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Abstract. Being provided with a unique high-frequency dataset, we are able to 
show by means of an empirical analysis that computer-based traders, i.e. 
Algorithmic Trading (AT) engines, behave significantly different from human 
traders with regard to their order cancellation behaviour. Furthermore, given 
exactly this difference we point out that the application of well-established 
“traditional” liquidity measurement methods may no longer be unequivocally 
applicable in today’s electronic markets. At least those liquidity measures that 
are based on committed liquidity need to be questioned. 
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1 Introduction 

The evolution of electronic order books, such as Deutsche Börse’s “Xetra” or 
London Stock Exchange’s “SETS”, eased the way for the automation of trading 
processes. Being able to access electronic markets via “Remote Access”, the physical 
presence at an exchange is no longer necessary. Both brokers (sell side) and – at least 
– those institutional investors (buy side) that are provided with a direct market access 
are frequently making use of the “new” opportunities provided by electronic markets. 
One of the resulting success stories during the last decade deals with the proliferated 
utilization of so called “Algorithmic Trading” (AT) engines. Today the group of 
computer-based traders, i.e. AT, generate about one-half of trading activity on major 
European markets (e.g. Xetra) and the percentage share continues to grow [1]. 

In a broader sense, algorithmic trading can be defined as “the use of algorithms to 
manage the trading process” [2, p. 1]. In a narrower sense, it can be defined as “the 
automated, computer-based execution of equity orders via direct market-access 
channels, usually with the goal of meeting a particular benchmark” [3, p. 1]. 
Depending on the respective definition, the investment decision is either exogenous or 
endogenous to the AT model. If the original investment decision is exogenous to the 
AT model the task of an algorithm is “limited” to implement a given external trading 
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intention with the goal to minimize market impact (implicit trading costs) and sustain 
potential alpha. This is the case when for example an investment fund manager makes 
a strategic investment decision that is large in volume. If this order is routed to the 
market as one big order, the potential market impact might jeopardize the investment 
yield aimed at. Therefore, these investment funds would advise brokers to, for 
instance, slice the original large order into several small orders. This task is conducted 
by both humans and AT engines with the difference that computers are usually 
cheaper to employ than humans. If the investment decision is endogenous to the AT 
model, the main goal of AT engines is not to sustain potential alpha, but to create 
alpha, i.e. find and implement profitable (intraday high frequency) investment 
strategies. 

2 Related Work & Derived Hypotheses 

Existing research on AT can be grouped into the categories algorithmic efficiency, 
algorithmic design / selection and algorithmic influence on the market. Literature on 
algorithmic efficiency aims to answer whether or not the use of algorithms, compared 
to traditional brokerage, creates additional value [3; 4]. Research on algorithmic 
design / selection guides especially practitioners on which kind of algorithm to choose 
for which kind of task and how to actually evaluate its’ success [5; 6]. The increased 
share of algorithmic trading activity during the last decade called for research on the 
algorithmic influence on the market as a whole. [7] sets up an agent-based simulation 
and evaluates the influence of AT on price formation and price volatility. [2] 
investigate whether or not AT improves liquidity and find that algorithmic trading and 
liquidity are positively related. But their proxy for AT, the normalized measure of 
“New York Stock Exchange” (NYSE) electronic message traffic, does not necessarily 
pick up variations in algorithmic liquidity supply though. Moreover, their approach is 
limited to the observation of a certain event and cannot be applied similarly in other 
markets. Consequently, having reviewed existing research on AT, we identified the 
liquidity contribution of AT as an area of research that still lacks sufficient insights.  

This paper aims to fill this gap because – among other things – liquidity is an 
important determinant of market quality [8]. But instead of directly trying to identify 
relationships between AT activity and associated market liquidity as [2] did, we 
question whether or not existing liquidity measurement concepts are still applicable 
and – most importantly – meaningful in today’s electronic markets.  

The cognition that “no single measure tells the whole story about liquidity” [9, p. 
55] has already been present for decades. Our main question, however, is whether or 
not the electronification of markets (including the increased utilization of AT engines) 
challenges existing, seemingly accepted, beliefs on the applicability of particular 
liquidity measures to certain market structures. 
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For example, the spread is one of the most commonly applied liquidity measures. 
A small difference between best bid and best ask usually indicates that a market is 
liquid. But as this liquidity measure is not capable to adequately capture all 
dimensions of liquidity (i.e. breadth, depth, immediacy, and resiliency), further 
liquidity measures such as the Cost of Round Trip (CRT) were proposed [10]. Hereby, 
CRT is defined as the weighted average price (VWAP) at which an order of a given 
size (D) can be executed. [10, p. 24] state that CRT will be “particularly useful in any 
market where a high proportion of available liquidity is committed […][and] as world 
equity markets increasingly adopt a pure electronic order book architecture, the 
applications of CRT(D) should increase”. The proposal of a similar approach by [11] 
underpins the increasing importance assigned to information contained in the depth of 
the order book. It may therefore be concluded that CRT is commonly viewed as an 
appropriate liquidity measure for today’s electronic markets. 

It is, however, questionable whether or not the majority of (visible) liquidity in 
today’s electronic markets is in fact committed. For example, given their technical 
abilities, AT engines are able to constantly monitor the market and instantaneously 
react to market movements by adjusting / cancelling their orders. This expected 
behaviour lowers the probability of being executed against informed order flow. Thus, 
compared to human traders, AT engines provide / commit liquidity to the market for a 
shorter period of time. [12] support this hypothesis because they find that a large 
amount of (non-marketable) limit orders are cancelled within a very short period of 
time in a limit order market. They call these rapidly cancelled orders “fleeting orders” 
and because of their frequent appearance question the “usual framework of patient 
limit orders and impatient market orders” (p. 2). Hypothesis H1 is expressed 
accordingly and will be addressed by means of a survival analysis. 

 
Hypothesis H1: The lifetime of AT orders is significantly shorter than the lifetime of

Non-AT orders. 
 
If the behaviour of AT engines is significantly different from humans (see for 

example H1; or [13]), if AT engines frequently make use of non-marketable – i.e. 
passive – limit orders, and if their market share is sufficiently large, the application of 
“traditional” liquidity measures that are based on the committed liquidity assumption 
may no longer be representative of overall market liquidity. Applying “traditional” 
liquidity measures to electronic markets with a large share of AT activity / trading 
might understate the liquidity contribution of this group of traders. This is especially 
true if AT engines commit liquidity only for a short period of time, but 
simultaneously represent a viable (passive) trading counterparty. In other words, even 
though AT engines do not commit liquidity to the market in a “traditional” sense 
these enhance a market’s liquidity by increasing the probability of finding a (passive) 
trading counterparty. We therefore expect the “traditional” liquidity measures that are 
based on committed liquidity to be (systematically) significantly lower than an 
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alternative trade-based liquidity measure. This, however, does not imply that the 
applied trade-based liquidity measure is superior to the other ones. It simply gauges a 
different aspect of liquidity provision that is not grasped by described “traditional” 
liquidity measures. Hence, Hypothesis H2 is expressed as follows: 

 
Hypothesis H2: Liquidity measures that are based on committed liquidity exhibit

significantly lower liquidity levels than alternative trade-based
liquidity measures in markets with a high degree of AT activity. 

 
As the evaluation of overall market liquidity alone does not allow us to evaluate 

Hypothesis H2, we will assess the liquidity contribution of AT engines. The main 
reason for this procedure is given by the fact that AT order flow is expected to be 
significantly different from Non-AT order flow (see H1). 

Hypothesis H2 is addressed by means of an empirical analysis. In order to 
incorporate above identified time component into the liquidity assessment, we will 
adopt the well known and often cited limit order option analogy [14] as one liquidity 
measurement method. Similar to CRT, it also aggregates the state of the entire limit 
order book into a single number. Thereby, limit orders are viewed as free trading 
options. For example, a limit order on the bid side indicates that a trader is willing to 
buy shares at its limit price. Accordingly, other market participants are given the 
opportunity to sell shares to the limit order liquidity provider at the respective limit 
price. In this case, the liquidity provider writes a free put option, i.e. one that “gives 
the holder [i.e. other market participants] the right to sell the underlying asset […] for 
a certain price [limit]” [15, p. 7]. In other words, a market is viewed as more liquid 
the more volume is available at the top of the order book and the longer the liquidity 
(i.e. limit orders) is provided to the market. 

Finally, in order to discuss the usefulness / applicability of above liquidity 
measures, we provide the reader with a (liquidity) benchmark that is based on 
executed volume (by trader group). The benchmark builds upon the notion that 
markets may also be termed liquid, if a lot of trading activity occurs. The volume of 
trading or the number of transactions respectively also serve as input to the liquidity 
measures proposed by [16] and [17]. 

The remainder of the paper is organized as follows: First, we introduce the reader 
to a unique dataset that will allow us to scrutinize above hypotheses. Second, we will 
separately address above hypotheses by means of an empirical analysis. Third, we 
will discuss the usefulness of the measurement methods and possible implications for 
market microstructure, i.e. e-finance, research. 
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3 Description of the Market and the Dataset 

3.1 Xetra Trading System 

The Frankfurt Stock Exchange (FWB) is operated by Deutsche Börse AG and 
offers both floor trading and fully-electronic trading via Xetra. In terms of market 
share, in 2007, 98.30% of order book turnover in German blue-chip DAX30 equities 
took place on Xetra. Remaining turnover was generated at FWB floor (1.08%) and at 
other regional German exchanges (0.62%) [1]. Dependent upon asset classes and 
corresponding asset liquidity, Xetra exhibits characteristics of a (1) pure order-driven, 
(2) pure quote-driven and (3) hybrid market model. Below analyses mainly 
concentrate on the pure-order driven market. 

(1) Highly liquid shares, e.g. those included in the DAX30 index, do not need 
market makers to provide liquidity to the market. Instead, investors post orders into 
the limit order book. Equities are traded continuously between an opening and a 
closing call auction, interrupted by one (midday) intraday call auction. Additional 
intraday call auctions are triggered by so called volatility interruptions, i.e. whenever 
a potential execution price lies outside a pre-defined static and / or dynamic price 
range. Matching of orders follows the price-time priority rule. 

(2) Xetra Best constitutes a functionality within the Xetra order book that allows 
for preferred execution of orders with order book consistency. 

(3) Analogue to the pure order-driven market, the hybrid market allows for 
continuous trading interacting with auctions. Investors’ orders are, however, 
complemented by limit orders (quotes) submitted by designated sponsors to improve 
liquidity. 

3.2 Dataset 

Deutsche Börse AG provided us with high-frequency order book data for those 
companies that were member of the German blue-chip DAX30 index during the 
period under investigation, i.e. between 2007-10-08 and 2007-10-12. The dataset 
contains all Xetra order book events during continuous trading, (opening-, intraday-, 
and closing-) auctions, pre-trading, post-trading and volatility interruptions. Each 
order, which is assigned a unique order number by the trading system, should at least 
trigger two events: First, a submission event and second either a full execution or a 
cancellation / deletion event. Each order can be partially executed and / or modified 
more than once. In Xetra, a modification event merely refers to a reduction of order 
volume. An increase in order volume would negatively affect the priority or execution 
probability of other orders. In this case, the system automatically generates a deletion 
event for the modified order and a new order entry event with increased volume. 
Analogue, technical deletion and insertion events occur due to changing trade 
restrictions that do not affect the price-time priority of other orders. 
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For each event, if appropriate, the following additional information is provided: 
timestamp, ISIN (International Security Identification Number), order number, 
auction trade flag, order type, buy/sell indicator, (hidden) size, price / limit, event 
code, trade restriction, and ATflag. The auction trade flag indicates the trading phase, 
e.g. continuous trading, during which the specific event occurred. One order may 
reveal different auction trade flags as for example order submission and order 
execution can take place during different trading phases. Order type indicates whether 
an order is a limit order, market order, iceberg order or market-to-limit order. Orders 
may also be restricted to be exclusively executed during a certain trading phase (trade 
restriction), e.g. auctions. 

The ATflag indicates whether (ATflag = 1) or not (ATflag = 0) a certain event has 
been triggered by an algorithm. It does not allow the identification and exploitation of 
activities of single market participants though. The identification of algorithms is 
made possible because Deutsche Börse AG offers its clients a special pricing model 
for computer generated trades (Automated Trading Program: AT). Participants of the 
Automated Trading Program oblige themselves to exclusively make use of the rebate-
relevant AT User-ID whenever transactions have been generated by an electronic 
system. Thereby “the electronic system has to determine two out of the three 
following order parameters: price (order type and / or order limit where applicable), 
timing (time of order entry) and quantity (quantity of the order in number of 
securities). […] The electronic system must generate buy or sell orders independently, 
i.e. without frequent manual intervention, using a specified program or data.” [18, p. 
1]. Considering both above “electronic system” definition and granted financial 
incentives (fee rebates), the AT flag can be appreciated as the best proxy for 
algorithmic trading activity currently available [19, p. 7]. It shall, however, be noted 
that despite of the strong financial incentives not all “algorithmic traders” may take 
part in the program. 

The above dataset allows for an order book reconstruction of covered DAX30 
securities at any time during the period under investigation, including all trading 
phases. Basically, all orders submitted prior to the time of interest, i.e. order book 
reconstruction, that are not fully executed, cancelled or deleted (including “deleted” 
invalid day orders) remain in the order book. The actual order limits are determined 
by further incorporating partial executions and modifications. The 
OrderEntryTimestamp allows for the consideration of time priority. 

4 Evaluation of Order Lifespan 

Hypothesis H1 is addressed by means of a survival analysis. Analogue to [12] we 
apply the life-table method. Thereby, for each order either “time to cancellation” (ttc) 
or “time to execution” (tte) are calculated. Results are broken down by levels of factor 
AT, i.e. has the order been submitted by an algorithm or not. Calculating the 



Algorithmic Trading Engines & Liquidity Contribution  7 

probability of cancellation, the execution event is used as (exogenous) censoring 
event, and vice versa. In this analysis, we merely refer to active cancellation. This 
does not include orders that are (automatically) deleted due to expiration. Actual 
(active cancellation) activities shall represent traders’ behaviour best. The sample 
includes all non-marketable DAX30 limit orders without auction-only trade 
restrictions that were submitted during continuous trading (during the one week 
sample period). Results can be found in Table 1. 

Table 1. Cancellation and execution rates of limit orders 

Time Cumulative proportion surviving at end of interval 
 Cancellation Execution 
 AT Non-AT AT Non-AT 

0.1 second(s) 0.877 0.958 0.986 0.991 
1 0.714 0.785 0.952 0.973 
2 0.662 0.729 0.941 0.967 
10 0.493 0.519 0.875 0.932 
1 minute(s) 0.229 0.230 0.713 0.831 
2 0.148 0.137 0.633 0.773 
10 0.033 0.062 0.470 0.631 
1 hour 0.001 0.004 0.148 0.145 

   
Wilcoxon 
(Gehan) statistic 

15,174 *** 56,429 *** 

*** indicates significance at the 1%-level. 
 
Probability of cancellation during the first 100 milliseconds is 12.3% for AT 

orders and 4.2% for Non-AT orders. Significance values based on the Wilcoxon 
(Gehan) statistic, which is based upon the differences in group mean scores, provide 
evidence that the probabilities of cancellation are significantly different across groups 
AT and Non-AT. The same holds true for the probability of execution. To conclude, 
Hypothesis H1 can be corroborated as AT engines show a different cancellation 
behaviour than Non-AT traders, i.e. humans. 

5 Evaluation of Order Types 

In order to make valid predictions regarding Hypothesis H2, it first of all needs to 
be scrutinized whether or not AT engines frequently make use of non-marketable – 
i.e. passive – limit orders. If this is the case and if their market share is sufficiently 
large, the application of “traditional” liquidity measures that are based on the 
committed liquidity assumption are expected to be no longer representative of overall 
market liquidity. A descriptive summary of used order types can be found in Table 2. 
The respective sample consists of all orders from DAX30 companies without auction-
only trade restrictions that were submitted during continuous trading (during the one 
week sample period). 
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Table 2. Order types 

Order type No. of orders  % of AT / Non-AT 
 AT Non-AT AT Non-AT 
Limit order 2,163,801 1,828,696 99.64 % 94.99 % 

(1) non-marketable 1,911,213 1,704,567 88.01 % 88.55 % 
(2) marketable 252,588 124,129 11.63 % 6.44 % 

  
Market order 3,042 40,973 0.14 % 2.13 % 
Iceberg order 4,733 54,792 0.22 % 2.85 % 
Market-to-Limit order 0 599 0.00 % 0.03 % 

  
SUM 2,171,576 1,925,060   

 
It can be observed that both groups of traders, i.e. AT and Non-AT, submit 

comparable number of orders. AT, however, make use of limit orders more 
frequently. 99.64% of all submitted AT orders are limit orders. This may be due to the 
fact that Non-AT deploy other order types such as iceberg orders (2.13%) or market-
to-limit orders (2.85%) more often. It follows that the potential liquidity provision of 
algorithms via non-marketable limit orders is huge. 52.86% of all non-marketable 
limit orders are submitted by algorithms. For a discussion on why limit order trading 
actually seems viable see for instance [20]. 

It shall be noted that the average size of AT orders is smaller than the average size 
of Non-AT orders (not shown here). Systematically smaller AT order sizes may in 
fact lower the absolute value of below described committed liquidity contribution 
measures. The relative comparison to the trade-based liquidity measure is, however, 
not influenced by lower order sizes. 

6 Evaluation of Liquidity Measures 

In order to address Hypothesis H2, we introduce three different liquidity measures 
and apply them to the dataset. Potentially differing results will then serve as a basis to 
discuss the usefulness of each liquidity measure, especially with regard to the 
application in markets with a large degree of AT activity. The first two liquidity 
measures will stick to the “traditional” notion and will basically concentrate on the 
amount of limit orders in the order book. For both calculations, the order book is 
reconstructed on a minute-by-minute basis and the two liquidity measures are 
calculated according to below description. The third liquidity measure, however, is 
totally different in nature. It defines liquidity by means of trading activity. 

6.1 Pure Order Volume 

The first measure of AT liquidity contribution via non-marketable limit orders is a 
quite simple one. For each (minute-by-minute) reconstructed limit order book, we 
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know which order has been submitted by an algorithm, i.e. member of the AT-
program, or a human trader (see Table 3, AT orders are marked grey). Liquidity 
contribution by AT engines is then defined as the share of pure submitted volume 
resting in the order book (∑AT size / ∑size).1 It follows that this liquidity measure is 
based on committed liquidity, i.e. liquidity provided to the market via non-marketable 
limit orders. 

Table 3. Exemplary order book 

BID     ASK    
cVol C Size Limit  Limit Size C cVol 
1,218.39 0.2248 5,421 47.14  47.18 225 0.0614 34.20 
3.58 0.0996 36 47.14  47.18 1,757 0.1424 250.16 
11.87 0.1187 100 47.13  47.18 557 0.1678 37.77 
57.89 0.0680 851 47.12  47.19 252 0.2247 56.63 
3,359.80 0.3360 10,000 47.11  47.20 500 0.3021 151.05 
         
 Relevant inputs to pure order volume (see 6.1)  
         

Relevant inputs to option value (see 6.2) 

6.2 Option Value 

The volume measure takes account of the depth of the order book, but obviously 
does not differentiate between order aggressiveness and the time of liquidity 
contribution. In order to incorporate these dimensions as well and, especially, to show 
the impact of above identified lifespan differences (Hypothesis H1), above introduced 
limit order option analogy is applied by means of the order book option value. [14, p. 
1457] were the first to empirically evaluate the option-like characteristics of limit 
orders “by characterizing the cost of supplying quotes, as writing a put and a call 
option [‘free’ straddle option] to an information-motivated trader”. Since then the 
approach has been applied to both non-dealer markets such as the Australian Stock 
Exchange [21] and hybrid markets such as the New York Stock Exchange [22]. 

Based on the Black & Scholes [23] option pricing model (see Formula 1, 2, 3 for a 
call option), option values are calculated for all limit orders in the order book (also 
see Table 3). These limit order option values C are multiplied with their respective 
volumes to achieve cVol. Afterwards, aggregate option values ( ∑ܸ݈ܿ݋ ) for both the 
bid and the ask side are calculated, including (1) all limit orders and (2) only AT-

                                                      
1 Example BID side (given that the displayed orders constitute the whole order book): “∑AT 

size” is equivalent to the sum of those orders that are marked grey, i.e. 36 + 851 = 887. 
“∑size” is the sum of all orders resting in the order book, i.e. 16,408. The AT liquidity 
contribution for this particular point in time is then 0.054. 
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orders. Respective values for the whole order book (cAll) are achieved by equally 
weighting AT liquidity contribution of the bid and the ask side. Inputs to the option 
pricing model were chosen as described below. 

 
଴ܥ ൌ ܵ଴ܰሺ݀ଵሻ െ ܺ݁ି௥்ܰሺ݀ଶሻ (1) 

 
where ݀ଵ ൌ

ln ቀܵ଴ܺ ቁ ൅ ൬ݎ ൅ ଶߪ
2 ൰ܶ

ܶ√ߪ
 (2) 

 ݀ଶ ൌ ݀ଵ െ  (3) ܶ√ߪ
 
  ଴ Current call option valueܥ
ܵ଴ Current stock price  
N(d) Probability that a random draw from a standard normal distribution 

will be less than d. 
X Exercise price  
r Risk-free interest rate  
T Time to maturity  
Σ Standard deviation  

6.2.1 Asset Price & Strike Price (S0, X) 

Following the option analogy, asset price S is given by the security’s mid-point. 
Strike price X is the price of the limit order. Options are always out-of-the-money. In 
the case of bid put options, the asset price is larger than the strike price (S > X), and in 
the case of ask call options, the asset price is smaller than the strike price (S < X). 

6.2.2 Riskless Rate of Interest (r) 

We use the 3-month EURIBOR (Euro Interbank Offered Rate) as of 2007-10-08 
for the risk-free interest rate. Analogue to [22, p. 37] we believe that “the assumed 
interest rate has essentially no impact on the results since the short time intervals 
[option’s maturity] involved ensure that it has little effect on the option values”. 
Moreover, any bias will likely affect both sides of the order book and both AT and 
Non-AT orders. The riskless rate of return as well as the following figures “volatility” 
and “maturity” were annualized. 

6.2.3 Asset’s Volatility (σ) 

[21] calculate implied standard deviations using the method proposed by [24]. 
[22] estimate volatility by its annualized daily return variance and mention that a 
time-varying volatility model was not expected to change their results. We follow 
their approach and estimate end-of day volatilities. Daily closing data is directly taken 
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from “Reuters Tick History” (University access) for the six month period prior to the 
observation period. 

6.2.4 Option’s Maturity (T) 

The life of a limit order begins upon submission and ends upon full execution, 
cancellation or expiration (deletion). [21] arbitrarily allocate lifetimes to the limit 
orders. Thereby, all limit orders independent of their size or position in the order book 
are treated alike and are expected to remain in the order book for the same amount of 
time. In contrast, [22] model limit order lifetimes depending on their prices, sizes and 
market conditions. We also believe that the expected lifetime of orders is dependent 
upon both individual order particularities and the order book situation. Therefore, for 
each security the following linear model is estimated: 

 
ሻݎݐܶ݃݋ሺ݈ܧ ൌ ଴ߚ ൅ ݁݃ܣ݃݋ଵ݈ߚ ൅ ݁ݑ݁ݑݍଶߚ ൅ ଷ݂݂݉݅݀݀݅ߚ ൅ ݁ݏ݋݈ܥ݋ݐ݁݉݅ܶ݃݋ସ݈ߚ

൅ ݕܽ݀݋ݐݕ݉݉ݑହ݀ߚ ൅ ݁ݖ݅ݏ଺ߚ ൅ ݈݂݃ܽܶܣ଻ߚ ൅ ݁ݑ݁ݑݍ଼ߚ
כ ݁ݏ݋݈ܥ݋ݐ݁݉݅ܶ ൅ ଽ݂݂݉݅݀݀݅ߚ כ  ݁ݏ݋݈ܥ݋ܶ݁݉݅ܶ

(4) 

 
The estimated “time to removal” (Ttr) includes execution, cancellation and 

expiration events. Analogue to [22], we log the dependent variable Ttr to control for 
residual heteroskedasticity. LogAge refers to the (log) time the respective order has 
already rested in the order book. Queue represents the cumulated volume (size) of 
orders with higher price priority and time precedence. Before the respective order can 
be executed, all orders in the queue need to be executed (or cancelled) first. Middiff is 
the absolute difference between the orders limit and the mid-point between best bid 
and best ask. TimetoClose is the (log) minute time until the end of the trading day. 
Dummytoday constitutes a dummy variable that indicates whether (1) or not (0) an 
order was submitted the same day. Size naturally refers to the submitted volume of the 
respective order. In our case, it includes both visible size and hidden size provided by 
iceberg orders. Finally, the ATflag indicates whether (1) or not (0) the respective order 
was submitted by an algorithm. Analogue to [22], the two interaction terms model 
cross-effects among terms queue and TimetoClose and among terms middiff and 
TimetoClose. 

For the estimation samples, the order book is reconstructed on a minute-by-minute 
basis each trading day between 9:00 AM and 5:30 PM. Then logTtr is estimated for 
all (limit) orders in the order book where the time of removal is known. Given the 
minute-by-minute order book reconstruction approach, the same orders may appear in 
different estimation samples at different times with different inputs though.  

Regression results can be found in Table 4. Analogue to below analyses, 
calculations are conducted on a sub-sample of five randomly chosen DAX30 
companies. Except on the coefficient queue (ALV), all coefficients are significant at 
the 1%-level. It can be observed that AT orders have a shorter lifetime than Non-AT 
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orders, i.e. (negative coefficient). It shall, however, be noted that Ttr is influenced by 
both execution and cancellation events that may act in different directions. For 
example, regarding middiff it might be expected that more aggressively priced orders 
are executed earlier. This is due to the fact that these rest at the top of the order book. 
Simultaneously, less aggressively priced orders are presumed to be cancelled more 
frequently. Less aggressively priced orders, waiting deep in the order book, are less 
likely to be executed and due to new information arrival might need to be updated. 
The observation of negative coefficients for middiff therefore provides evidence that 
the “cancellation-effect” outweighs the “execution-effect”. Comparatively low fill 
rates (not shown here in detail), i.e. the percentage of orders that were actually 
executed, of 11.78% for Non-AT submitted orders and 17.12% for AT submitted 
orders confirm the importance of the “cancellation-effect”. 

Table 4. Regression coefficients from linear model 

Company*: ALV BMW DTE MAN CON 
Adjusted R2 0.553 0.520 0.513 0.595 0.609 

  
Constant -0.4203 -0.1116 0.2383 -1.4575 -0.6203 
logAge 0.6263 0.5063 0.4935 0.6423 0.5848 
Queue 1.4 E-06 1.8 E-06 6.0 E-08 4.9 E-06 5.2 E-06 
Middiff -0.0003 -0.0155 -0.0031 0.0022 -0.0041 
logTimetoClose 0.3447 0.3919 0.3834 0.5213 0.4065 
dummytoday 0.3517 0.2310 0.0603 0.4421 0.2944 
Size -1.4 E-05 -1.2 E-05 -6.8 E-06 -3.7 E-05 -6.5 E-05 
ATflag -0.3631 -0.3966 -0.3476 -0.2081 -0.3663 
QueueTimetoClose 6.6 E-11 2.6 E-11 7.5 E-12 2.3 E11 1.7 E-10 
middiffTimetoClose -1.8 E-07 -1.1 E-06 -1.0 E-07 -7.7 E-08 -5.5 E-08 
* ALV = Allianz; BMW; DTE = Deutsche Telekom; MAN; CON = Continental 

6.3 Passive Trading Counterparty 

The last proposed measure evaluates the liquidity of a market by means of trading 
activity. The liquidity measure is assumed to be especially useful for the assessment 
of markets where the majority of liquidity is not “committed”, but a lot of trading 
activity occurs. Analogue to previous liquidity measures, the main focus is again laid 
on those (limit) orders that seemingly provide liquidity by passively sitting in the 
order book. Looking at actual executions, it is assessed how much volume is executed 
against passive AT limit orders. In other words, this measure builds upon the notion 
that a market is more liquid, the higher the probability of finding a “passive” trading 
counterparty is. This definition, of course, merely refers to the liquidity contribution 
of AT engines. 
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6.4 Results 

Results for the first two liquidity measures pure order volume and option value 
can be found in Table 5. Regarding the first two liquidity contribution figures, two 
findings are obvious: 

First, the liquidity contribution of AT engines suggested by pure submitted 
volume is consistently larger than the value suggested by option valuation. The most 
likely reason for this finding may be found with the “time of liquidity contribution” 
(see Table 1, Table 4). Consequently the free trading option offered to the market is 
less valuable. 

Second, the values provided by both methods are much smaller than the share 
assumed by the number of non-marketable limit orders submitted by AT engines. In 
the whole DAX30 sample, 54.20% of all submitted limit orders originate from 
algorithms. Thereby, 88.01% (1,911,213) of all AT-submitted orders are non-
marketable limit orders (see Table 2). 

Table 5. AT liquidity contribution 

  Share of AT orders,  
given option values 

 Share of AT orders,  
given order volumes 

  BID ASK Both  BID ASK Both 
ALV Mean (in %) 2.88 3.29 3.08  9.78 6.71 8.24 
 Standard Deviation 0.010 0.008 0.005  0.020 0.010 0.014 
BMW Mean (in %) 2.38 6.07 4.23  10.63 12.54 11.58 
 Standard Deviation 0.015 0.036 0.018  0.036 0.042 0.025 
DTE Mean (in %) 3.37 3.35 3.36  7.11 3.95 5.53 
 Standard Deviation 0.021 0.009 0.014  0.023 0.015 0.015 
MAN Mean (in %) 3.65 1.83 2.74  8.20 3.45 5.83 
 Standard Deviation 0.025 0.019 0.015  0.062 0.032 0.035 
CON Mean (in %) 2.54 2.66 2.60  4.74 4.08 4.41 
 Standard Deviation 0.020 0.012 0.009  0.024 0.020 0.015 

 
Results for the third liquidity measure passive trading counterparty can be found 

in Table 6. The figure of interest is the one where AT engines constitute the passive 
counterparty within a trade. In other words, the passive limit orders sit in the order 
book and are executed because of an incoming market order or marketable limit 
order. The share of AT being Non-Aggressor is comparatively high. For example, 
40.28% of executed volume in BMW is executed against passive AT engines. 
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Table 6. Volume of executions with AT as Non-Aggressor 

 Volume of 
executions 

Aggressor Non-Aggressor 
(passive counterparty) 

  AT Non-AT AT Non-AT 
ALV 9,129,140 54.83% 45.17%  42.97% 57.03% 
BMW 10,760,588 46.85% 53.15%  40.28% 59.72% 
DTE 111,047,806 34.18% 65.82%  32.34% 67.66% 
MAN 6,811,806 39.52% 60.48%  36.65% 63.35% 
CON 5,176,324 39.66% 60.34%  38.67% 61.33% 

 
Even though both the last liquidity measure passive trading counterparty and the 

first two liquidity measures order volume and option value incorporate passive non-
marketable limit orders submitted by AT, the results significantly2 differ from each 
other. This is due to the fact that AT engines behave significantly different from 
humans (Hypothesis H1) and that this behaviour cannot sufficiently be grasped by 
“traditional” liquidity measures. For example, the option value approach implicitly 
assumes that those orders which seemingly provide liquidity to the market by non-
marketable limit orders are also the ones that will finally be executed. But especially 
for the new trader group, AT engines, this is not necessarily true: AT engines place 
their limit orders in such a way that these will remain in the order book for only a 
short period of time which results in a low option value. These might not want to 
reveal their trading intentions to the market by means of providing free trading 
options. Analogue to above liquidity definition, this part of liquidity is merely 
“committed” for a very short period of time. Nonetheless, proven by the volume of 
executions (Table 6), these do provide (passive) liquidity to the market. This liquidity, 
however, is merely transient / fleeting and may only reveal itself when an eligible 
trading counterparty emerges. To conclude, Hypothesis H2 can be corroborated. 

7 Conclusion 

Having conducted a short literature review on AT, we identified the interaction of 
algorithmic trading (i.e. technology) and liquidity as an important area of research 
that still lacks rigorous insights and methodologies. Pursuing to fill this gap, we 
assess the applicability of liquidity measurement concepts in the presence of frequent 
AT activity. As liquidity measures, such as the order book option value, are to a 

                                                      
2 Liquidity measures order volume and option value were calculated on a minute-by-minute 

basis given the reconstructed order books. Based on a simple t-test it can be concluded that 
these two figures statistically significantly differ from each other. Figures of the liquidity 
measure passive trading counterparty are based on the calculation of the one-minute period 
prior to the respective order book reconstruction. Based on two t-tests, this measure also 
statistically significantly differs from the other two measures. Pre-requisites for the t-test are 
fulfilled. 
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certain degree based on a particular market (behaviour) belief, the derived results also 
provide evidence how AT order flow blurs traditional definitions. 

Being provided with a unique high frequency dataset that enables us to allocate the 
origin of each single order in the order book to either “algorithms” or “normal” 
human traders, we are – to our knowledge – the first to draw valid conclusions on the 
liquidity contribution of AT engines. To summarize, the empirical analysis provides 
evidence that AT engines behave significantly different from human traders with 
regard to their order cancellation behaviour. Furthermore, given exactly these 
differences, we were able to show that the application of liquidity measures that are 
based on “traditional” (liquidity commitment) market microstructure beliefs do not 
necessarily represent the “real” liquidity contribution of AT engines. Due to the fact 
that the share of AT trading is likely to increase in European markets, the potential for 
liquidity misinterpretation might even increase and should therefore be taken into 
account by traders, market providers, and researchers. Nonetheless, it shall be noted 
that we do not want promote the “one” right liquidity measure, but instead we hope to 
trigger a discussion on the usefulness of certain liquidity measures in today’s 
electronic markets. Overall, we were able to show that the heavy use of technology 
(i.e. AT engines, computers) changes the way financial markets work and therefore 
also the way these should be assessed / interpreted. 

Future work will include above appraisal on the whole DAX30 dataset. Moreover, 
the relation between different liquidity measures over a period of time will be 
investigated. The assessment of intraday patters might also provide an interesting 
direction of future research. 
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