session. The Figure 2 shows the overall architecture.

Environment (PCEP application)

TCP_Open_req, 

TCP_Data_req,

TCP_Close_req, 

TCP_Abort_req

System PCEP

Environment (TCP)

TCP_Open_cfm,

TCP_Data_ind,

TCP_Close_ind,

TCP_Abort_ind,

TCP_connection_fail_ind

PCEP_Open_req,

PCEP_Keepalive_req,

PCEP_PCReq_req,

PCEP_PCRep_req,

PCEP_Noti_req, 

PCEP_Error_req,

PCEP_Close_req

PCEP main

PCEP_Open_ind,

PCEP_Keepalive_ind,

PCEP_PCReq_ind,

PCEP_PCRep_ind,

PCEP_Noti_ind,

PCEP_Error_ind.

PCEP_Close_ind

TCP_Open_indTCP_Open_resp

Invoke
PCEP child

PCEP_Open_init_req

          
Fig. 2. Overall architecture of the formal specification of PCEP

In TCP, function interfaces are defined to provide a certain minimum set of
services to guarantee that all TCP implementations can support the same proto-
col hierarchy [11]. The service primitives between the system and TCP are based
on those function interfaces. For exchange of user data, i.e. exchange of the PCEP
messages through Send and Receive user calls, we introduce parameterized ser-
vice primitives, TCP Data PCEP xxx req and TCP Data PCEP xxx ind. The
TCP Data PCEP Unknown ind service primitive represents an unknown PCEP



7

message from its peer and the TCP connection fail ind service primitive rep-
resents TCP connection failures such as the failure of sending a message. The
service primitives between the system and PCEP applications are based on the
PCEP messages. In order to model session initiation request from a PCEP appli-
cation, the PCEP Open init req service primitive is introduced. When the main
process receives a session initiation request by receiving either the TCP Open ind
message from a PCEP peer or the PCEP Open init req message from a PCEP
application, it creates a child process which manages the PCEP session.

4.2 States, internal variables, and timers

As mentioned in Section 4.1, we have two kinds of processes in our model: a
main process and a child process. Since the purpose of the main process is to
create instances of a child process when there are session initiation requests, the
main process has only one stable state, Idle. In a child process the following four
stable states are defined based on the PCEP specification: TCPPending, Open-
Wait, KeepWait, and SessionUP. In addition to the stable states, we introduce
a number of unstable states in order to branch off the control flow of a process.
If the behavior is decided by internal variable values or clock values, each case
can be represented by a transition. If the decision should be made by the pa-
rameter values of an input message, however, it is necessary to have more than
one transition, one to receive a message and the others to check the parameter
values. In this case, the parameter values are checked in unstable states in order
to guarantee the atomicity of the behavior. The following shows an example.
state TCPPending;
deadline lazy;
input TCP_Open_cfm(tcpConnectResult);

nextstate TCPPending_TCP_Open_cfm_decision;
...

endstate;

state TCPPending_TCP_Open_cfm_decision #unstable ;
provided (tcpConnectResult = ConnectSuccess);

...
nextstate OpenWait;

provided (tcpConnectResult = ConnectFail) and
(tcpConnectRetry < TCPConnectMaxRetry);

...
nextstate TCPPending;

...
endstate;

In our model, four internal variables and five timers are defined based on the
PCEP specification: tcpConnectRetry, pcepOpenRetry, remoteOK, and localOK
for internal variables, and tcpConnectTimer, pcepOpenWaitTimer, pcepKeep-
WaitTimer, pcepKeepaliveTimer, and pcepDeadTimer for timers. In addition to
the above internal variables, the main process manages a childInfoTable which
contains information on the current ongoing sessions in order to manage the
number of active sessions and duplicated session initiation requests. Also the
childInfoTable is used for collision resolution procedure when there are simulta-
neous session initiation requests between PCEP peers.



8

As mentioned in Section 4.1, a decision on session parameter negotiation
is carried out by PCEP applications in our model. When a child process in
OpenWait state receives an Open message from its peer, it sends the received
information to its PCEP application and then waits for a reply from the ap-
plication. If there is no reply for a given time, the child process should release
the corresponding PCEP resources and close the TCP connection. A new timer,
internalKeepWaitTimer is introduced for that purpose. Similarly, internalOpen-
WaitTimer is introduced for waiting a reply from applications when a PCErr
message is received from its peer for session negotiation. The SyncTimer is not
included in our model because the cancelation of path computation request is
considered to be the functionality of PCEP applications.

4.3 Abstraction of information

In PCEP, each PCEP message has a common header and may have a number of
PCEP objects. In our service primitives, the number of parameters is minimized
in order to reduce the problem size of the model. A minimum set of parameters
to decide the behavior of the system is defined for each service primitive as fol-
lows: Keepalive and Deadtimer for an Open message, a list of pairs of errorType
and errorValue for a PCErr message, the existence of rpObject and endPointO-
bject for a PCReq message, and the existence of rpObject for a PCRep message.
The Keepalive parameter value is used to send a Keepalive message periodically
in SessionUP state. A PCEP session is closed if there is no PCEP message from
its peer during the time given in the Deadtimer parameter. The errorType and
errorValue are necessary since the behavior of the system can be different ac-
cording to these values. The existence of rpObject and endPointObject is used
to send proper PCErr messages when these mandatory parameters are missing.

In our model, we assume that the PCEP messages received from PCEP peers
may have errors such as missing mandatory objects and unknown objects. In or-
der to model any errors in the received PCEP message which cannot be modeled
by other parameters, a boolean type parameter, errorInPCEPMessage is de-
fined in TCP Data PCEP XXX ind service primitives. For example, receiving
an unknown object is modeled by “errorInPCEPMessage=true” while missing
rpObject by “rpObjectExist=false”. Since the errorInPCEPMessage parameter
represents most erroneous messages, some cases are missing in our model, e.g.
the system should send a PCErr message with “errorType=3” when it receives
an unknown object from its peer. When there is a TCP connection request from
its peer, the decision whether accept it or not is usually made by system calls
without interaction with its applications. Therefore, the tcpConnectResult pa-
rameter, which contains the result of this decision, is included in TCP Open ind
service primitive.

4.4 Remarks

In this section, we explain two issues that we have faced when modeling.



9

How to make time progress in a system? In IF, it is assumed that time does
not progress during execution of transitions, i.e. the time spent during execution
of transitions is always zero. Time can progress only in stable configurations as
long as there is no executable eager transition. In our model, there is always at
least one executable transition enabled by an input message from environment
at any stable state as we designed the system in such a way that the interaction
between the system and environment is possible at any instance. Therefore, if the
transitions enabled by an input message from environment have eager deadline,
time in the system will never progress. In order to solve this problem, we used
lazy deadline for every transition enabled by an input message from environment.

Is the first incoming message served first in a process? In IF, the com-
munication between two processes is asynchronous, i.e. messages from other
processes are stored in a buffer before being consumed. However, messages from
environment are handled in a different way. The Figure 3 shows how incoming
messages are handled in a process. 

Process

Buffer

(FIFO)

env

signalroute_1 

(FIFO or Multiset)

signalroute_n-1

(FIFO or Multiset)

peer process_1

peer process_n-1

peer process_n

Fig. 3. Handling of incoming messages in a process

As shown in the figure, there is a FIFO buffer for each process. The messages
sent from other processes arrive at the buffer either through a signalroute or
directly from the peer process. Each signalroute has its own property such as
fifo/multiset, reliable/lossy, etc. When a message is passed to a receiver process
from a signalroute, it is stored in the buffer. The order of passing messages from
signalroute to the buffer can be either FIFO or random according to the property
of the signalroute. When a process sends a message to a receiver process directly
by using the destination process ID, it is stored in the buffer immediately. When
a message is sent from environment to a process, the message is not stored in the
buffer and is consumed immediately by the process although there are messages
in the buffer waiting for being consumed. Therefore, the communication between
environment and a process is synchronous while the communication between two
processes is asynchronous.

In our model, in the beginning, there was an internal communication between
the main process and a child process. When an instance of a child process is to
terminate, it sends a done message to the main process and the main process



10

clears all internal information related to that child process. In order to keep the
consistency of resources, the main process should consume the done message as
soon as it receives. However, this cannot be guaranteed since the main process
can receive messages from environment at any time. As a result, we had resource
mismatch problem, i.e. the child information was not cleared in the main process
although the child process had already been terminated. In order to solve this
problem, we removed the internal communication and the internal information
related to a child process is cleared by the child process itself. Note that our
solution is a temporary one and only applicable to limited cases. A general
solution is required for the above problem.

5 Validation of the formal description

5.1 Validation with IF observers

IF observers can be used to check if given properties hold for an IF specification.
Properties are based on observable actions such as input and output messages,
and also include checking variable values and clock values. Once a property is
described in the IF language, an exhaustive state space exploration using either
breadth first search or depth first search is carried out by the IF simulator. Dur-
ing the simulation, the observer process checks if it can observe the expected
behavior. In our experiments, first, we define the following three general prop-
erties.

– Property G1: The specification must be deadlock-free.
– Property G2: In any state, there must be at least one active timer.
– Property G3: In any state, the value of any active timer must be no greater

than its maximum.

The purpose of the property G2 is to avoid infinite time progress waiting for
some events1. The property G3 checks if the system stops timers appropriately
either by timeout or by cancelation. Second, the properties specific to PCEP are
identified from the PCEP specification. In order to facilitate the modeling, we
define a state transition table that describes the behavior of the system for a
given set of state, input, and conditions. Table 1 shows an example.

According to Table 1, if the system is in KeepWait state where the Keepalive
timer is active and remoteOK=0 and it receives a TCP Data PCEP Keepalive ind
message without error, it should send a PCEP Keepalive ind message and move
to OpenWait state. The above information represents an atomic behavior that
the system should follow and it can be considered to be a requirement. In our ex-
periments, 101 basic requirements are identified from a complete state transition
table and then 66 requirements are described as properties in the IF language.
For each requirement, it is considered that the property holds for the formal

1 In the case of PCEP, the property G2 may not hold if the Keepalive timer and the
Deadtimer have zero values.



11

Table 1. State transition table

Input KeepWait
Index Condition Output Next state

TCP Data PCEP Keepalive ind 56

Keepalive
timer active,
No error in

msg,
remoteOK=0

PCEP Keepalive ind OpenWait

specification if the system sends the expected output messages and moves to the
expected next state for the given set of state, input, and conditions.

In order to reduce the problem size during the validation, first, the timer
values and retry numbers are limited. The maximum values of the tcpConnect-
Timer, the pcepOpenWaitTimer, and the pcepKeepWaitTimer are limited to 2
instead of 60 seconds2. The maximum values of the pcepKeepaliveTimer and
the pcepDeadTimer are limited to 2 and 8 respectively as the recommended
value for the pcepDeadTimer is four times the value of the pcepKeepaliveTimer
used by the remote peer. The tcpConnectMaxRetry is limited to 1 instead of
5. Second, we limit the range of parameter values. The values of the Keepalive
and the Deadtimer parameters in an Open message are fixed to have 2 and 8,
respectively. The number of error objects that can be carried within a PCErr
message is limited to 1 and the values of errorType and errorValue parameters
are limited to 1 and from 1 to 6 respectively.

5.2 Validation results

With the limited timer values, retry numbers, and parameter values, the system
with one instance of a child process was completely explored with 410 states and
12010 transitions. When we allowed all possible values for the input parameters
while the timer values and retry numbers were limited, we had extremely large
number of transitions. The system was completely explored with 3095 states and
55355305 transitions. When we used the timer values and retry numbers as given
in the PCEP specification, e.g. 60 seconds for the tcpConnectTimer, while the
parameter values were limited, we could explore the system with 85750 states
and 3945670 transitions. In the case of two instances of a child process with the
limited timer values, retry numbers, and parameter values, the simulator com-
pleted state space exploration with 74476 states and 4294788 transitions. For
most properties, the validation is carried out where the timer values, retry num-
bers, and parameter values are limited. If it is necessary to have other parameter
values, the ranges of those parameters are changed appropriately in the formal
specification. For the property 29, the validation is carried out with two instances
of a child process as it checks if the current PCEP connection is released by the
collision resolution procedure. Table 2 shows the validation results.
2 It is possible to consider that timer values are abstracted such that 0 represents no

time progress, 1 time progress up to 59 seconds, and 2 represents 60 seconds.



12

Table 2. Validation results

Properties # of states # of trans
Time

(hh:mm:ss)
Results

Prop. G1 85514 2855179 12:26:09 Interrupted (No failure)
Prop. G2 1568 54981 6 Validated
Prop. G3 51923 1050744 3:47 Validated
Prop. 18 2516 55929 9 Failed (No success)
Prop. 29 108111 2629793 9:58:28 Interrupted (Success, No failure)
Others < 33500 < 867000 < 2:25 Validated

Among 69 properties (three general and 66 specific to PCEP), 66 properties
were successfully validated where most simulations were terminated within 15
seconds. For two properties (property G1 and property 29), the simulations
were interrupted after around 10 hours because of state explosion problem3.
Although we observed the expected behavior and no failure was found for those
two properties, we cannot say that the validation was successful since we could
not explore all possible state space. We found that the property 18 does not
hold for our formal specification. Although we explored all possible state space,
we could not observe the expected behavior. This was due to the problem that
was found in the original PCEP specification. There exists a case in the PCEP
specification that never happens.

5.3 Remarks

One of the difficulties during the validation was the large size of state space. In
our model, some internal variables, e.g. internal variables for receiving parame-
ter values, are used temporarily. During the validation, we found that a number
of redundant states were generated due to those internal variables. In order to
remove those redundant states, we initialized those internal variables by the end
of each transition. For example, once we check the value of the tcpConnectResult
variable in TCPPending TCP Open cfm decision state as presented in Section
4.2, the variable is initialized as it is not used in other states. As a result, the
numbers of states and transitions explored after exhaustive state space explo-
ration reduced from 30329 states and 941313 transitions to 410 states and 12010
transitions.

In IF observers, internal variable values and the parameter values of messages
can be checked after the execution of each transition. Therefore, if a property
includes checking variable values or parameter values while those values are
initialized after the execution of the transition, e.g. by going back to Idle state, it
is not possible to check the property. The main reason why only 66 requirements
3 In our experiments, it is considered to have the state explosion problem either when

the simulation proceeds very slowly where the memory usage reaches almost its
maximum or when the simulator crashes due to lack of memory.



13

are described as properties while 101 basic requirements are identified is due to
this limitation.

6 Test generation of PCEP

6.1 Testgen-IF

The TestGen-IF generates timed test cases from an IF specification and a set
of test purposes. Partial state space exploration guided by test purposes is car-
ried out, which is called the Hit-or-Jump algorithm [14]. A test purpose is a
set of (ordered) conditions. A condition is a conjunction of a process instance
constraint, state constraints, action constraints, variable constraints, and clock
constraints. A process instant constraint indicates the identifier of a process in-
stance. A state constraint indicates source state or target state of a transition.
Action constraints describe observable actions such as sending or receiving mes-
sages as well as non-observable actions such as informal statements. A variable
constraint gives conditions on variable values and a clock constraint conditions
on either clock values or status of clocks, e.g. active/inactive. The following
shows the test purpose which corresponds to the requirement given in Table 1.

tp56 = {cond1}
cond1 = constraint1 ∧ constraint2 ∧ . . . ∧ constraint7
constraint1 = “process : instance = {PCEPChild}0”
constraint2 = “state : source = KeepWait”
constraint3 = “state : target = OpenWait”
constraint4 = “action : input TCP Data PCEP Keepalive ind(f)”
constraint5 = “action : output PCEP Keepalive ind()”
constraint6 = “variable : remoteOK = false”
constraint7 = “clock : pcepKeepWaitTimer is active”

The state exploration starts from a given state si, which is the initial state
in the beginning, using breadth first search with a given depth limit. Initially, all
conditions in a test purpose are unmarked. If an unmarked condition is satisfied
in a transition during exploration where the target state is sj , which is called
a Hit, the condition is marked, the path from si to sj is stored, the buffer that
stores visited state information is cleared, and then the exploration starts again
from sj . If no unmarked condition is satisfied during the exploration until the
given depth limit, which is called a Jump, one of leaf nodes, e.g. the state s′j is
chosen for the start state, the path from si to s′j is stored, the buffer that stores
visited state information is cleared, and then exploration starts again from s′j .
The state space exploration terminates either when all conditions are marked
or when all state space is explored within the depth limit. Once all conditions
are satisfied during the exploration, i.e. all conditions are marked, the path from
the initial state to the target state of the transition where the last condition is
satisfied becomes a test sequence for the test purpose. A test sequence consists of
observable actions such as input and output messages and delays which represent
time intervals between observable actions.



14

6.2 Test generation and results

As mentioned in Section 5.1, 101 basic requirements are identified from the
PCEP specification. In our experiments, for simplicity, we generate a test case
for each requirement. Among 101 requirements, 98 requirements are described as
test purposes. Three requirements are missing because of the following reasons.
As explained in Section 5.2, there is a requirement that our formal specifica-
tion does not meet (property 18). For the other two requirements, they are not
considered because the atomicity of the behavior cannot be guaranteed in our
description of test purposes since two processes are involved in the behavior.

Similar to the case of validation, the timer values, retry numbers, and pa-
rameter values are limited for most test purposes. If it is necessary to have other
parameter values, the ranges of those parameters are changed appropriately. The
following shows an example test sequence which is generated by the test purpose
given in Section 6.1

?TCP_Open_ind{1,ConnectSuccess} !TCP_Open_resp{ConnectSuccess}

!TCP_Data_PCEP_Open_req{{{2,8}}}

?TCP_Data_PCEP_Open_ind{f,{{2,8}}} !PCEP_Open_ind{{{2,8}}}

?PCEP_Error_req{{1,{{1,4},}}} !TCP_Data_PCEP_Error_req{{1,{{1,4},}}}

?TCP_Data_PCEP_Keepalive_ind{f} !PCEP_Keepalive_ind{}

For all 98 test purposes, the test sequences are generated successfully. After
deleting the test sequences which are the prefix of another one, we finally obtain
90 test sequences where the total number of test inputs is 353. The generated
test sequences will be used for testing PCEP implementation developed by one
of the partners of the CARRIOCAS project.

7 Conclusions

In this paper, we presented the modeling, validation, and verification of PCEP
which is a protocol for constraint-based path computation defined by IETF.
The protocol part of PCEP is described in the IF language. A number of ba-
sic requirements are identified from the PCEP specification and then described
as properties in the IF language. Based on these properties, the validation of
the formal specification is carried out by using the IF toolset. From the basic
requirements, a number of test purposes are defined and test cases are gener-
ated by using the TestGen-IF. The obtained test cases will be used for testing
implementations developed by one of the partners of the CARRIOCAS project.

Our experiments showed very promising results concerning the use of formal
methods for modeling, validation, and verification. A number of errors and am-
biguities were found from the original specification including a wrong sentence
that misleads the behavior of the protocol, a non-executable transition (related
to the property 18 as explained in Section 5.2), and unclear descriptions such
as when a timer should be started. It should be noted that most of these errors
were found during the modeling phase. Therefore, we can conclude that if we



15

describe specifications using formal methods, we can obtain higher quality of
specifications, i.e. with less errors and ambiguities even before validation of the
formal specifications.

References

1. Software Engineering Institute/Carnegie Mellon: Capability Maturity Model Inte-
gration (CMMISM) for Software Engineering Version 1.1 (2002)

2. Bozga, M., Fernandez, J.C., Ghirvu, L., Jard, C., Jron, T., Kerbrat, A., Morel, P.,
Mounier, L.: Verification and test generation for the SSCOP protocol. Journal of
Science of Computer Programming 36 (2000) 27–52

3. Jia, G., Graf, S.: Verification experiments on the MASCARA protocol. In: Pro-
ceedings of the 8th International SPIN Workshop on Model Checking of Software.
Volume 2057 of LNCS., Springer-Verlag (2001) 123–142

4. Bozga, M., Graf, S., Mounier, L.: IF-2.0: A validation environment for component-
based real-time systems. In: Proceedings of CAV’02, London, UK, Springer-Verlag
(2002) 343–348

5. Hessel, A., Pettersson, P.: Model-based testing of a WAP gateway: An industrial
case-study. In: Proceedings of 11th International Workshop on Formal Methods
for Industrial Critical Systems. Volume 4346 of LNCS. Springer-Verlag (2007)
116–131

6. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer 1 (1997) 134–152

7. Audouin, O., Cavalli, A., Chiosi, A., Leclerc, O., Mouton, C., Oksman, J., Pasin,
M., Rodrigues, D., Thual, L.: CARRIOCAS project: an experimental high bit rate
optical network tailored for computing and data intensive distributed applications.
In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.
(2007)

8. Vasseur, J.P., Le Roux, J.L.: Path Computation Element (PCE) Communica-
tion Protocol (Nov. 2008) IETF Internet draft, draft-ietf-pce-pcep-19.txt, work in
progress.

9. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: SFM-04.
Volume 3185 of LNCS. Springer-Verlag (2004) 237–267

10. Cavalli, A.R., Montes De Oca, E., Mallouli, W., Lallali, M.: Two complemen-
tary tools for the formal testing of distributed systems with time constraints. In:
Proceedings of the 12th IEEE/ACM International Symposium on Distributed Sim-
ulation and Real-Time Applications, Vancouver, Canada (2008) 315–318

11. Postel, J.: Transmission Control Protocol. RFC 793 (Standard) (1981) Updated
by RFCs 1122, 3168.

12. Fernandez, J.C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP - A protocol validation and verification toolbox. In: CAV ’96: Proceed-
ings of the 8th International Conference on Computer Aided Verification, London,
UK, Springer-Verlag (1996) 437–440

13. Fernandez, J.C., Jard, C., Jéron, T., Viho, C.: Using on-the-fly verification tech-
niques for the generation of test suites. In: CAV ’96: Proceedings of the 8th Interna-
tional Conference on Computer Aided Verification, London, UK, Springer-Verlag
(1996) 348–359

14. Cavalli, A.R., Lee, D., Rinderknecht, C., Zäıdi, F.: Hit-or-Jump: An algorithm for
embedded testing with applications to in services. In: Proceedings of FORTE XII
/ PSTV XIX ’99, Deventer, The Netherlands, Kluwer, B.V. (1999) 41–56


