
SimGrid MC: Verification Support for a
Multi-API Simulation Platform

Stephan Merz1, Martin Quinson2, and Cristian Rosa3

1 INRIA Research Center Nancy, France stephan.merz@loria.fr
2 Université Henri Poincaré Nancy 1, Nancy, France martin.quinson@loria.fr
3 Université Henri Poincaré Nancy 1, Nancy, France cristian.rosa@loria.fr

Abstract. SimGrid MC is a stateless model checker for distributed sys-
tems that is part of the SimGrid Simulation Framework. It verifies imple-
mentations of distributed algorithms, written in C and using any of sev-
eral communication APIs provided by the simulator. Because the model
checker is fully integrated in the simulator that programmers use to val-
idate their implementations, they gain powerful verification capabilities
without having to adapt their code. We describe the architecture of Sim-
Grid MC, and show how it copes with the state space explosion problem.
In particular, we argue that a generic Dynamic Partial Order Reductions
algorithm is effective for handling the different communication APIs that
are provided by SimGrid. As a case study, we verify an implementation
of Chord, where SimGrid MC helped us discover an intricate bug in a
matter of seconds.

1 Introduction

Distributed systems are in the mainstream of information technology. It has
become standard to rely on multiple distributed units that collectively contribute
to a business or scientific application. Designing and debugging such applications
is particularly difficult: beyond issues common to any parallel (i.e., concurrent or
distributed) program, such as race conditions, deadlocks or livelocks, distributed
systems pose additional problems due to asynchronous communication between
nodes and the impossibility for any node to observe a global system state.

The most common approach to validating distributed applications is to ex-
ecute them over a given testbed. However, many different execution platforms
exist, and it is difficult to assess the behavior of the application on another plat-
form than the one that the programmer has access to. Simulation constitutes
another approach, offering the ability to evaluate the code in more comprehensive
(even if not exhaustive) test campaigns. It remains however difficult to determine
whether the test campaign is sufficient to cover all situations that may occur in
real settings. That is why distributed applications are usually only tested on a
very limited set of conditions before being used in production.

In recent years the use of formal validation techniques has become more
prominent for the evaluation of concurrent and distributed software. Due to
their simplicity and the high degree of automation, model checking techniques

have been particularly successful. Relying on exhaustive state space exploration,
they can be used to establish whether a system, or a formal model of it, meets
a given specification.

Initially, verification techniques were developed for formal modeling lan-
guages such as process algebras [1], Petri nets [2], Promela [3] or TLA+ [4],
in which algorithms and protocols can be modeled at a high level of abstraction.
However, many errors are introduced at the implementation phase, and these
can obviously not be detected by formal verification of models. Several authors
have considered the application of model checking techniques to source or binary
code [5,6,7,8], and our work contributes to this line of research. It promises to
catch subtle bugs in actual programs that escape standard testing or simulation
and to give non-specialists access to powerful verification methods.

The main impediment to make the approach work in practice is the well-
known state explosion problem: the state space of even small programs executed
by a few processes is far too large to construct exhaustively. Powerful reduction
techniques such as dynamic partial-order reduction (DPOR [9]) must be used to
cut down the number of executions that must be explored. DPOR relies on the
notion of independent transitions, which must be established for the semantics
of real-world programs, which can be a daunting task [10].

The contributions of this article are the following:

• We present SimGrid MC, an extension of the SimGrid simulation frame-
work [11] for the formal verification of properties of distributed applications
that communicate by message passing. We believe that by integrating veri-
fication capabilities into an existing simulation environment, we are able to
close the loop of the development process: developers can assess their im-
plementations for both correctness and performance, using the same overall
framework.

• We detail the changes that we made to the main simulation loop to im-
plement the model checking functionality, and how this was eased by the
similarities between both tasks.

• We explain how we could implement the DPOR algorithm to support the
different communication APIs offered by SimGrid through an intermediate
communication layer, for which independence of transitions is established.

This article is organized as follows: Section 2 introduces the SimGrid simu-
lation framework. Section 3 presents the model checker SimGrid MC, its imple-
mentation within the SimGrid framework, and our implementation of DPOR for
multiple communication APIs available in SimGrid. Section 4 evaluates the re-
sulting tool through several experiments. Finally, Section 5 concludes the paper
and discusses future work.

1.1 State of the Art

The idea of applying model checking to actual programs originated in the late
1990s [5,8]. One of the main problems is the representation and storage of sys-
tem states: C programs freely manipulate the stack and heap, and it becomes

difficult to determine the part that should be saved, and costly to actually store
and retrieve it. Godefroid [12] proposed the idea of stateless model checking, in
which executions are re-run instead of saving system states. Flanagan and Gode-
froid also introduced the idea of DPOR [9], although they were not primarily
interested in model checking distributed systems. The closest work to ours is
probably ISP [13], which is a stateless model checker for MPI applications that
also relies on DPOR for effective reductions. ISP is not implemented in a sim-
ulation framework, but intercepts the calls to the runtime to force the desired
interleavings. MACE [6] is a set of C++ APIs for implementing distributed sys-
tems; it contains a model checker geared towards finding dead states. To our
knowledge SimGrid MC is the only model checker for distributed applications
that supports multiple communication APIs and is tightly integrated with a
simulation platform.

2 The SimGrid Framework

2.1 SimGrid Architecture

The SimGrid framework [11] is a collection of tools for the simulation of dis-
tributed computer systems. The simulator requires the following inputs:

The application or protocol to test. It must use one of the communication
APIs provided in SimGrid, and must be written in one of the supported
languages, including C and Java.

Analytical models of the used hardware. These models are used by the
simulator to compute the completion time of each application action, taking
in account the hardware capacity and the resources shared between applica-
tion elements and with the external load.

A description of the experimental setup. This includes the hardware plat-
form (hosts, network topology and routing), the external workload experi-
enced by the platform during the experiment, and a description of the test
application deployment.

The simulator then executes the application processes in a controlled environ-
ment, in which certain events, and in particular communications, are intercepted
to evaluate timing and the use of shared resources, according to the models and
the description of the setup (links, hosts, etc).

Figure 1 shows the architecture of the SimGrid framework. The analytical
models of the resources are provided by the SURF layer, which is the simula-
tion core. On top of this, SIMIX constitutes the virtualization layer. It adds
the notion of process, synchronization, communication primitives, and controls
the execution of the user processes. Three different communication APIs (or
user interfaces) are built on top of the abstractions provided by SIMIX; they
are adapted to different usage contexts. MSG uses a communication model that
is based on messages exchanged through mailboxes; messages are characterized
as tasks with computation and communication costs. GRAS is a socket-based

MSG

Simple application−

level simulator

Virtual platform simulator

SURF

Distributed applications simulation

SIMIX

applications on top of

a virtual environment

Library to run MPI

SMPIGRAS

 distributed applications

Framework to develop

User Code

Fig. 1. The SimGrid Architecture.

event loop API designed to be executed in the simulator or deployed in real-life
platforms. SMPI stands for Simulated MPI, and allows a user to simulate stan-
dard MPI programs without modifications, unlike the other two interfaces that
are specific to SimGrid. It implements a subset of MPI that includes two-sided
synchronous and asynchronous communication, as well as group operations.

The experimental setup is provided by the user through configuration files
that instantiate the models, describing where the processes will be deployed.

Let us point out that SimGrid is a simulator and not an emulator. Its goal is
to compute the timings of the events issued by the system as if it would execute
on the virtual platform, irrespective of the speed of the platform on which the
simulation is run. In particular, processes always execute at full speed.

2.2 The Simulation Loop

Before we present the model checker for SimGrid, we give some more details
about the simulator’s main loop, i.e. how the simulator controls the execution
of the tested application depending on the platform models. This background is
necessary in order to understand how SimGrid MC builds upon the infrastructure
provided by the simulator.

SimGrid runs the entire simulation as a single process in the host machine
by folding every simulated user process in a separate thread. The simulator
itself runs in a special distinguished thread called maestro, which controls the
scheduling.

Figure 2 depicts two simulation rounds starting at time tn−1 with two user
threads T1 and T2 running the simulated processes and the maestro thread M .
The round starts by calling SURF to compute and advance to the time of the
next ending actions, in this case tn. Next, it passes the list of finished actions
to SIMIX that has a table associating them to the blocked threads. Using this
table, SIMIX schedules all the unblocked threads. The user threads run without
interruption until they block, waiting for a new simulation action, such as a
communication. These actions are denoted in Fig. 2 by a and b for threads T1

and T2. The simulation round finishes once all the threads were executed until
they block. Note that the time advances only between scheduling rounds, thus

T2

T1

M
a

b

c

d

Simulation Round n

tn-1
simulated time

Simulation Round n+1

tn tn+1

SURF (resource models)

User code

SIMIX (virtualization)

Fig. 2. Simulation Main Loop.

from the simulator’s point of view, all the actions performed by the user in a
scheduling round happen at the same time.

3 Model Checking Distributed Programs in SimGrid

SimGrid provides us with the capability of simulating distributed programs in
a controlled environment. In particular, it includes functionality for managing
the control state, memory, and communication requests of simulated processes,
which can be run selectively and interrupted at visible (communication) actions.
We now outline how we used this framework to implement verification capabil-
ities, and describe the techniques we employed to make them efficient. In this
article, we focus only on the C interface.

3.1 SimGrid MC

Unlike simulation, which is mainly concerned with the use of available resources
and the performance of a distributed application in a given scenario, verification
attempts to exhaustively explore the state space of a system in order to detect
corner cases that one would be unlikely to encounter in simulation runs. Typi-
cally, the number of process instances will be significantly smaller in verification
than in simulation because of the well known problem of state space explosion.
We designed SimGrid MC as a complement to the simulator functionality, al-
lowing a user to verify instances of distributed systems, without requiring any
modifications to the program code. In the schema presented in Fig. 1, SimGrid
MC replaces the SURF module and a few submodules of SIMIX with a state
exploration algorithm that exhaustively explores the executions arising from all
possible non-deterministic choices of the application.

As we explained before, a distributed system in SimGrid consists of a set
of processes that execute asynchronously in separate address spaces, and that
interact by exchanging messages. In other words, there is no global clock for
synchronization, nor shared memory accessed by different processes.

More precisely, the state of a process is determined by its CPU registers,
the stack, and the allocated heap memory. The network’s state is given by the

messages in transit, and it is the only shared state among processes. Finally, the
global state consists of the state of every process plus the network state. The only
way a process can modify the shared state (the network) is by issuing calls to the
communication APIs, thus the model-checker considers these as the only visible
transitions. A process transition as seen by the model checker therefore comprises
the modification of the shared state, followed by all the internal computations
of the process until the instruction before the next call to the communication
API. The state space is then generated by the different interleavings of these
transitions; it is generally infinite even for a bounded number of processes due to
the unconstrained effects on the memory and the operations processes perform.

Because the global state contains unstructured heaps, and the transition re-
lation is determined by the execution of C program code, it is impractical to
represent the state space or the transition relation symbolically. Instead, Sim-
Grid MC is an explicit-state model checker that explores the state space by sys-
tematically interleaving process executions in depth-first order, storing a stack
that represents the schedule history. As the state space may be infinite, the ex-
ploration is cut off when a user-specified execution depth is reached. Of course,
this means that error states beyond the search bound will be missed, but we
consider SimGrid MC as a debugging tool that is most useful when it succeeds
in finding an error. SimGrid MC ensures complete exploration of the state space
up to the search bound.

When state exploration hits the search bound (or if the program terminates
earlier), we need to backtrack to a suitable point in the search history and con-
tinue exploration from that global state. In a näıve implementation, this would
mean check-pointing the global system state at every step, which is prohibitive
due to the memory requirements and the performance hit incurred by copying
all the heaps. Instead, we adopt the idea of stateless model checking [12] where
backtracking is implemented by resetting the system to its initial state and re-
executing the schedule stored in the search stack until the desired backtracking
point. Because global states are not stored, SimGrid MC has no way of detecting
cycles in the search history and may re-explore parts of the state space that it has
already seen. Note that even if we decided to (perhaps occasionally) checkpoint
the system state, dynamic memory allocation would require us to implement
some form of heap canonicalization [8,14] in order to reliably detect cycles. In
the context of bounded search that we use, the possible overhead of re-exploring
states because of undetected loops is a minor concern for the verification of safety
properties. It would, however, become necessary for checking liveness properties.

Figure 3 illustrates the exploration technique used by SimGrid MC on the
example used in Sect. 2.2. The model checker first executes the code of all threads
up to, but excluding, their first call to the communication API (actions a and b
in this example). The resulting global state S0 (indicated by a red dot in Fig. 3)
is pushed on the exploration stack; it is also stored as the snapshot corresponding
to the initial state, and the model checker records the enabled actions. It then
chooses one action (say, a) for execution and schedules the associated thread,
which performs the communication action and all following local program steps

T2

T1

M
a

b

c

d

S0

a

b

a
S1

c

b

b
S2

c

d

MC Initialisation

MC Stack

User code

MC (exploration algorithm)

Snapshot

Fig. 3. State Exploration by SimGrid MC.

up to, but excluding, the next API call (c). This execution corresponds to one
transition as considered by the model checker, which records the actions enabled
at this point and selects one of them (say, b), continuing in this way until the
exploration reaches the depth bound or no more actions are enabled; depending
on the process states, the latter situation corresponds either to a deadlock or to
program termination.

At this point, the model checker has to backtrack. It does so by retrieving the
global state S0 stored at the beginning of the execution, restoring the process
states (CPU registers, stack and heap) from this snapshot, and then replaying
the previously considered execution until it reaches the global state from which
it wishes to continue the exploration. (The choice of backtrack points will be
explained in more detail in Sect. 3.2 below.) In this way, it achieves the illusion
of rewinding the global application state until a previous point in history.

Figure 4 illustrates the architecture of SimGrid MC. Each solid box labeled
Pi represents a thread executing the code of a process in the distributed system
being verified. The exploration algorithm is executed by a particular thread
labeled MC that intercepts the calls to the communication API (dashed box) and
updates the state of the (simulated) communication network. The areas colored
blue represent the system being explored, the area colored red corresponds to

Fig. 4. SimGrid MC Architecture.

the state of the model checker, which holds the snapshot of the initial state and
the exploration stack. When a backtracking point is reached, the blue area is
reset as described above, but the exploration history is preserved intact.

3.2 Partial Order Reduction for Multiple Communication APIs

The main problem in the verification of distributed programs, even using state-
less model checking, lies in the enormous number of interleavings that these
programs generate. Usually, many of these interleavings are equivalent in the
sense that they lead to indistinguishable global states.

Algorithm 1 Depth-first search with DPOR

1: q := initial state
2: s := empty
3: for some p ∈ Proc that has an enabled transition in q do
4: interleave(q) := {p}
5: end for
6: push(s,q)
7: while |s| > 0 do
8: q := top(s)
9: if |unexplored(interleave(q))| > 0 ∧ |s| < BOUND then

10: t := nextinterleaved(q)
11: q’ := succ(t, q)
12: for some p ∈ Proc that has an enabled transition in q’ do
13: interleave(q’) := {p}
14: end for
15: push(s,q’)
16: else
17: if ∃ i ∈ dom(s): Depend(tran(si), tran(q)) then
18: j := max({i ∈ dom(s): Depend(tran(si), tran(q))})
19: interleave(sj−1) := interleave(sj−1) ∪ {proc(tran(q))}
20: end if
21: pop(s)
22: end if
23: end while

(Dynamic) Partial-Order Reduction [9] has proved to be efficient for avoiding
the exploration of equivalent interleavings, and we also rely on this technique in
SimGrid MC. The pseudo-code of the depth-first search algorithm implementing
DPOR appears in Algorithm 1. With every scheduling history q on the explo-
ration stack is associated a set interleave(q) of processes enabled at q and whose
successors will be explored. Initially, an arbitrary enabled process p is selected
for exploration. At every iteration, the model checker considers the history q at
the top of the stack. If there remains at least one process selected for exploration
at q, but which has not yet been explored, and the search bound has not yet
been reached, one of these processes (t) is chosen and scheduled for execution,

resulting in a new history q′. The model checker pushes q′ on the exploration
stack, identifying some enabled process that must be explored. Upon backtrack-
ing, the algorithm looks for the most recent history sj on the stack for which
the transition tran(sj) executed to generate sj is dependent with the incoming
transition tran(q) of the state about to be popped. If such a history exists, the
process executing tran(q) is added to the set of transitions to be explored at the
predecessor of sj , ensuring its successor will be explored during backtracking
(if it has not yet been explored). Our algorithm is somewhat simpler than the
original presentation of DPOR [9] because it assumes that transitions remain
enabled until they execute, which is the case for SimGrid.

The effectiveness of the reductions achieved by the DPOR algorithm is cru-
cially affected by the precision with which the underlying dependency relation
can be computed. The two extremes are to consider all or no transitions as de-
pendent. In the first case, the DPOR algorithm degenerates to full depth-first
search. In the second case, it will explore only one successor per state and may
miss interleavings that lead to errors. A sound definition of dependence must en-
sure that two transitions are considered independent only if they commute, and
preserve the enabledness of the other transition, at any (global) state where they
are both enabled. Because processes do not share global memory in SimGrid,
memory updates cannot contribute to dependence, and we need only consider
the semantics of the communication actions. However, their semantics must be
described formally enough to determine (in)dependence.

In the case of the SimGrid Simulation Framework, the programs can be
written using one of its three communication APIs, which lack such formal spec-
ification, as they were not designed for formal reasoning. Palmer et al. [10] have
given a formal semantics of a substantial part of MPI for use with DPOR, but
this is a tedious and daunting task, which would have to be repeated for the
other APIs in SimGrid.

Instead, our implementation of DPOR in SimGrid relies on the definition
of a minimal internal networking API, for which we have given a fully formal
semantics and for which we have proved independence theorems in our previous
work [15]. The three communication APIs provided by SimGrid are implemented
on top of this basic API, and the DPOR-based model checker presented in Al-
gorithm 1 operates at the level of these elementary primitives.

The communication model used by this set of networking primitives is built
around the concept of “mailbox”. Processes willing to communicate queue their
requests in mailboxes, and the actual communication takes place when a match-
ing pair is found. The API provides just the four operations Send , Recv , WaitAny
and TestAny . The first two post a send or receive request into a mailbox, re-
turning a communication identifier. A Send matches any Recv for the same
mailbox, and vice versa. The operation WaitAny takes as argument a set of
communication identifiers and blocks until one of them has been completed. Fi-
nally, TestAny also expects a set of communication identifiers and checks if any
of these communications has already completed; it returns a Boolean result and
never blocks.

Listing 3.1. Inefficient WaitAll

1 void WaitAll(comm_list [])
2 {
3 while(len(comm_list) > 0){
4 comm = WaitAny(comm_list);
5 list_remove(comm , comm_list);
6 }
7 }

Listing 3.2. Efficient WaitAll

1 void WaitAll(comm_list [])
2 {
3 for(i=0;i<len(comm_list);i++){
4 WaitAny(comm_list[i]);
5 }
6 }

We specified these primitives formally in TLA+ [4], and for every pair of
communication operations we formally proved conditions ensuring their inde-
pendence. Moreover, it was surprisingly easy to implement SimGrid’s communi-
cation APIs in terms of these primitive operations.

However, it was not clear a priori that this approach would result in a sat-
isfactory degree of reduction, as the implementations of two high-level oper-
ations in terms of the lower-level ones might falsely be considered dependent.
Moreover, the implementation of the higher-level APIs may introduce additional
non-determinism, generating spurious interleavings during model checking. For
example, consider the implementation of listing 3.1: it expects a set of commu-
nications identifiers and repeatedly uses WaitAny for all unfinished communica-
tions, until no one is left. While correct, such an implementation would introduce
a non-deterministic choice among the finished communications, which is irrele-
vant to the semantics of WaitAll but would be considered by the model checker.
For our purposes, it is therefore better to issue WaitAny operations in sequence
for all the communication operations as shown in listing 3.2.

4 Experimental Results

In this section we present a few verification experiments using two of the APIs
supported by SimGrid. We thus illustrate the ability of our approach to use a
generic DPOR exploration algorithm for different communication APIs through
an intermediate communication layer. Each experiment aims to evaluate the
effectiveness of the DPOR exploration at this lower level of abstraction compared
to a simple DFS exploration. We use a depth bound fixed at 1000 transitions
(which was never reached in these experiments), and run SimGrid SVN revision
9888 on a CPU Intel Core2 Duo T7200 2.0GHz with 1GB of RAM under Linux.

4.1 SMPI Experiments

The first case study is based upon two small C programs using MPI that are
designed to measure the performance of our DPOR algorithm.

The first example, presented in Listing 4.3, shows an MPI program with
N+1 processes. The process with rank 0 waits for a message from each of the
other processes, while the other processes send their rank value to process 0. The
property to verify is coded as the assertion at line 5 that checks for the incorrect

Listing 4.3. Example 1

1 if (rank == 0){
2 for (i=0; i < N-1; i++){
3 MPI_Recv (&val , MPI_ANY_SOURCE);
4 }
5 MC_assert(val == N);
6 } else {
7 MPI_Send (&rank , 0);
8 }

Listing 4.4. Example 2

1 if (rank % 3 == 0) {
2 MPI_Recv (&val , MPI_ANY_SOURCE);
3 MPI_Recv (&val , MPI_ANY_SOURCE);
4 } else {
5 MPI_Send (&rank , (rank / 3) * 3);
6 }

assumption of a fixed message receive order, where the last received message will
be always from the process with rank N.

Table 1(a) shows the timing and the number of states visited before finding
a violation of the assertion. In this case, the number of processes does not have a
significant impact on the number of visited states because the error state appears
early in the visiting order of the DFS. Still, using DPOR helps to reduce the
number of visited states by more than 50% when compared to standard DFS.

Table 1. Timing, number of expanded states, and peak memory usage (a) to find the
assertion violation in Listing 4.3; (b) for complete state space coverage of Listing 4.3
and (c) for complete state space coverage of Listing 4.4.

(a)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

3 119 0.097 s 23952 kB 43 0.063 s 23952 kB

4 123 0.114 s 25008 kB 47 0.064 s 25024 kB

5 127 0.112 s 26096 kB 51 0.072 s 26080 kB

(b)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

2 13 0.054 s 21904 kB 5 0.046 s 18784 kB

3 520 0.216 s 23472 kB 72 0.069 s 23472 kB

4 60893 19.076 s 24000 kB 3382 0.913 s 24016 kB

5 - - - 297171 84.271 s 25584 kB

(c)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

3 520 0.247 s 23472 kB 72 0.074 s 23472 kB

6 >10560579 >1 h - 1563 0.595 s 26128 kB

9 - - - 32874 14.118 s 29824 kB

Table 1(b) shows the effectiveness of DPOR for a complete state space ex-
ploration of the same program (without the assertion). Here, the use of DPOR
reduces the number of visited states by an order of magnitude.

The second example, presented in Listing 4.4, shows the relevance of per-
forming reduction dynamically. This time the number of processes in the system
should be a multiple of 3. Every process with a rank that is a multiple of three
will wait for a message from the next two processes, thus process 0 will receive
from processes 1 and 2, process 3 from processes 4 and 5, etc. It is quite obvious
that each group of three processes is independent from the others, but stan-
dard static reduction techniques would not be able to determine this. Again, no
property is verified, as we try to compare the reductions obtained by DPOR.

Table 1(c) shows the experimental results for a complete exploration of the
state space. In this case the DFS with 6 processes was interrupted after one hour,
and up to that point it had visited 320 times more states than the complete state
space exploration of the same program for 9 processes with DPOR enabled.

4.2 MSG Experiment: CHORD

As our second case study we consider an implementation of Chord [16] using the
MSG communication API. Chord is a well known peer-to-peer lookup service,
designed to be scalable, and to function even with nodes leaving and joining the
system. This implementation was originally developed to study the performance
of the SimGrid simulator.

The algorithm works in phases to stabilize the lookup information on every
node that form a logical ring. During each phase, nodes exchange messages
to update their knowledge about who left and joined the ring, and eventually
converge to a consistent global vision.

Listing 4.5 shows a simplified version of Chord’s main loop. In MSG, processes
exchange tasks containing the messages defined by the user. Each node starts
an asynchronous task receive communication (line 3), waiting for petitions from
the other nodes to be served. If there is one (the condition at line 4 is true), a
handler is called to reply with the appropriate answer using the same received
task (line 5). Otherwise, if the delay for the next lookup table update has passed,
it performs the update in four steps: request the information (lines 7-9), wait for
the answer (lines 12-14), update the lookup tables (line 19), and notify changes
to other nodes (line 22).

Running Chord in the simulator, we occasionally spotted an incorrect task
reception in line 14 that led to an invalid memory read, producing a segmenta-
tion fault. Due to the scheduling produced by the simulator, the problem only
appeared when running simulations with more than 90 nodes. Although we thus
knew that the code contained a problem, we were unable to identify the cause of
the error because of the size of the instances where it appeared and the amount
of debugging information that these generated.

We decided to use SimGrid MC to further investigate the issue, exploring a
scenario with just two nodes and checking the property task == update task at
line 15 of listing 4.5. In a matter of seconds we were able to trigger the bug and

Listing 4.5. Main loop of CHORD (simplified).

1 while (1) {
2 if (! rcv_comm)
3 rcv_comm = MSG_task_irecv (&task);
4 if (MSG_comm_test(rcv_comm)) {
5 handle(task);
6 } else if(time > next_update_time) {
7 /* Send update request task */
8 snd_comm = MSG_task_isend (& update_task);
9 MSG_task_wait(snd_comm);

10
11 /* Receive the answer */
12 if(rcv_comm == NULL)
13 rcv_comm = MSG_task_irecv (&task);
14 MSG_task_wait(rcv_comm);
15
16 MC_assert(task == update_task); /* <-- Assertion verified by the MC */
17
18 /* Update tables with received task */
19 update_tables(task);
20
21 /* Notify some nodes of changes */
22 notify ();
23 } else {
24 sleep (5);
25 }
26 }

could understand the source of the problem by examining the counter-example
trace, which appears in listing 4.6. It should be read top-down and the events of
each node are tabulated for clarity. The Notify task sent by node 1 in line 22 of
listing 4.5 is incorrectly taken by node 2 at line 14 as the answer to the update
request sent by it line 8. This is due to an implementation error in the line 12:
the code reuses the variable recv comm, incorrectly assuming this to be safe
because of the guard of that branch, but in fact the condition may change after
the guard is evaluated.

Listing 4.6. Counter-example

#line Node 1 #line Node 2

3: rcv_comm = MSG_task_irecv (&task)
4: MSG_comm_test(rcv_comm) == FALSE
8: snd_comm =

MSG_MSG_task_isend (& update_task)
3: rcv_comm = MSG_task_irecv (&task)

9: MSG_task_wait(snd_comm)
4: MSG_comm_test(rcv_comm) == TRUE
5: handle(task)
3: rcv_comm = MSG_task_irecv (&task)
4: MSG_comm_test(rcv_comm) == FALSE

14: MSG_task_wait(recv_comm)
22: Notify ()
3: rcv_comm = MSG_task_irecv (&task)

8: snd_comm =
MSG_MSG_task_isend (& update_task)

9: MSG_task_wait(snd_comm)
14: MSG_task_wait(recv_comm)

The Chord implementation that was verified has 563 lines of code, and the
model checker found the bug after visiting just 478 states (in 0.280 s) using
DPOR; without DPOR it had to compute 15600 states (requiring 24 s) before
finding the error trace. Both runs had an approximate peak memory usage of
72 MB, measured with the /usr/bin/time program provided by the operating
system.

5 Conclusions and Future Work

We have presented SimGrid MC, a model checker for distributed C programs that
may use one of three different communication APIs. Like similar tools, SimGrid
MC is based on the idea of stateless model checking, which avoids computing
and storing the process state at interruptions, and relies on dynamic partial
order reduction in order to make verification scale to realistic programs. One
originality of SimGrid MC is that it is firmly integrated with the pre-existing
simulation framework provided by SimGrid [11], allowing programmers to use
the same code and the same platform for verification and for performance eval-
uation. Another specificity is the support for multiple communication APIs. We
have implemented sensibly different APIs in terms of a small set of elementary
primitives, for which we could provide a formal specification together with inde-
pendence theorems with reasonable effort, rather than formalize three complete
communication APIs. We have been pleasantly surprised by the fact that this
approach has not compromised the degree of reductions that we obtain, which
are roughly on a par with those reported in [10] for a DPOR algorithm specific
to MPI.

The integration of the model checker in the existing SimGrid platform has
been conceptually simple, because simulation and model checking share core
functionality such as the virtualization of the execution environment and the
ability to execute and interrupt user processes. However, model checking tries to
explore all possible schedules, whereas simulation first generates a schedule that
it then enforces for all processes. SimGrid benefitted from the development of
SimGrid MC in that it led to a better modularization and reorganization of the
existing code. The deep understanding of the execution semantics gained during
this work lets us envision an efficient parallel simulation kernel in future work.

SimGrid MC is currently restricted to the verification of safety properties
such as assertion violations or the detection of deadlock states. The verifica-
tion of liveness properties would require us to detect cycles, which is currently
impossible due to the stateless approach. For similar reasons, state exploration
is limited by a (user-definable) search bound. We intend to investigate hybrid
approaches between stateful and stateless model checking that would let us over-
come these limitations.

Acknowledgment

The helpful comments of the anonymous reviewers are gratefully acknowledged.
This work is partially supported by the ANR project USS SimGrid (08-ANR-
SEGI-022).

References

1. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
2. Reisig, W.: A Primer in Petri Net Design. Springer (1992)
3. Holzmann, G.J.: The model checker Spin. IEEE Trans. Softw. Eng. 23(5) (1997)

279–295
4. Lamport, L.: Specifying Systems. Addison-Wesley, Boston, Mass. (2002)
5. Visser, W., Havelund, K.: Model checking programs. In: Automated Software

Engineering Journal. (2000) 3–12
6. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: lan-

guage support for building distributed systems. In: Proc. ACM SIGPLAN Conf.
Programming language design and implementation (PLDI 2007), San Diego, CA,
USA, ACM (2007) 179–188

7. Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: Proc. ACM SIG-
PLAN Conf. Programming language design and implementation (PLDI 2008), Tuc-
son, AZ, USA, ACM (2008) 362–371

8. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A prag-
matic approach to model checking real code. In: Proc. Fifth Symp. Operating
Systems Design and Implementation (OSDI 2002). (2002)

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. SIGPLAN Not. 40(1) (2005) 110–121

10. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven dynamic partial-
order reduction of MPI-based parallel programs. In: Proc. ACM Wsh. Parallel and
distributed systems: testing and debugging (PADTAD 2007), London, UK, ACM
(2007) 43–53

11. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a Generic Framework for Large-
Scale Distributed Experiments. In: 10th IEEE International Conference on Com-
puter Modeling and Simulation. (March 2008)

12. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
Proc. 24th ACM SIGPLAN-SIGACT Symp. Principles of programming languages
(POPL 1997), Paris, France, ACM (1997) 174–186

13. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur,
R.: Formal verification of practical MPI programs. SIGPLAN Not. 44(4) (2009)
261–270

14. Iosif, R.: Exploiting heap symmetries in explicit-state model checking of soft-
ware. In: Proc. 16th IEEE Intl. Conf. Automated software engineering (ASE 2001),
Washington, DC, USA, IEEE Computer Society (2001) 254–261

15. Rosa, C., Merz, S., Quinson, M.: A simple model of communication APIs – Applica-
tion to dynamic partial-order reduction. In: 10th Intl. Wsh. Automated Verification
of Critical Systems, Düsseldorf, Germany (2010) 137–152

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31 (August 2001) 149–160

