FROM BINARY STRINGS TO VISUAL
PROGRAMMING

A Nordic perspective on history of programming and
programming languages

Knut Skog

NORUT Information Technologies, Science Park, Tromso. Knut.Skog@itek.norut.no

Abstract: Starting with the events around the first von Neumann machine in 1945, this
paper presents the some of the main steps in the development of programming
and high level languages for instructing machinery to perform according need,
ideas, or any form of stated requirements. The main emphasis is on Nordic
contributions. The paper leads up to present time with the marked influence of
the network and its web technology, a technology offering programming light
for millions of computer owners and users. Some concern is raised as to the
latest trend of regarding documents and programs as being the same notion.

Key words: Computer programming, Nordic history

1. PROGRAMMING AND LANGUAGE

Keeping in touch with the art of computer programming for more than
four decades is like standing up against an intellectual hurricane - the most
forceful and rapid changing technology ever in the history of humanity. Still
there is more to come. The computer is a device instructed by man to
perform operations according to his will. Mostly these operations have an
immaterial effect but connected to mechanical devices the operations can
also cause material effects. Let us not forget that when the device is a
missile the effects of the programs are potentially highly devastating.

The instructions to a computer appear in lexical forms of some
artificial, formally and carefully constructed language, a language never
spoken, only written by a programmer, and read by him and the computer.

298 Knut Skog

Strangely enough, it is my experience that reading other peoples programs is
not at all appealing. In some cases, it feels like passing the border of
privacy. We write to a computer using a programming language.

The focus of this paper is on programming languages during the last
forty years, and an attempt to extract what may be an essence with lasting
value. Making an evaluation of the close to 150 different recognised
programming languages of this period is impossible. At this occasion, I
narrow my focus to the Nordic scenes and its pioneers. The field of
programming is so large that I can only ask forgiveness if the reader feels
that I have ignored important events.

People have a natural talent for creating languages that reflects his
environment. This became apparent when they tried to build a tower in
Babel, reaching Heaven. We read in Genesis (11:1-9.) “But God
confounded their tongue, so that they did not understand one another's
speech”. Like the people of Babel, computer programmers do not always
understand each other. However, as long as computers do, a language is
valuable. Some will say that all these languages have enriched the computer
industry whereas other will claim it has been a curse.

The history of computing and computer languages is prevalent. A link
to thumbnails of the history of programming languages appears in
[CompHist].

2. IN THE BEGINNING

Instructing mechanical counting machinery to perform their data
processing task happened long before World War II. Lady Lovelace’s
program for calculating Bernoulli numbers on Babbage’s Analytical Engine
is a well-known example. Ten years before the first electronic computer
with modifiable stored program was running, Allan Turing [Turing]
presented many of the theoretical aspects of computing in his description of
a universal finite state transition machine. However, the focus on
programming - as we know it today - starts with von Neumann’s work on the
EDVAC (Electronic Discrete Variable Automatic Calculator) in 1945. We
stress the word variable since it denotes the flexibility of this electronic
device. It is also a reflection of the modern notion of a computer that in von
Neumann’s mind, in itself should be able to modify its program. His idea of
heuristic aspects of computers appears in many of his later papers. (See his
lectures on “Theory of self-reproducing automata” in [Burks], Chapter 11.)

[Burks] has well-documented von Neumann’s contributions to
computer programming. This reference also contains a remarkable paper,
“von Neumann’s first computer program”, written by Donald E. Knuth

From binary strings to visual programming 299

[Burks, chapter 2]. Von Neumann wrote this sorting and merging programs
in 1945 as part of design of the EDVAC computer, a machine that at that
stage had an auxiliary memory of 8192 words of 32 bits. Note however that
it was not possible to access randomly the memory of EDVAC. The kind of
programming challenges von Neumann was facing we know today as micro
coding. Despite many low-level type of operations, his work for the first
time introduced the basic programming notion of a subroutine using relative
addresses and symbolic coding with mnemonic names of variables and
instructions. He was a frequent user of flow diagrams in planning the
structure of his programs.

Deeply rooted in the world of mathematics his systems analysis was in
mathematical notation and the resulting program in a form that we call
assembly coding as can be seen in the extract below from Donald E. Knuth’s

paper.

o

s alel Sgai. My oadnd” G K WX Voo

ey MW
R SV T PRI SR PR N
i atng Bty 37 ik g R o Faa Segmann's Miret Corguser Froprasm
[R TR Y 4

Hews £ttt SomConaiamr trciuaghy 3. {Frug.)

- o G b ay Asidrsaitet oty
Mat; wewin < & P g Py b
4.4 ¢ 1 »
4 f Kttt £ XRXY wr 4 Ryl
gf;a n.ﬁr o witu & YREY F G §
- & B T % »
wl-f .ﬁ".’l‘.‘#*"‘ O Mol T
Ed
£pRs1 ”""a». e Lot & ummya W 3 jaasiins BETA
43 Fol *"“'Z’,m for 't 4 Lot REF ¢ Cesation BAM
ng N Len® & LIEATKE mEv ¢ atien BRETS,
ek o ¥ ENEXOR W ¢ Ipmironsiens THA we
Kiae Lo frmTm #oFEME REE 3 Ko peacy siarsas
. o o Daliex scm weso, enem e
G S fr T vhmoes b/ BEL TOAMMAAIERS € 383 % e CANMA whor ATHSLA
. - da > = HEQ TEMID 405 o0 2
28R Tiges e AR, '-MNQ- » K RPRRMER 4w -n
X Sl g, - #61, LDELTA GSREA A Ha X x v DEETA aboc HETA.
A i G v~ 4,
Loy 2 *® WER MPRINE N A et > .. .
- » WL TR TRMPY & e W 3w DT EMET T RN
o G SWITCH FWEPGIE v THA S
o IR EWERE

CIRAEANE o el e dsitiud),
Tt wl 4 bonsk 4 Kk phrme s M%«.«Q’
Rewnbing. 0 ol Luan
et Wi i Fomae v B St i} Tive e B sfeimense
R s TRy g W wicllabar 15 me 2%,
Hairbng B sl &z—l-aom ot
M«r& Sl mmumw.«.,,

P B
m i mmlm

It is fair to say that programming at this stage was regarded as a type of
work requiring deep insight in the architecture and behaviour of the
computer and its binary nature. People considered it a craft for a person
trained in logic and mathematics. Von Neumann himself was, however, one
of the first that suggested key board shortcuts for denoting patterns in the
binary string of a instruction instead of writing sequences of 1 and 0. He
started the era of programming in the form of assembly coding.

300 Knut Skog
3. THE FIRST PROGRAMMING LANGUAGES

In the middle of the fifties, IBM had made its Naval Ordnance
Research Calculator (NORC), the most powerful computer in existence at
the time. It was a vacuum tube machine with 3600 words of main memory
and binary coded decimal arithmetic operations. This machine was part of
the environment in which John Backus and his team of programmers
invented FORTRAN (FORmula TRANSslator), the first programming
language in which the human or problem domain was the prime focus and
where the computer itself translated the scripts of the language into binary
instructions and numbers. This translation required a program of a new
kind, compilers as they where called. The FORTRAN compiler was able to
produce code almost as efficient as assembly code and they reduced
programming time considerably. People say that when John Backus
presented the idea of a compiled programming language to von Neumann,
his reaction was not at all enthusiastic. In his mind, a computer should do
calculations and not such clerical tasks as compiling.

The FORTRAN was targeted for scientific and numeric calculations
and loved by scientists who could write formulas the way they where used
to. It offered two name scopes (local and global) for variables, familiar
mathematical ways of writing expressions and intuitively natural statements
for loops and conditional branching. Later separately compiled subroutines
were added. The extensive growth in the programmer population in the
sixties and the seventies is mainly due to FORTRAN. As member of the
committee that created ALGOL a few years later, John Backus introduced
the syntax notation that, slightly modified by Naur, to day is known as
Backus Naur Form (BNF).

It is symptomatic that John Backus and his work did not come out of a
university research environment. His own background was highly irregular.
IBM management of his time deserves credit for supporting his diverse and
eclectic bunch of people that was outsiders to the academic establishments
and hackers of its time. John Backus and his team of programmers new
from hard work what was needed and created the first and for a long time the
most used higher level programming language.

The need for programming tools closer to the problem domain was
generally acknowledge in the late fifties and in 1958, the first version of the
Algorithmic Language ALGOL was borne. Two years later the language
was the target of international cooperation and an agreement on ALGOL60
was a fact much due to the work at Dansk Regnecentral and with Peter Naur
as the supreme editor putting all pieces together. ALGOL was the first
programming language of a scientific flavour. It was an orthogonal
language, meaning it has a relatively small number of basic constructs and a

From binary strings to visual programming 301

set of rules for combining those constructs. It introduced nested (block-
structured) scopes of names, strongly typed variables, procedure parameters
by name or reference, and recursive procedures and dynamic arrays. In
close cooperation with the Dutch ALGOL group (Dijkstra, van der Pool, van
Wijngaarden), Naur, Jeorn Jensen and the Danish group pioneered the stack
for dynamic memory management and its addressing schema for recursive
execution.

Although ALGOL never reached the level of commercial popularity of
FORTRAN, it is considered the most important language in terms of its
influence on later language development. ALGOL’s lexical and syntactic
structures became so popular that virtually all languages designed since have
been referred to as “ALGOL-like”. On the Nordic scene, Peter Naur and
Jorn Jensen (in the compiler team of 1962, they where called the Doctor and
the Master) made substantial contribution to our conception of high level
programming languages and the associated compiling techniques.

Automated data processing was an established industry of its own at
the time the first variable (stored program) automatic calculator was born,
made for numeric calculations, not for data processing. However, when they
connected the calculator to punched card equipment and magnetic tapes, the
“calculator” was ready for data processing. For this task, the quest for non-
mathematical programming tools came at the end of the fifties.

From the home page of COBOL we quote:

In 1959, an industry-wide team was assembled to formulate a common
business programming language. The Conference on Data System
Languages (CODASYL) developed a new language, and created the first
standardized business computer programming language. COBOL
(Common Business Oriented Language) was developed under the auspices
of the U.S. Department of Defence in cooperation with computer
manufactures, users, and universities. The initial specifications for
COBOL were presented in a report of the executive committee of
CODASYL committee in April of 1960. It was designed to be a business
problem oriented, machine independent and capable of continuous change
and development.
COBOL with its highly verbose lexical style was the first effort in creating
exact computer programs with statements that intuitively could be
understood by humans. The idea of instructing the computer the same way
you instruct people is ill founded. However, as with native languages,
people who once have learned them tend to love them and COBOL is still a
living programming language in many commercial applications with roots
back to the late sixties and the seventies.

302 Knut Skog
4. OBJECT ORIENTATION

With SIMULA 67, a new dimension — the dimension of object
orientation (OO) — was added to the art of programming. SIMULA was
originally designed as a language for discrete event simulation, but was soon
regarded as a general purpose programming language. ALGOL like and like
ALOGOL SIMULA never became widely used, however the language has
been highly influential on programming methodology and modern systems
engineering. It implemented the mechanics of OO and paved the way for a
new systems design philosophy. It invented the notion and mechanics of the
class concept with inheritance and polymorphism, object instantiations and
dynamic heap allocation. In this it broke the traditional sequential way of
reasoning on how the computer programs should be organized and
demonstrated how to “think and write” in terms of parallel event-driven
tasks. It formed what to day is the foundation for modelling of computer
applications at large.

[Holmvik] thoroughly documents the history of the work of Kristen
Nygaard and Ole Johan Dahl and their colleagues at Norsk Regnesentral on
SIMULA 67. Being myself affiliated with the activity in the period from the
fall of 1965 to 1968, I feel inclined to present some of my recollections.
One is that Bjern Myrhaug, a junior member of the SIMULA team, deserves
recognition for his pioneering implementation work on heap allocation and
“garbage” collection.

In the fall of 1965, I was working at the Computer Laboratory at the
Technical University of Norway in Trondheim. At that time, like Norsk
Regnesentral, their mainframe compute was a UNIVAC machine. That
machine replaced the GIER ALGOL computer that left a large community
of scientists and students, trained as ALGOL programmers, in the
FORTRAN desert. Based upon a strong request for an ALGOL service, my
own scientific interests and experience in compiler writing from Dansk
Regnesentral and Control Data Corp., an implementation of ALGOL on the
UNIVAC machine started in early 1966. Since SIMULA was ALGOL++, it
was agreed that our compiler should be expanded in due time to include the
SIMULA capabilities.

As it turned out this effort was like shooting at a moving target. The
SIMULA specifications were constantly changing and not ready when we
had to make important decisions on the compiler side. However, the
compiler was organized in a very open table driven manner in order to cope
with the not yet seen capabilities, hoping that whatever the requirements
where, they could be handled by adding new entries to the tables. In
Trondheim, we completed the regular ALGOL implementation and shipped
the compiler source code to the SIMULA team for additions. That this

From binary strings to visual programming 303

created some pain is rather obvious. The date for the completion of the
SIMULA 67 implementation on the UNIVAC computer is not quite clear
but my guess is late 1970 early 1971.

Alan Kay first recognized the real substance and importance of the new
model and associated programming concepts that SIMULA brought in the
outside world (US). The history of science is full of cases where the
implication of scientific research is not fully recognized in its time. I dear
say that even Kristen Nygaard, who was a man not known for muting his
opinions, did not realize the importance and impact of their work at the time
it was done.

Alan Kay took the SIMULA concepts into his Smalltalk language at
XEROX Park and this again had a substantial influence on the development
in programming and programming languages in the states. James Gosling at
SUN picked up many of Smalltalk’s capabilities when he developed the
NeWS (network-extensible window system) in the late 1980s. This work
was the foundation for the JAVA language in the early 1990s.

Bjarne Stroustrup at BELL Labs, an exiled Dane, created C++ by
adding the object oriented language elements of SIMULA to the C language
of the UNIX world, very much a creation of Kernighan and Ritchie. C was
born early in the 1970s and was probably the most used systems
programming language in the early 1980s. By extending it, Bjarne
Stroustrup brought object-orientation to systems programming. C++ is by
far the most used low-level systems programming language of to day. Being
an unsafe language with many low level characteristics like loose typing and
dynamic memory allocation in the hand of the programmer with the risk of
creating memory leaks, the cost of risky programming is no longer justified
in terms of faster code. One may wonder why maturity sometimes comes
slowly as we see the newly born C#, an offspring of Microsoft, finally offer
automatic garbage collection and strong typing to its users.

Bjarne Stroustrup’s achievement was to give systems programmer an
object-oriented tool within their “native language” framework C. It was an
effort right in time and on the right spot. It is difficult to envision modern
commercial software without C++.

There is a straight line from SIMULA to the unified modelling
language (UML) of today. However, probably the most fundamental effect
of the language is realizing that it led us to the most fundamental notion of
computer science Abstract Data Types (ADT), the basic building block of
computer programming. The SIMULA class is the concrete implementation
of ADT and the truest reflection of the formal definition of the word data.
The Object Management Group is now the most vivid forum of the
SIMULA heritage.

A breakthrough of a philosophical nature — how to reason and how to
support this reasoning with programming constructs — is not or will never be

304 Knut Skog

recognized by commercial measures. The conceptual and philosophical
contribution to computer science made by Nygaard and Dahl in the middle
of the 1960s is in my opinion equally important as von Neumann’s in the
middle of the 1940s.

5. MODERN TIMES

A new area in computing started when Transmission Control
Protocol/Internet Protocol (TCP/IP) became the de-facto standard for
networked computing. From local area computing to world wide web
(www) computing is a mayor brake from closely related development steps
starting with von Neumann “variable calculator” ending with timeshared
mainframe computers in the late 1980s. With hundreds of millions of
computers on the net, reaching into schools, offices, homes, cars, almost
anywhere within reach of even modest communication services, computers
are effecting the population of the world in ways no one could imagine ten to
fifteen years ago. Before approaching the network impacts on programming,
let us split the notion of programming in non-professional programming and
commercial professional programming.

The use of modern devices like mobile telephones, television sets,
kitchen stoves, etc. require people without training to perform simple
programming in operating these computerized gadgets. The combination of
complexity and flexibility of things spread in quantities of hundreds of
millions throughout the world is unparalleled in our history. Closest comes
the car costing 100 times more with a much simpler task (move from here to
there) to perform. In its simplest form, millions of people unconsciously do
non-professional programming simply by operating menus and setting
options.

The trend of reaching out to the novice programmer with lightweight
programming tools like Basic, Visual Basic, and XBasic continues and is a
consequence of a highly flexible device being a mass-market commodity.
There are simply not enough highly trained people for adapting computer
technology to applications. Providing tools for adaptation in so-called user-
friendly programming manners is not to be underestimated. For certain
applications, tailored light programming environments has proven to be
extremely successful.

Turning our attention to professional programming, the role of the
programming language as such is becoming more and more integrated with
its environment. It is simply not enough to type and edit statements in your
favourite plain text editor and turn it to its compiler. The reason is that we
can hardly make any application without extensive use of components.

From binary strings to visual programming 305

Managing these component libraries in the development process is necessary
for a reliable and cost effective development. Component based application
frequently involves very large quantities of code and requires tools for
maneuvering, displaying, and versioning as important mechanics of the
programming environment.

6. PROGRAMMING OF OUR TIME

To navigate within all of the source code of a modern application the
code itself must be kept in html like document format in which links to
components and modules is the prime navigation tool. The transition from
plain program text to an html-formatted form is far more than “pretty
printing”. It is an indispensable function of program manipulation and
reading. Of the total effort spent in applications programming, 80% goes
into maintenance, frequently handled by other persons than those who
initially wrote the programs. The readability of a program frequently
depends on comments in the code itself. The problem of keeping
commentaries consistent with the code is well known. The best remedy here
is to stay away from low level programming styles letting the code speak for
itself.

It is my opinion that the programming language issue of our time gives
us only to alternatives for commercial developers: Java and C#. To my
knowledge, these are the only fully commercially supported languages and
environments for professional development. C# is the latest on the arena,
though not the forerunner. Major developments on the environment side of
these systems are likely to come. This change all relates to managing
component growth and integration by sharing concentrated and distributed
resources through the network.

6.1 Document program and data

Keeping track of the latest trends in network application development
is an interesting challenge. There is a tendency to regard document and
program as equivalent notions. The simple reasoning seems to be that a
program is data, document is data, and therefore, a program is a document.
This seems very harmless, but it has some serious consequences.

First, let us recall that data is a “representation of ideas or facts in a
manner suitable for some process” (IFIP definition). For a document, the
process for which the representation shall be suitable is ultimately a human
reader, or listener for that sake, where as for the program the suitable
representation is ultimately for the computer to execute. However, the

306 Knut Skog

matter becomes complicated by the fact that humans also read a program and
for that purpose, it should be well documented. Here the computer is an
assistant.

The same is true for a modern digital document that a computer reads,
or rather processes, to make it neatly readable and easy maneuverable. The
only problem with our equation is that it makes a computer and a human
identical in terms of representational requirements for their processing
needs. This is in my opinion fundamentally wrong. So where does this
philosophical reasoning bring us. What impact does it make and where?

Librarians are professional document workers. In the early 1970s, they
introduced the Standard Generalized Markup Language (SGML), the first
markup language, now an ISO 8879 standard. They developed it for adding
computer detectable content structures to a document.

The development of web servers and network readers/browsers adapted
the markup method to apply to documents that are typeset and linked. The
Markup Language (ML) of what we call e-documents is HTML where HT
stands for Hyper Text. Together with the Multipurpose Internet Mail
Extensions (MIME) standard, HTML and TCP/IP (with domain name
services) are the cornerstones of the Web and its grate success. Hypertext is
a multimedia network integration facility that offers interactive (active
server pages) capabilities in which the reader may deliver (write) data for
processing. This e-document is far more potent than ordinary paper
documents. No wonder a blur exists between program and document
distinctions.

To follow up this success the www Consortium (W3C) has generalised
html into eXtendable Markup Language (XML). In this language the low-
level extensions occurs in a document type definition (DTD) notation and at
higher level by XMLSchemas. The XMLSchemas offer a data structuring
capability in which primitive built-in data types such as date, time, string,
decimal, integer, and float become building blocks for composed data
structures. There is no means for defining operations. The basic idea is that
a XML document is data structured by markups. We do not state the
processing aspect of this data, however; the marks receive mnemonic names
to indicate intuitively the meaning for a human reader. By lookup in name-
servers at URLs, we can inspect and interpret the XMLSchema for tags.

6.2 Reflections

XML is the promised new way of exchanging data among web
processes using the hypertext transport protocol (http). It is a character-
encoded vehicle for interoperability and is a working well for small volumes
of data. However, we should not take its scalability for granted.

From binary strings to visual programming 307

There are three reasons for my deeply founded skepticisms. First,
methods for the computer process itself are left out. By that, we are defining
a document primarily for human interpretation. This human is faced with
the task of using his tag interpretation in order to make the exchange
understood. Second, with increasing volume and complexity, the XML
exchange will hardly be looked at with a bare eye. The reader will most
likely use a tag interpretational service anyway. Third, the volume of the
verbose XML format, even when compressed, is substantially larger than for
anything seen so far. Even with constantly increasing transmission speeds,
there will always be bottlenecks, in particular in mobile communication.

Hence, the rapidly growing and extremely potent web community does
not seem to recognise the basic difference between document and program.
In particular, they do not adhere to the object-oriented philosophy.
Consequently, the golden rule of striving for orthogonal design and
conceptual economy seems to be dropped. In addition, the tendency of
modelling by defining exchange formats seems to be the new trend. A most
striking example is the vocabulary for the exchange of geo spatial data
define in the XML dialect called Geography Markup Language (GML3.0).
The number of tags introduced for this application has passed 1000. The
appendix of this paper gives an example of part of a GML exchange packet.

7. VISUAL PROGRAMMING

At the end of this jumpy tour through the first fifty years of computer
programming, I would like to return to the “programming light” issue. The
volume of new code created by non-professional programmers today by far
out-weights that of the professionals. In my notion of programming, I
include the craft of “html blacksmiths” — also called web-masters and web-
typographers. Tools available for web publishing in multimedia forms, with
active animated and interactive page areas, offer a kind of visual select and
paste type of programming by which they build many networked
applications. They may even give the reader (or should we say the client)
means of data input (menu selection, radio button, text-fields, etc.) which
when sent to application servers, interacts with databases and depositories of
various kinds, and returns requested information to the client.

Obviously, there will never be enough professionals to create all the
home pages on the net. It is a fact that people trained as web designers, with
no programming education, are capable of producing impressive active
documents, in which some kind of interpretative programming (scripting)
activated through the common gateway interface (CGI) is giving great
flexibility on the client side. Hence, for the new generation of light

308 Knut Skog

programmers, the time when programming was writing compiled code is
gone. The masses of light programmers claim their rights and they will most
likely grow in capabilities with the advancements of supporting development
environments. These environments are as themselves visual.

8. FROM UML TO EXECUTABLES

To deal with the server side challenges with interfaces to databases
which themselves could be part of a networked service, the developer are
still required to master a complete general purpose heavy duty programming
language as the integration method for components used. More than
anything else, the network technology has created a major change in our
conception and understanding of the notion of both programs and documents
and even the computer itself. “The network is the computer” was a saying at
SUN late in the 1980s. Today it is reality. We may call it by different
names, but system design and implementation of today is network oriented.
Adding this dimension to the object-oriented approach making what we
could call networked object orientation and tying it to our overall modelling
work, is the requirements of heavy-duty programming of our time.

Componast UMs }

3.

Comporent Class Lib

Cormponent RY fbrary

The previous diagram is just to stress that programming as the task of
creating executable code for applications is confined to input from a
modelling activity and from component libraries. To implement any new

From binary strings to visual programming 309

idea of real substance, the developer must make his selection of supporting
component libraries that at the final stage merge with his own programs.
From gestures or diagrams for which the current gospel is named Unified
Modelling Language (UML), formalized specifications are transferred to the
programming stage through the XML Metadata Interchange (XMI) format.
However, the process remains to be a chain of iterations and remaking.
Maintaining these iterations by the environments of system development is
another great challenge of our trade.

REFERENCES

[CompHist] http://www.levenez.com/lang/

[Turing] “On computable numbers, with an application to the Entscheidungsproblem”, Allan
Turing, London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.

[Burks]: W. Aspray and A. Burks (ed): Papers of John von Neumann on computing and
computer theory, Charles Babbage Institute, reprint series for the history of computing,
volume 12. The MIT Press, Cambridge Massachusetts, London.

[Holmvik]: http://java.sun.com/people/jag/SimulaHistory.html

APPENDIX

The following is an example of geographic data represented in the
Geography ML format, an application of XML with application specific data
structures define as XMLSchemas at specific name server URLs. The
genuine data values represented in this packet is given in bold for ease of
readability. Colon prefixed names refer to namespace assigned to the prefix
(gml) in the head of this package extending the XML namespace
(xmlns: gml=“http://www.opengis.net/gml”).

310 Knut Skog

<gml : featureMember>
<SchoolDistrict>
<gml :name>District 28</gml:name>
<gml :boundedBy>
<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml : coord><gml:X>0</gml:X><gml:Y>0</gml:¥></gml: coord>
<gml: coord><gml:X>50</gml:X><gml:Y¥>40</gml:Y></gml:coord>
</gml : Box>
</gml :boundedBy>

<schoolMember>
<School>
<gml :name>Alpha</gml : name>
<address>100 Cypress Ave.</address>
<gml:location>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml : coord><gml:X>20.0</gml:X><gml:¥>5.0</gml:¥></gml:coord>
</gml:Point>
</gml:location>
</School>
</schoolMember>

<gml :extentOf>
<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml :outerBoundaryIs>
<gml : LinearRing>
<gml:coord><gml:X>0</gml:X><gml:¥>0</gml:¥></gml:coord>
<gml : coord><gml:X>50</gml:X><gml:¥>0</gml:Y></gml:coord>
<gml : coord><gml : X>50</gml : X><gml:¥>40</gml: ¥></gml: coord>
<gml : coord><gml:X>0</gml:X><gml:¥>0</gml:¥></gml:coord>
</gml:LinearRing>
</gml:outerBoundaryIs>
</gml:Polygon>
</gml:extentOf>
</SchoolDistrict>
</gml:featureMember>

