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Abstract. This work is motivated by and arose from the parametric
verification of communication protocols over unbounded channels, where
the channel capacity is the parameter. Verification required the use of
finite state automata (FSA) reduction, including ε-removal, for a specific
infinite family of FSA. This paper generalises this work by introducing
Recursive Parametric FSA (RP-FSA), an infinite family of FSA that
can be represented recursively in a single parameter. Further, the pa-
per states and proves a necessary and sufficient condition regarding the
transformation of a RP-FSA to its language equivalent ε-removed family
of FSA that is also a RP-FSA in the same parameter. This condition
also guarantees a further structural property regarding the RP-FSA and
its ε-removed family.
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1 Introduction

The Capability Exchange Signalling (CES) protocol [9] is a multimedia control
protocol that allows a communication party to inform its peer of its multimedia
(e.g. audio and/or video) transmission and reception capabilities. To verify the
CES protocol against its service specification, we need to obtain the CES service
language: the set of allowable sequences of CES service primitives (i.e. user
observable events). Our approach [4] is to extract service languages from state
spaces of Coloured Petri Net (CPN) [10] models of service specifications by using
automata reduction [2]. The CES service CPN has transitions that model CES
service primitives and a transition that models message loss, an internal event
that is not to be included in the CES service language (but is needed to capture
sequences of primitives). We derive a Finite State Automaton (FSA) from the
state space [4] by designating initial and final states and mapping the CPN
transition modelling message loss to an ε-transition. Then we use FSA reduction
to remove ε-transitions and non-determinism as steps towards proving language
equivalence or inclusion (with respect to the protocol).

Our CPN model [11] of the CES service is parameterised by a positive integer
(channel capacity), so it has an infinite family of state spaces. To verify the CES
? This work was partially supported by ARC Discovery Grant, DP0559927.



protocol against its service for any value of the parameter, we firstly obtain
symbolic representations for the state spaces and the associated FSAs. In [11]
we exploit regularities in the state spaces to obtain a recursive representation.
We then derive an infinite family of FSAs from the state spaces. In [12, 14] we
proved that the language equivalent ε-removed (LE-ER) family of automata can
also be represented recursively. Furthermore, after removing non-determinism,
we obtain a language equivalent recursively represented family of automata that
represents the CES service language for arbitrary capacity [13]. These results
lead us to the following generalisation: if a parametric FSA can be represented
recursively, under what conditions can its LE-ER (or determinised) family also
be represented recursively? In this paper, we determine a sufficient condition for
a recursively represented parametric FSA to retain its recursive representation
under ε-removal. We also determine a necessary condition to satisfy another
structural property regarding these families of automata.

We firstly define a (first order) Recursive Parametric FSA (RP-FSA) in terms
of a system parameter l ∈ N+ (the positive integers). Intuitively, FSAl com-
prises a base component, FSAl−1, plus another component, ADDl. We then
consider the LE-ER family derived from a RP-FSA, which we denote FSAER

l .
We identify and prove the necessary and sufficient condition for a) FSAER

l to be
a RP-FSA in l and b) the base component of FSAER

l to be identical to FSAER

l−1.
The result contributes to the development of automata theory which we believe
will be applicable to the verification of a class of parametric systems, as already
demonstrated for the CES service [12–14].

There has been work on Recursive State Machines [1] and Unrestricted Hi-
erarchical State Machines [3] where nodes correspond to ordinary states or to
recursive invocations of other state machines. In contrast, we develop recursive
representations of an infinite family of FSAs in an integer parameter and ex-
amine its related LE-ER family. We are not aware of any other work in this
area.

The rest of the paper is organised as follows. Section 2 defines a RP-FSA.
A theorem regarding transforming a RP-FSA to its LE-ER family is given in
Section 3 with its proof in Section 4. Section 5 summarises the paper and suggests
future work.

2 Definition of a Recursive Parametric FSA

Our work on the CES service has motivated us to define an infinite family of
FSAs over a parameter l ∈ N+. Members of the family are related in that the
FSA for l includes the FSA for (l−1), and the alphabet and initial state are the
same for all members of the family.
Definition 1 A Recursive Parametric FSA is an infinite family of FSAs in a
system parameter l ∈ N+, where its lth member, FSAl = (Vl, Σ,Al, v0, Fl), is
given by
– Vl is a finite set of states or nodes that depends on l,
– Σ is a finite set, known as the alphabet,



– Al⊆Vl×(Σ∪{ε})×Vl, is the transition relation, where ε is the empty string,
– v0 ∈ Vl is the initial state, and every state in Vl is accessible from v0,
– Fl is the set of final states.

Given FSA1 = (V1, Σ,A1, v0, F1), the family, FSAl (for l ≥ 2) is obtained
recursively as follows.

Vl = Vl−1 ∪ V addl (1)
Al = Al−1 ∪Aaddl (2)

Fl−1 ⊆ Fl (3)
where

Vl−1 ∩ V addl = ∅ (4)
Aaddl ⊆ (Vl−1 × (Σ ∪ {ε})× V addl ) ∪ (V addl × (Σ ∪ {ε})× Vl) (5)

An example of a RP-FSA is the parametric FSA, FSACESl
, derived from

the state space of our parameterised CES service CPN [12, 14]. Fig. 1 shows
FSACES3 . The subgraph that ignores the shaded nodes (13 to 20) and their as-
sociated arcs is FSACES1 . It has 12 nodes and 33 arcs, including 4 dashed arcs (ε-
transitions). The initial state and the only final state of FSACES1 are both node
1. The alphabet, Σ = {Treq, T ind, Tres, T cnf,Rreq,Rind,RindU,RindP}, is
the set of (abbreviated) names of the CES service primitives. From Fig. 1, by
ignoring the darkly shaded nodes (17 to 20) and their associated arcs, we obtain
a subgraph that is FSACES2 . We see that FSACES2 can be constructed from
FSACES1 by adding the 4 grey nodes (13 to 16) and the 16 grey arcs. By denot-
ing vadd12 = 13, vadd22 = 14, vadd32 = 15 and vadd42 = 16, and vadd11 = 2, vadd21 =
10, vadd31 = 4 and vadd41 = 12, the 16 additional arcs are given in Table 1 for
l = 2. When looking at the whole graph in Fig. 1, FSACES3 can be constructed
from FSACES2 by adding 4 nodes (17 to 20) and 16 arcs (Table 1 for l = 3),
when denoting vadd13 = 17, vadd23 = 18, vadd33 = 19 and vadd43 = 20.

It has been shown in [12, 14] that, for l ≥ 2, FSACESl
can be recursively

constructed in the following way:
Vl = Vl−1 ∪ V addl

Al = Al−1 ∪Aaddl

Fl = Fl−1 = {v0} = {1}
where

V addl = {vaddi

l | i ∈ {1, . . . , 4}}, Vl−1 ∩ V addl = ∅
and Aaddl is given in Table 1, where vadd11 = 2, vadd21 = 10, vadd31 = 4, vadd41 = 12
(Fig. 1). From Definition 1, the family FSACESl

(l ∈ N+) is a RP-FSA.

3 RP-FSA and ε-Removal

In this section, we propose the necessary and sufficient condition for the LE-ER
automata family derived from FSAl (l ∈ N+) to be a RP-FSA in l, where its
base component is the LE-ER automaton of FSAl−1. We firstly provide some
definitions related to FSAl, where l ≥ 2.
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Fig. 1. FSACES3

Table 1. Aadd
l (l ≥ 2)

Name Arc Name Arc Name Arc

aadd1
l (vadd3

l−1 , T req, vadd1
l ) aadd2

l (vadd4
l−1 , T req, vadd2

l ) aadd3
l (vadd1

l , RindP, vadd3
l )

aadd4
l (vadd1

l , T ind, vadd2
l−1 ) aadd5

l (vadd1
l , ε, vadd1

l−1 ) aadd6
l (vadd2

l , RindP, vadd4
l )

aadd7
l (vadd2

l , ε, vadd2
l−1 ) aadd8

l (vadd2
l , T res, vadd1

l ) aadd9
l (vadd2

l , Rreq, vadd1
l )

aadd10
l (vadd2

l , Rind, vadd1
l ) aadd11

l (vadd3
l , T ind, vadd4

l−1 ) aadd12
l (vadd3

l , ε, vadd3
l−1 )

aadd13
l (vadd4

l , T res, vadd3
l ) aadd14

l (vadd4
l , Rreq, vadd3

l ) aadd15
l (vadd4

l , Rind, vadd3
l )

aadd16
l (vadd4

l , ε, vadd4
l−1 )
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Fig. 2. An illustration of the definitions related to a RP-FSA

Definition 2 A node v ∈ Vl−1 is an entry node to FSAl−1, iff ∃ (v′, t, v) ∈ Al
where v′ ∈ V addl . The set of entry nodes of FSAl−1 is denoted by V EN

l−1 .

Definition 3 A node v ∈ Vl−1 is an exit node from FSAl−1, iff ∃ (v, t, v′) ∈ Al
where v′ ∈ V addl . The set of exit nodes of FSAl−1 is denoted by V EX

l−1 .

Definition 4 The base component of FSAl is FSAl−1, and the added com-
ponent of FSAl is a labelled directed graph, ADDl = (V addl ∪V EN

l−1∪V EX

l−1 , A
add
l ).

Definition 5 A node of FSAl is a candidate node (denoted vC), iff ∃ (v′, t, vC)
∈ Al and t ∈ Σ. We denote the set of candidate nodes of FSAl, V Cl , which com-
prises V Cl−1 = {vC | (v, t, vC) ∈ Al−1, t ∈ Σ} and V addCl = V Cl \ V Cl−1 = {vC |
(v, t, vC) ∈ Aaddl and (v′, t′, vC) 6∈ Al−1, t, t

′ ∈ Σ}.

Definition 6 A finite sequence of transitions of FSAl that starts at node vs
and ends at node ve is a candidate sequence (denoted sC(vs,ve,t)), iff for n ≥ 1

sC(vs,ve,t) = vs
ε→ v1

ε→ . . .
ε→ vn

t→ ve (6)

where t ∈ Σ. The set of candidate sequences of FSAl is denoted by SCl .

Definition 7 A finite sequence of transitions of FSAl that starts at node vs
and ends at node ve is a return sequence (denoted sR(vs,ve,t)), iff for n ≥ 1,
sR(vs,ve,t) ∈ S

C
l , vs, ve ∈ Vl−1 and ∃ vi ∈ {v1, . . . , vn} such that vi ∈ V addl . The

set of return sequences of FSAl is denoted by SRl .

Definition 8 An empty cycle of a FSA is a sequence of ε-transitions that
starts and ends in the same state.

Fig. 2 illustrates the definitions, where dashed arcs show ε-transitions. The
base component and added components of FSAl are the parts above and under
the curly grey line respectively. v4 and v11 are entry nodes, v2 and v7 are exit
nodes, and they are drawn at the boundary of the base and added components.
v1, v5, v9 and v12 are candidate nodes. s1 = v1

ε→ v2
ε→ v3

ε→ v4
t1→ v5, s2 = v1

ε→
v2

t1→v5, s3 = v6
ε→v7

ε→v8
t2→v9, s4 =v10

ε→v11
t3→v12, are candidate sequences, and

s1 is a return sequence while the other three are not.



Another example is FSACESl
. In Table 1, vadd3l−1 and vadd4l−1 are exit nodes

because, from each of them, there is a transition to a node in V addl , i.e. aadd1l and
aadd2l . vadd1l−1 , vadd2l−1 , vadd3l−1 and vadd4l−1 are entry nodes because there are transitions
that start at nodes of V addl and end at each of them (i.e. transitions aadd4l , aadd5l ,
aadd7l , aadd11l , aadd12l , and aadd16l ). FSACESl

contains candidate sequences, but
it does not have return sequences because a return sequence requires at least
one ε-transition that starts at a node in Vl−1 and ends at a node in V addl . From
Table 1 and Fig. 1 (FSACES1 only), FSACESl

does not have such ε-transitions.
Now we formalise the necessary and sufficient condition in the theorem below.

Theorem 1 For l ∈ N+, let FSAl = (Vl, Σ,Al, v0, Fl) be a RP-FSA without
empty cycles, and FSAER

l = (V ER

l , Σ,AER

l , v0, F
ER

l ) its family of LE-ER au-
tomata. FSAER

l is a RP-FSA in l, where, for l≥2, its base component is FSAER

l−1

iff for vs, ve ∈ V Cl−1, sR(vs,ve,t) ∈ S
R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1).

The theorem states that when the presence of a return sequence (sR(vs,ve,t))
between two candidate nodes in FSAl, implies the presence of either a corre-
sponding candidate sequence (sC(vs,ve,t)) between the same candidate nodes in
the base component of FSAl (i.e. FSAl−1) or a direct transition between them
((vs, t, ve) ∈ Al−1), then the LE-ER automaton of FSAl is also a RP-FSA in l,
with its base component being the LE-ER automaton of FSAl−1. The converse
also holds.

Referring to Fig. 2 and assuming that s1 is the only return sequence, this RP-
FSA satisfies the condition as a candidate sequence s2 that belongs to FSAl−1

is between v1 and v5 and the last transitions of s2 and s1 are both t1. If s2 did
not exist (assuming no other candidate sequences from v1 to v5 with t1 as their
last transition and that (v1, t1, v5) does not exist), the FSA would not satisfy
the condition. As mentioned earlier, FSACESl

does not have return sequences,
so the condition is satisfied, and its LE-ER FSA can be represented recursively
based on the LE-ER FSA of FSACESl−1 , a result that we proved in [12, 14].

4 Proving the Necessary and Sufficient Condition

4.1 Preliminaries

We can remove ε-transitions by constructing ε-closures [15]. The ε-closure of
a state or a set of states is the set of all states that are accessible by only
ε-transitions from that state or set of states. Our goal is to determine the condi-
tion under which the LE-ER automaton of FSAl is also a RP-FSA, where the
base component of the LE-ER automaton is the LE-ER automaton of the base
component of FSAl. To derive the condition we remove ε-transitions in the base
component (FSAl−1) and the added component (ADDl) separately, so that it is
easier to identify if the LE-ER automaton of FSAl−1 is included in the LE-ER
automaton of FSAl. When an ε-closure includes ε-transitions of FSAl−1 and
ADDl, the above approach removes all the ε-transitions in an ε-closure at one
time, and is thus not appropriate for our procedure.
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Fig. 3. Removing an ε-transition using Algorithm 1

Barrett et al [2] present an incremental approach. To transform a FSA to its
LE-ER automaton, we firstly remove empty cycles (Definition 8), then remove all
the remaining ε-transitions one by one. The algorithm for removing ε-transitions
from a FSA without empty cycles is formalised as follows, based on [2].
Algorithm 1 For FSA = (V,Σ,A, v0, F ) without empty cycles, its LE-ER au-
tomaton, FSAER = (V ER, Σ,AER, v0, FER) is created as follows:
1. Initially, let V ER = V , AER = A, FER = F .
2. While AERε = {(v, ε, v′) | (v, ε, v′) ∈ AER} 6= ∅, do:

(a) choose any (v, ε, v′) ∈ AERε
(b) update AER to (AER \ {(v, ε, v′)}) ∪ {(v, t, v′′) | (v′, t, v′′) ∈ AER, t ∈

(Σ ∪ {ε})}
(c) if v′ ∈ FER, update FER to FER ∪ {v}.

3. Update V ER to V ER \ {v | @s = v0
t0→ . . . vn

tn→ v, n ≥ 0, ti ∈ Σ, 0 ≤ i ≤ n}
4. Update AER to AER \ {(v, t, v′) | v /∈ V ER or v′ /∈ V ER}

As shown in Fig. 3, when using the algorithm to remove (v, ε, v′), if (v′, t, v′′) ∈
AER, (v, t, v′′) is included in AER (step 2(b)). Furthermore, if v′ is a final state
of FSA, v is included in FER (step 2(c)). After all the ε-transitions are removed
by following step 2, some nodes of V ER may become inaccessible from the initial
state v0, so in steps 3 and 4, we exclude inaccessible states and their associated
transitions from V ER and AER respectively.

We now state three lemmas to be used in the proof of the theorem. Lemma
1 gives the result of removing a sequence of ε-transitions. Lemma 2 states the
necessary and sufficient condition for adding a non-ε-transition when removing ε-
transitions from FSAl. Lemma 3 presents the necessary and sufficient condition
for a node of FSAl to remain accessible after all ε-transitions are removed.

Lemma 1 Let FSA = (V,Σ,A, v0, F ) be an FSA that includes ε-transitions.
Consider a transition sequence s = vs

ε→ v1
ε→ . . .

ε→ vn
t→ ve where n ≥ 1 and

t ∈ Σ. After the n ε-transitions are removed from this sequence using steps 1
and 2 of Algorithm 1, transitions {(v, t, ve) | v ∈ {vs, v1, . . . , vn}} are in AER.

Proof Referring to Fig. 4, we firstly remove the second last transition in s,
(vn−1, ε, vn), then the preceding ε-transition, and keep moving backwards until
the first ε-transition, (vs, ε, v1) is removed.

On removing (vn−1, ε, vn), arc (vn−1, t, ve) is added according to Algorithm
1. When the third last transition (vn−2, ε, vn−1) (if n ≥ 3) is removed, because
(vn−1, t, ve) has just been added, (vn−2, t, ve) has to be added. In general, when
removing any ε-transition (vi, ε, vi+1) (1 ≤ i < n − 1) in this way, because
(vi+1, t, ve) exists, (vi, t, ve) has to be added. This process is continued until
(vs, ε, v1) is removed while (vs, t, ve) is added because (v1, t, ve) has been added
previously or was the last in the sequence if n = 1.

So after the n ε-transitions are removed, the set of arcs {(v, t, ve) | v ∈
{vs, v1, . . . , vn}}, n ≥ 1 are added to AER. Hence, Lemma 1 is proved. ut
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Lemma 2 For t ∈ Σ and (vs, t, ve) /∈ Al, when applying Algorithm 1 to FSAl,
after steps 1 and 2 are completed, a non-ε-transition (vs, t, ve) is in AER

l iff
sC(vs,ve,t) ∈ S

C
l .

Proof The sufficient condition follows immediately from Lemma 1 as
(vs, t, ve) is one of the arcs added when removing ε-transitions from sC(vs,ve,t).

The necessary condition states that if transition (vs, t, ve) is added then there
must be a candidate sequence sC(vs,ve,t) (and (vs, t, ve) /∈ Al). To show this holds,
we prove its contrapositive, i.e. if there does not exist sC(vs,ve,t) ∈ S

C
l , (vs, t, ve)

can not be added when removing ε-transitions from FSAl.
From Algorithm 1 if there does not exist a transition sequence from vs to

ve at all, no new arc (vs, t, ve) can be added. So we only need to show that,
(vs, t, ve) still can not be added when none of sequences from vs to ve are
candidate sequences, i.e. any sequence from vs to ve is of the form s′ = vs

t1→
v1

t2→ . . .
tn−1→ vn

t→ ve, where n ≥ 1, t ∈ Σ, and ∃t′ ∈ {t1, . . . , tn−1} such that
t′ 6= ε, a sequence that can only be made up of a chain of non-ε-transitions, or
of both ε-transitions and non-ε-transitions.

In the first case, s′ contains only non-ε-transitions, no ε-transitions to be
removed from s′, hence no arcs can be added. For the second case, assume that
(vs, t′, v1) is a non-ε-transition. According to Algorithm 1, when removing any
of the ε-transitions between v1 and vn, it is not possible to add an arc that starts
from vs because vs is not the source node of an ε-transition. Now assume that
(vm, t′, vm+1) (1 ≤ m ≤ n − 1) is the first non-ε-transition we encounter in the
chain (i.e. all preceding transitions are ε-transitions), then from Lemma 1, arcs
{(v, t′, vm+1) | v ∈ {vs, v1, . . . , vm−1}} will be added when all the ε-transitions
from vs to vm are removed. However, these added arcs are not ε-transitions
because t′ 6= ε. When removing any ε-transitions between vm+1 and vn, again
according to Algorithm 1, it is not possible to add an arc starting from vs.
Therefore, for the transition sequence s′ described above, arc (vs, t, ve) cannot
be added.

Since we have used s′ to represent any of the possible transition sequences
existing from vs to ve, we have proved that if all of the transition sequences
from vs to ve are not candidate sequences, then (vs, t, ve) can not be added. So
the necessary condition is proved as well.

Therefore Lemma 2 holds. ut



Lemma 3 When applying Algorithm 1 to FSAl, after steps 1 and 2 are com-
pleted, a state v (v 6= v0) remains accessible iff v ∈ V Cl (a candidate node).

Proof Because all the states of FSAl are accessible, there must exist at least
one transition sequence from v0 to a state v. It can be seen that a transition
sequence from v0 to a predecessor of v, v′, may be of one of the 3 types: Type 1:
a sequence that comprises ε-transitions only; Type 2: a sequence that comprises
non-ε-transitions only; Type 3: a sequence that comprises both ε and non-ε-
transitions.

Fig. 5. Example transition sequences from v0 to a predecessor (v′) of node v

Fig. 5 shows an example for each of the 3 types of transition sequences from
v0 to v′. In this figure, an ε-transition is drawn as a dashed arc and a non-ε-
transition is shown as a solid arc. The sequence on the top that comprises dashed
arcs only is a type 1 sequence. The sequence in the middle that has solid arcs
only is a type 2 sequence, and the sequence at the bottom that has two solid
arcs and some dashed arcs is of type 3.

In the following we prove the sufficient condition first, i.e. if there exists
(v′, t, v) and t ∈ Σ, v is still accessible after ε-removal.

With a type 1 sequence, from Lemma 1, on the removal of ε-transitions the
transition (v0, t, v) is added, making v directly accessible.

For a type 2 sequence no ε-transitions are removed and the sequence remains
ensuring v is accessible.

For a type 3 sequence, consider the example sequence shown at the bottom
of Fig. 5. It has two non-ε-transitions (vi, ti, vi+1) and (vj , tj , vj+1), and ti 6= ε,
tj 6= ε. When removing all the ε-transitions before vi in the sequence, according
to Lemma 1, from each node in the sequence before vi, an arc labelled with ti and
pointing to vi+1 is added. So we have (v0, ti, vi+1) in AER

l . When ε-transitions
between vi+1 and vj are removed, similarly from each node in the sequence
from vi+1 to vj−1 an arc labelled with tj and pointing to vj+1 is added. So we
have (vi+1, tj , vj+1) in AER

l . Finally when the ε-transitions between vj+1 and v′

are removed, from each node of this part of the sequence (including vj+1 but
excluding v′), a non-ε-transition that points to v and is labelled with t is added,
including (vj+1, t, v). Therefore, from v0, via three non-ε-transitions (v0, ti, vi+1),
(vi+1, tj , vj+1) and (vj+1, t, v), we can reach v. So v must be accessible after all
of the ε-transitions of FSAl are removed.

The necessary condition states if v remains accessible after ε-removal, then
there must exist (v′, t, v) ∈ Al and t ∈ Σ. To show that this statement is correct,
we prove its contrapositive, that is, if there does not exist (v′, t, v) ∈ Al where
t ∈ Σ, v is inaccessible after ε-removal.



As v is accessible before removing ε-removal, there must be a set of arcs
A2v
l ⊆ Al such that A2v

l = {a | a = (v′, t, v) ∈ Al}. Because @(v′, t, v) ∈ Al and
t ∈ Σ, all the arcs in A2v

l are ε-transitions. Furthermore, as no empty cycles
are allowed in FSAl, so we have A2v

l = {a | a = (v′, ε, v) ∈ Al, v′ 6= v}. Then if
applying Algorithm 1 to FSAl, transitions {(v′, t′, v′′) | ∃(v, t′, v′′) ∈ Al, v′′ 6= v′}
are added, and none of the added arcs pointing to v. Meanwhile, all the arcs of
A2v
l are removed. So no arcs will point to v after ε-removal, i.e. v has become

inaccessible. The necessary condition has been proved.
Therefore Lemma 3 holds. ut
From Lemma 2, when removing ε-transitions, transitions are added only be-

tween starting and ending nodes of candidate sequences (Definition 6). So such
sequences are candidates for adding new transitions, that is why we call them
candidate sequences. From Lemma 3 the destination node of a non-ε-transition is
a candidate to be kept in the LE-ER automaton of FSAl as it remains accessible
after ε-removal, so we call such a node a candidate node (Definition 5).

4.2 Proving the Sufficient Condition

Lemma 4 For l ∈ N+, let FSAl = (Vl, Σ,Al, v0l
, Fl) be a RP-FSA without

empty cycles, and FSAER

l = (V ER

l , Σ,AER

l , v0, F
ER

l ) its LE-ER automata family.
If for vs, ve ∈ V Cl−1, sR(vs,ve,t) ∈ S

R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1),

then for l ≥ 2,
V ER

l = V ER

l−1 ∪ (V ER

l )add (7)

AER

l = AER

l−1 ∪ (AER

l )add (8)
FER

l−1 ⊆ FER

l (9)
where

V ER

l−1 ∩ (V ER

l )add = ∅ (10)

(AER

l )add ⊆ (V ER

l−1 ×Σ × (V ER

l )add) ∪ ((V ER

l )add ×Σ × V ER

l ) (11)

Proof The proof is structured into 3 lemmas concerning the states of FSAER

l

(Lemma 5), its arcs (Lemma 6) and its final states (Lemma 7).

Lemma 5 Let FSAl and FSAER

l be the automata referred to in Lemma 4, then
for l ≥ 2, the set of states of FSAER

l is given by Equations (7) and (10).

Proof From step 3 of Algorithm 1, V ER

l comprises states of FSAl that remain
accessible after ε-removal. Based on Lemma 3, a state of FSAl is accessible after
ε-removal iff it is a candidate node, i.e. V ER

l = V Cl , for l ∈ N+. Thus we have
V ER

l−1 =V Cl−1. From Definition 5, V Cl = V Cl−1 ∪ V addCl and V Cl−1 ∩ V addCl = ∅. Let
(V ER

l )add = V addCl , then V ER

l = V ER

l−1 ∪ (V ER

l )add and V ER

l−1 ∩ (V ER

l )add = ∅. So
Equations (7) and (10) always hold, thus Lemma 5 is proved. ut

Lemma 6 Let FSAl and FSAER

l be the automata referred to in Lemma 4. If
for vs, ve ∈ V Cl−1, sR(vs,ve,t) ∈ S

R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1), then

for l ≥ 2, the set of arcs of FSAER

l is given by (8) and (11).



Proof As AER

l is obtained from Al by removing and adding transitions, we
have

AER

l = (Al ∪AAl ) \ADl (12)
where AAl represents the set of non-ε-transitions added and ADl the set of tran-
sitions that are removed. From Algorithm 1, the set of transitions removed from
Al comprises ε-transitions of FSAl and the transitions whose source and/or des-
tination nodes become inaccessible. From Lemma 3, the set of inaccessible states
is (Vl \ V Cl ). Therefore we have,

ADl = {(v, ε, v′) ∈ Al}
∪{(v, t, v′) ∈ Al | t ∈ Σ, v ∈ (Vl \ V Cl ) or v′ ∈ (Vl \ V Cl )} (13)

Note that if the source and/or destination nodes of a transition added in step
2 become inaccessible, this transition is removed in step 4. However, we do
not include these transitions in ADl as we use AAl to only represent the non-
ε-transitions that are added between candidate nodes (which remain accessible
after ε-removal).

Because Al = Al−1 ∪ Aaddl (Equation (2)), ADl can be represented as ADl =
ADl−1 ∪ (Aaddl )D, where

ADl−1 = {(v, ε, v′) ∈ Al−1}
∪{(v, t, v′) ∈ Al−1 | t ∈ Σ, v ∈ (Vl−1 \ V Cl−1) or v′ ∈ (Vl−1 \ V Cl−1)}

(Aaddl )D = {(v, ε, v′) ∈ Aaddl }
∪{(v, t, v′) ∈ Aaddl | t ∈ Σ, v ∈ (Vl \ V Cl ) or v′ ∈ (Vl \ V Cl )} (14)

From Definition 5, V Cl−1 comprises all the states in Vl−1 that remain accessible
via states in Vl−1, i.e. (Vl−1\V Cl−1) is the set of states of Vl−1 that are inaccessible
when only considering Vl−1. So ADl−1 comprises all the transitions removed from
Al−1 when transforming FSAl−1 to FSAER

l−1 by itself. So we can revise Equation
(12) to:

AER

l = (Al−1 \ADl−1) ∪ (Aaddl \ (Aaddl )D) ∪AAl (15)
We now look at the details of AAl . From Lemma 2, a non-ε-transition is added

between vs and ve iff there is sC(vs,ve,t) ∈ S
C
l . So we have:

AAl = {(vs, t, ve) | vs, ve ∈ V Cl , t ∈ Σ and sC(vs,ve,t) ∈ S
C
l } (16)

As V Cl = V Cl−1 ∪ V addCl , there are four cases for the location of the starting
and ending nodes of sC(vs,ve,t). They are case 1: vs, ve ∈ V Cl−1; case 2: vs ∈ V Cl−1,
ve ∈ V addCl ; case 3: vs ∈ V addCl , ve ∈ V Cl−1; and case 4: vs, ve ∈ V addCl .

We use AA1
l to represent all the transitions in AAl that are added based on

case 1 candidate sequences, and AA234
l for all the transitions that are added

based on cases 2, 3 and 4. So AAl = AA1
l ∪AA234

l , where

AA1
l = {(vs, t, ve) ∈ AAl | vs, ve ∈ V Cl−1} (17)

AA234
l = {(vs, t, ve) ∈ AAl | vs ∈ V addCl or ve ∈ V addCl } (18)

We have proved V ER

l =V ER

l−1∪(V ER

l )add, with V ER

l−1 =V Cl−1, (V ER

l )add=V addCl . So

AA234
l ⊆ (V ER

l−1 ×Σ × (V ER

l )add) ∪ ((V ER

l )add ×Σ × V ER

l ) (19)
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Fig. 6. An illustration of Case 1 sequences

That is, a transition in AA234
l is in (AER

l )add (see (11)).
The candidate sequence, based on which a transition in AA1

l is added, can
belong to FSAl−1, denoted case 1a (see the example sequence from v1 to v5 in
Fig. 6(a)), or be a return sequence. When it is a return sequence, sR(vs,ve,t), there
are two cases. In the first case (case 1b) there is also either a direct transition
(vs, t, ve) ∈ Al−1 or a candidate sequence, sC(vs,ve,t) that belongs to FSAl−1. Fig.

6(b) provides an example where s1 = v1
ε→ v6

ε→ v7
ε→ v8

ε→ v9
t1→ v4 is a return

sequence, and s2 =v1
ε→v2

ε→v3
t1→v4 belongs to FSAl−1. s1 and s2 have the same

starting and ending nodes and their last transitions are both labelled by t1. In
the second case (case 1c), there is neither a direct transition (vs, t, ve) ∈ Al−1

nor a candidate sequence, sC(vs,ve,t) that belongs to FSAl−1 (sC(vs,ve,t) 6∈ S
C
l−1).

Fig. 6(c) illustrates case 1c, where s1 = v1
ε→ v2

ε→ v3
ε→ v4

ε→ v5
t1→ v6 and

s2 = v1
ε→ v2

ε→ v3
ε→ v8

t3→ v9 are return sequences. From v1 to v6 there is no
direct transition nor a candidate sequence of FSAl−1. From v1 to v9, there is
no direct transition and only one candidate sequence in FSAl−1 but its last
transition is labelled by t2, rather than t3, so it is not a corresponding candidate
sequence.

In case 1a, (vs, t, ve) is added and must be in AER

l−1, because when using
Algorithm 1 to transform FSAl−1 to FSAER

l−1 (by itself), (vs, t, ve) is included
in AER

l−1, from Lemma 1. For case 1b, if (vs, t, ve) ∈ Al−1, then Algorithm 1 will
not remove it (as t ∈ Σ and from Lemma 3) so it must be in AER

l−1. Alternatively, if
sC(vs,ve,t) ∈ S

C
l−1, then by Lemma 2, (vs, ve, t) ∈ AER

l−1. Hence the return sequences
from vs and ve only add transitions that are already in AER

l−1 and therefore have
no effect. So far the transitions added in cases 1a and 1b are all in AER

l−1 and the
transitions added in cases 2 to 4 are in (AER

l )add.
For case 1c, since (vs, t, ve) 6∈ Al−1 it will only be included in AER

l−1 if
sC(vs,ve,t) ∈ SCl−1 from Lemma 2. Since there is no such candidate sequence,
(vs, t, ve) is not in AER

l−1. For example, referring to Fig. 6(c), (v1, t3, v9) is added
when using Algorithm 1 on FSAl, but it is not in AER

l−1 because, when remov-
ing ε-transitions from FSAl−1, sC(v1,v9,t3) is not in SCl−1 (Lemma 2). Similarly,



(v1, t1, v6) is added when transforming FSAl based on Lemma 2, but it is also
not in AER

l−1 as sC(v1,v6,t1) is not in SCl−1. The added transition (vs, t, ve) is not
in (AER

l )add either because a transition of (AER

l )add must have its source and/or
destination node in (V ER

l )add (see (11)). Thus if we exclude case 1c, so that for
vs, ve ∈ V Cl−1, sR(vs,ve,t) ∈ S

R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1), then the

base component of the LE-ER FSAl will be FSAER

l−1 because its set of tran-
sitions will be AER

l−1 (rather than a superset). This is the condition stated in
Lemma 4 (and Theorem 1). Thus we have shown that under this condition, all
the added arcs during ε-removal for FSAl are in AER

l−1 or (AER

l )add, and we can
revise the representation of AER

l from Equation (15) to:

AER

l = (Al−1 \ADl−1) ∪ (Aaddl \ (Aaddl )D) ∪AA1ab
l ∪AA234

l

= ((Al−1 \ADl−1) ∪AA1ab
l ) ∪ ((Aaddl \ (Aaddl )D) ∪AA234

l (20)
where

AA1ab
l = {(vs, t, ve) | vs, ve ∈ V Cl−1, t ∈ Σ and (21)

sR(vs,ve,t) ∈ S
R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1)}

comprises all the transitions added when transforming FSAl−1 to FSAER

l−1. ADl−1

comprises all transitions removed in the same context, so under this condition,
(Al−1\ADl−1)∪AA1ab

l consists of all the transitions of FSAER

l−1, i.e.
AER

l−1 = (Al−1 \ADl−1) ∪AA1ab
l (22)

Now consider (Aaddl \ (Aaddl )D) ∪ AA234
l , the second half of Equation (20).

Transitions in Aaddl have source and/or destination nodes in V addl . (Aaddl )D com-
prises all the ε-transitions of Aaddl and all the transitions that are removed from
Aaddl because their source and/or destination nodes are not in (V ER

l )add. So all
the transitions in (Aaddl \ (Aaddl )D)) have source and/or destination nodes in
(V ER

l )add. AA234
l satisfies (19), thus

((Aaddl \ (Aaddl )D)∪AA234
l ) ⊆ ((V ER

l−1×Σ × (V ER

l )add)∪ ((V ER

l )add×Σ × V ER

l ))

If we let (AER

l )add = (Aaddl \ (Aaddl )D))∪AA234
l , then (11) is satisfied. From this

and Equations (20) and (22), AER

l = AER

l−1 ∪ (AER

l )add, so Equation (8) holds.
Therefore Lemma 6 is proved. ut

Lemma 7 Let FSAl and FSAER

l be the automata referred to in Lemma 4, then
for l ≥ 2, the set of final states of FSAER

l is given by (9).

Proof From Algorithm 1, the final states of FSAER

l are obtained by adding
new final states and keeping accessible states in Fl. That is FER

l = FAl ∪FKl ,
where FAl = {v ∈ V Cl | (v, ε, v′) ∈ Al where v′ ∈ Fl}, and FKl = Fl ∩ V Cl . As
Al = Al−1 ∪Aaddl and V Cl = V Cl−1 ∪ V addCl , we have

FAl = {v ∈ V Cl−1 | (v, ε, v′) ∈ Al−1 where v
′ ∈ Fl−1} (23)

∪{v ∈ V addCl | (v, ε, v′) ∈ Aaddl where v′ ∈ Fl}
FKl = (Fl−1 ∩ V Cl−1) ∪ (Fl ∩ V addCl ) (24)



Using the same argument for FSAl−1, we get

FER

l−1 = {v ∈ V Cl−1 | (v, ε, v′) ∈ Al−1 where v
′ ∈ Fl−1} ∪ (Fl−1 ∩ V Cl−1)

so that FER

l−1 ⊆ FER

l , i.e. (9) holds, and Lemma 7 is proved. ut
Thus (7) to (11) hold under the condition of the lemma and hence Lemma 4

is proved. ut

4.3 Proving the Necessary Condition

Lemma 8 For l ∈ N+, if FSAER

l is a RP-FSA as specified in (7) to (11), then
FSAl satisfies for vs, ve ∈ V Cl−1, sR(vs,ve,t) ∈ S

R
l ⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈

Al−1).

Proof To prove the lemma, we prove its contrapositive, i.e. for vs, ve ∈ V Cl−1

when sR(vs,ve,t) ∈ S
R
l 6⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1) then FSAER

l is
not a RP-FSA as specified in (7) to (11).

From the proof of Lemma 6, if case 1c is not excluded, i.e. for vs, ve ∈ V Cl−1

when sR(vs,ve,t) ∈ S
R
l 6⇒ (sC(vs,ve,t) ∈ S

C
l−1 or (vs, t, ve) ∈ Al−1), then (vs, t, ve) is

added where vs, ve ∈ V ER

l−1. However, this transition is not in AER

l−1 or (AER

l )add

as explained in the proof of Lemma 6. This means AER

l 6= AER

l−1 ∪ (AER

l )add, so
Equation (8) does not hold. Hence FSAER

l is not a RP-FSA as specified in (7)
to (11), and the contrapositive is true. Hence Lemma 8 is proved. ut

Therefore, based on Lemma 4 and Lemma 8, Theorem 1 holds.

5 Conclusion and Future Work

In this paper we have defined an infinite family of FSA related by an integer
parameter, called Recursive Parametric FSA (RP-FSA). We considered the re-
moval of ε-transitions from this family and identified (and proved) the necessary
and sufficient condition for which this transformation results in another family
which is RP-FSA in the same parameter, where the transformed family’s base
component is the ε-removed base component of the original RP-FSA. This is of
theoretical interest and may provide the basis for an algebra of RP-FSA where
ε-removal and graph addition are operators. However, this work was motivated
by the verification of a multimedia protocol. We have developed a more general
theory that we believe can be applied to other practical systems. In [5], a struc-
tural regularity has been discovered in the data transfer service of the Internet’s
Transmission Control Protocol (TCP) operating over unbounded channels. This
can lead to a recursive (or closed form) expression for the state space in terms
of the channel capacity. We have also observed similar regular behaviour in the
state space of a simulator model [8]. The symbolic FSAs derived from the state
spaces of these systems are RP-FSA. When the RP-FSA contains ε-transitions
we can use the condition identified in this paper to check if the corresponding
LE-ER RP-FSA can be obtained. If this is the case and this ε-removed RP-FSA



is (or can be transformed to) a deterministic RP-FSA, then we have a recursive
representation of a specification against which the system can be verified.

Future work will include developing the theory on the condition under which
an RP-FSA is closed under FSA determinisation, i.e. the determinised family of
FSA can also be represented in the same recursive style, and applying it and the
result presented in this paper to the verification of industrial systems. We will
also consider extending the theory to two integer parameters for protocols with
two parameters, as illustrated in the verification of the Stop and Wait Protocol
class [6, 7].
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