
A Rule-Based Approach of Creating and
Executing Mashups

Emilian Pascalau1 and Adrian Giurca2

1 Hasso Plattner Institute, Germany
emilian.pascalau@hpi.uni-potsdam.de

2 Brandenburg University of Technology, Germany
giurca@tu-cottbus.de

Abstract. This paper shows how business rules and particularly how
JSON Rules can be used to model mashups together with underlining
the advantages of this solution compared to traditional techniques. To
achieve this, a concrete use case combining Monster Job Search and
Google Maps is developed. In addition, we study the similarities be-
tween the conceptual models of mashup and Software as Service and
argue towards a common sense by using their common root: the services
choreography.

Keywords. Mashup, Software as Service, Web 2.0 applications, Business
rules, JSON Rules

1 Introduction

A common perception regarding Future Internet is that of an Internet of Ser-
vices and Internet of Things. As described by SAP co-CEO Henning Kagermann
[1], ”The Internet of Services is largely based on a service-oriented architecture
(SOA), which is a flexible, standardized architecture that facilitates the combina-
tion of various applications into inter-operable services. The Internet of Services
also uses semantic tools technologies that understand the meaning of informa-
tion and facilitate the accessibility of content (video, audio, print). Thus, data
from various sources and different formats can easily be combined and processed
toward a wealth of innovative Web-based services.”

In this context several major paradigms get mixed: Software as a Service
(SaaS) [2], Web 2.0 [3], and Enterprise 2.0 [4].

We are witnessing a continuous growth in interest for the services that em-
braces different shapes such as SaaS, mashups, combined with Semantic Web
technologies, all of them towards improving interactivity and collaboration on
the Web.

According to Gartner’s study Market Trends: Software as a Service, World-
wide, 2007-2012 the worldwide market for software as a service will grow from
4.25 billion in 2006 to 13.02 billions in 2011. Major players such as Salesforce and
Google already experiment and provide services that meet the requirements of
SaaS applications. They provide several APIs and interconnectivity technologies

http://www.gartner.com/DisplayDocument?ref=g_search&id=757431
http://www.gartner.com/DisplayDocument?ref=g_search&id=757431
http://www.salesforce.com
http://wwww.google.com

either between their services or between other services (such as Facebook for
example).

Despite open APIs, another perspective of services aggregation on the Web
is offered by mashups. In its early stage this concept has been seen more like
a tool approach, but in the last time it started to receive attention also from
the academia’s side (see for example, [5], [6], [7]). Looking to both SaaS and
mashups paradigms we can see a common root: both of them deal with the same
major concept - service aggregation.

This paper strives to bring to a common sense several paradigms that have
already been enumerated here, in particular SaaS and Mashups. We introduce
a rule modeling and execution approach to build up mashups. Rules already
attract the interest of some players such as Google (i.e. in Google Spreadsheet
the user is allowed to change colors using rules) or Adobe (interested in emulating
a rule parser in Adobe Flex) simply because, using rules, offers to both mashup
creators and mashup users the ability to dynamically change according to their
taste their experience on the Web.

In the area of rule modeling there are different developer communities like
UML modelers and ontology architects. The former uses rules in business model-
ing and in software development, while the latter uses rules in collaborative Web
applications. The main reason is that rules can be easily captured and modified,
and they empower applications with grater flexibility. Therefore, using rules to
model and to execute mashups seems to be an appealing solution that could: (1)
offer another solution for service aggregation (the main focus is on SOAP/REST
based services) and (2) provide a simple way to understand, model and define
behavior/interaction between services.

In overall, this work proposes a rule-based approach of modeling and creating
mashups. This approach uses JSON Rules, a JavaScript-based rule language and
rule engine. This language was introduced in one of our previous work ([8]) with
the goal to empower Web 2.0 applications with rule-based inference capabilities.

2 Introduction to JSON Rules

JSON Rules language [8] was built by following two requirements: (1) The
”Working Memory” is the Document Object Model (DOM) [9] of the page i.e.
the main effect of rules execution is the DOM update, and (2) Rules are executed
in the browser. The reason of these requirements is that the content displayed
in a web page, besides multimedia content, is mainly a DOM tree. Therefore
the main constructs of the language are strongly influenced by this particular
environment where the rules are going to be executed.

The language uses a condition language similar with other rule systems (for
example Drools, [10]) and employs any JavaScript function call as actions. The
syntax was influenced by the JSON Notation [11] a well known notation to
express JavaScript objects. In addition to the classical production systems, JSON
Rules deals with Event-Condition-Action (ECA) rules triggered by DOM Events
[12].

http://www.facebook.com

A condensed version of the rule metamodel is depicted in Figure 1.

id : String
priority : Integer = 1
appliesTo : Array

JSONRule

Atom

conditions 0..*

1

JSONRuleSet

1

1..*

Action

actions 1..*

1

EventExpression

triggeringEvent 1
1

DescriptionNodeEquality

Negation

1

*

XPathCondition JavaScriptBooleanExpression

{rule->forAll(r1,r2|r1.appliesTo=r2.appliesTo)}

Fig. 1. An excerpt of JSON Rules language metamodel

In brief we identify the following properties, many of them found in all clas-
sical production systems:

– A JSON Rule is uniquely identified by an id.
– A priority optional attribute is used to express the order in which rules

get ordered in the activation queue (1 by default). The execution order for
rules with the same priority is irrelevant.

– The required appliesTo attribute holds a list of URL’s on which the rule
can be executed.

– An EventExpression is used to match any DOM Event. Therefore it con-
tains a number of standard DOM Events properties such as: type, target,
timeStamp and phaseType.

– The rule may contain a list of conditions (logically interpreted as a con-
junction of atoms). There are four types of conditions that can be actually
expressed using JSON Rules:

(1) JavaScriptBooleanCondition - the simplest atom allowing JavaScript
boolean, (2) Descriptions - a simplified version of Drools description pat-
tern, (3) == - DOM Node equality, (4) XPathCondition - evaluates the
membership of a DOM Node against the nodelist obtained by evaluating
an XPath [13] expression and (5) not - negation of conditions. Further ex-
tensions of the language may envision other types of conditionals.

– The rule must contain a nonempty array of actions, all of them being exe-
cuted sequentially. Any JavaScript function call is allowed as an action. If
the function is not available, no call is performed.

3 Creating Mashups with JSON Rules

There are several concrete use cases on which this approach could be illustrated.
We picked a simple one interesting and practical in the same time. In a world were
speed is one of the most important decision factors and were businesses changes
also at a great speed, people are required to relocate all the time, and change
jobs, especially for those working in the IT field. There are several important
aspects that usually are taken into account when looking for job, especially if
you have family and kids including where is the job located - and you would like
to see that on a map. Based on the job location you would like to see the quality
of family environment, for example, if there are any schools/universities in the
area and their quality facts. The neighborhood is also important and you may
want to see some photos in the area.

There are many helpful public services such as Monster Job Search Service,
Google Maps, Wikipedia or Flicker which can be used to reach the goal.

One may use these services in a separate way collecting the data he needs.
However this process is time consuming and not always with out difficulties,
because you have to run between several open tabs, you have to remember and
manually insert again and again data from different services. A nice approach
would be to have all these services interacting each other in the same page.

A programmer may choose one of the available mashup editors but, in this
case, he will not be able to run the mashup on an arbitrary server. Usually
they run on the tools provider’s server. Using JSON Rules, this shortcoming
is removed since the engine can be packed in different ways: either as a stand
alone JavaScript application that can be imported and used in any page or as a
browser add-on. In addition, the service interaction is difficult to be expressed
using mashup editors and ends into large and complex code to be written.

For simplicity our example mashup will only use the Monster Job Search
Engine and Google Maps.

Lets consider the following case:

We are looking for a job using the Monster Job Search Service. Once
the job is obtained the location is shown on a Google Maps and if it is
possible, some supplementary information is provided.

The following requirements were considered:

http://www.monster.ca
http://maps.google.com
http://www.wikipedia.org
http://www.fliker.com

– All these services must interact in one page. This page is called choreographer.
– The search term must be inserted manually in a form invoking the Monster

Job Search Service. The other services must react on the returned data.
– When the mouse is over a job, the job should be visually indicated on Google

Maps.
– When the mouse is over a job, the information regarding the job, if any,

should be retrieved from another service (such as Wikipedia).
– Involved services should be personalized.

To be able to define rules that will power our use case we must know how
involved services look like, how they can be interrogated and how does their
response look like.

3.1 Monster Job Search

The Monster start page provides a number of components that may not be
necessary in our mashup, as, for example the Sign Up!/Sign In component.

Figure 2 shows an excerpt of the HTML output of the Monster search and
it is necessary to understand the rules related to the usage of Monster inside of
our mashup.

3.2 Google Maps

The maps service from Google is well known probably to everyone reading this
paper, so we will present here only the DOM tree view (Figure 3) of the search
field which is necessary to understand the rules that will implement the search.

3.3 Modeling the Mashup Rules

Having presented the input and output of the involved services we can now
present the rules that power up our mashup. To be able to define rules that will
make the several involved services work together, they must be available to the
Choreographer.

Rule: Load services so that the Choreographer can use them

{ "id":"loadServices",
"appliesTo":["http://www.jsonrules.org/examples/i3e/"],

"eventExpression":{
"type":"load"
},

"condition":true,
"actions":["load(’http://jobsearch.monster.ca’)",

"load(’http://maps.google.com’)"]
}

1 <div c l a s s =”jobSearchResultDiv ” id=”j o b S e a r c h r e s u l t”>
2 <div id=”sortOpt ions ” c l a s s=”sortOpt ions”>
3 . . .
4 </div>
5 <div c l a s s =”stackedView”>
6 <div c l a s s =”stackedRowPurple”>
7 <div c l a s s =”j o b I n f o ” s t y l e=”width : 673px;”>
8 <div c l a s s =”stackedViewJobViewLink”
9 id=”stackedViewJobViewLink0”>

10 <div id=”j o b l i n k 0 ” c l a s s=”j o b l i n k”>
11 <a o n c l i c k=”jobViewOnClickSaveCookie (0) ; ”
12 h r e f = ” . . . ” onmouseover=”ctlMouseOverRender (0) ; ”
13 id=”j o b v i e w l i n k 0 ” c l a s s =” j o b l i n k s”>
14 Technica l So lu t i on Arch i t e c t − IT
15
16 </div>
17 </div>
18 <div c l a s s =”stackedViewWidth1” s t y l e=”width : 224 .333 px;”>
19 <div c l a s s =”stackedViewCompanyLogo”
20 id=”stackedViewCompanyLogo0”/>
21 </div>
22 <div c l a s s =”stackedViewWidth2” s t y l e=”width : 224 .333 px;”>
23 <div c l a s s =”stackedViewCompany”>
24 Lockheed Martin Canada
25 </div>
26 <div c l a s s =”stackedViewDate”>
27 Posted : March 23
28 </div>
29 </div>
30 <div c l a s s =”stackedViewWidth3” s t y l e=”width : 224 .333 px;”>
31 <div c l a s s =”stackedViewJobPlace”>
32 <div c l a s s =”jobPlace”>
33 Ottawa , ON
34 </div>
35 </div>
36 <div c l a s s =”stackedViewMiles”>
37 <div c l a s s =”distanceTextMsg”>
38 Distance :
39 </div>
40 </div>
41 </div>
42 </div>
43 <div c l a s s =”job Icons ” s t y l e=”width : 92px;”>
44 . . .
45 </div>
46 </div>
47 . . .
48 </div>
49 </div>

Fig. 2. Monster Job Search Service - excerpt of search output

1 <form id=”q form ” ac t i on =”/maps” . . . >
2 <div c l a s s =”s r c h c o l c o n t r o l s”>
3 <input type=”text ”
4 value=”” autocomplete=” o f f ”
5 maxlength=”2048” tabindex=”1”
6 t i t l e =”Search the map” name=”q” id=”q d ”
7 s t y l e=”width : 33em;”/>
8
9 </div>

10 </form>

Fig. 3. Google Maps - search field

The above rule applies to the choreographer URL and states that whenever
a DOM event of type load occurs then two load action are executed. The side
effect is the loading of the services we need in the mashup.

Filtering the DOM to eliminate undesired elements can be easily performed
by using XPathConditions. For example, the below rule identifies the Sign
Up!/Sign In component of Monster by using the XPath expression:
/html/body/form/div[3]/div[2]/div and remove all elements:

Rule : Remove Sign Up!/Sign In component rule

{"id":"ruleDeleteMonsterLoginComponent",
"appliesTo": ["http://www.jsonrules.org/examples/i3e/",

"http://jobsearch.monster.ca/"],
"eventExpression":{"type":"load"},
"condition": ["$X in ’/html/body/form/div[3]/div[2]/div’"],
"actions":["document.removeChild($X)"]

}

On event of type load, remove all nodes returned by evaluating the
XPathCondition.

Having data received from Monster (as in Figure 2) we find the results in a
specific div element (having id="jobSearchresult" and
class="jobSearchResultDiv"). Although such a div has several children we
are particulary interested in those div children having
class="jobInfo". The children of this div provide us with all the information
needed further for the Google Maps service.

To find out the location of a job identified as stated above we must retrieve
the company name and the location and provide this information as input value
for the Google Maps input field (See Figure 3). In addition, our requirements
impose that the location of a job should be displayed when a mouseover event
occurs on the element containing the specific job.

Rule: Find a job location on a Google Map

{"id":"findJobLocation",

"appliesTo": ["http://www.jsonrules.org/examples/i3e/",
"http://jobsearch.monster.ca/"],

"eventExpression":{"type":"mouseover",
"target":"$X"

},
"condition":

[
"$X:HTMLElement(

tagName==’div’,
className==’jobInfo’
)",

"$Y in ’child::$X’",
"$Y:HTMLElement(

tagName==’div’,
className==’stackedViewCompany’
)",

"$Z in ’child::$X’",
"$Z:HTMLElement(

tagName==’div’,
className==’jobPlace’
)",

"not($Y==$Z)",
"$T:HTMLElement(

tagName==’input’,
id==’q_d’
)",

"$companyName == $Y.nodeValue",
"$jobLocation == $Z.nodeValue",
"$form:HTMLElement(

tagName==’form’,
id==’q_form’
)"

],
"actions":

[
"update($T,’nodeValue’,

’$companyName+’ ’+$jobLocation’)",
"autoSubmitForm($form)"
]

}

The findJobLocation rule is triggered by a mouseover event. However as
already stated the required information needed to be able to find the location of
the job using Google Maps is provided by the children of a div element having
class=’jobInfo’. In accordance with this the rule verifies if the mouseover
event has been raised from a div element having class=’jobInfo’ and among

the children of this particular div element there are other different div elements
having class=’stackedViewCompany’ (bounded to $Y variable) and
class=’jobPlace’ (bounded to $Z variable). If the DOM contains an input
element having id=’q d’ and a form element having id=’q form’ validates
the availability of the Google Maps Service. To be able to search the location for
the current job the employer name is needed and it’s location. This information
is bound to $companyName and $jobLocation variables. If all the above condi-
tions hold then the update and autoSubmitForm actions can be executed. The
update action performs an update of the nodeValue property of the element
$T with the value ($companyName+’ ’+$jobLocation). The autoSubmitForm
action performs an automatic submission of the form provided as parameter.

4 Towards a Common Sense for Mashup and Software as
Service

[14] analyzes terms such as software as a service, software on demand, adaptive
enterprise and mashups and concludes that they are overlapping to many ex-
tents. This section tries to argue towards a common sense, to create a bridge
between software as a service and mashups.

It is well known that in the nowadays business environment there is a strong
need and a general request of being capable to change software easily to meet
the fast evolving business requirements.

As stated in [2], ”the term software as a service is beginning to gain acceptance
in the market-place; however the notion of service-based software extends beyond
these emerging concepts”.

In such an approach a service conforms with the much accepted definition
stating that a service is ”an act or performance offered by one party to another.
Although the process may be tied to a physical product, the performance is essen-
tially intangible and does not normally result in ownership of any of the factors
of production” ([15]).

In addition, [2] argued that the ”service-based model of software is one in
which services are configured to meet a specific set of requirements at a point in
time”. Components may be bound instantly, based on the needs and discarded
afterwards.

There are some key points that characterize software as a service (see for
example, [16]):

– network-based access and management of commercially available software
– activities managed from central locations rather than at each customer’s site,
– enabling customers to access applications remotely via the Web
– application delivery typically closer to a one-to-many model (single instance,

multi-tenant architecture) rather than to a one-to-one model, including ar-
chitecture, pricing, partnering, and management characteristics

– centralized feature updating, which obviates the need for end-users to down-
load patches and upgrades

– frequent integration into a larger network of communicating software - either
as part of a mashup or as a plugin to a platform as a service.

Mashups are hybrid web applications, usually found out under the associa-
tion of SOA plus REST principles. Mash-up content is usually accessed through
APIs from third party providers, (sites, services), processed and then presented
to the user in a different format and with new insights. In such way new value is
provided. One simple way to explain mashups was introduced by ZDNet Exec-
utive Editor David Berlind in a video presentation, What is a mashup?, where,
among other issues, he claims that mashups are the fastest growing ecosystem
on the Web.

Berlind introduced the mashup model by comparing it with the well known
software stack on the traditional computers. In traditional computer systems we
have an operating system, and, on top of this, a number of application program-
ming interfaces (APIs) to access different services (i.e. the network, the display,
the file system) and UIs to get to different applications (i.e. the mouse, the key-
board) as in Figure 4. Developers use these APIs to access different necessary
services to create their applications.

Operating System

N
et

D
is

pl
ay

Fi
le UI

A
P

Is

Application

Fig. 4. Computer Model (David Berlind, ZDNet)

Somehow mashups follow the same model but with a different infrastructure.
The Operating System is replaced by the Internet, and the old APIs are replaced
with APIs offered by different service providers such as Yahoo, Google, Tech-
norati, Amazon etc. as depicted in the Figure 5. In the same way developers
use these APIs to get access the available services. These services reside in the
Internet, or we may also say on top of the infrastructure offered by the Internet.
In this way new applications are created from old ones.

The software as a service approach uses a very similar model (see Figure
6). Salesforce is a concrete example of this approach. However in this case the
Operating System/Internet is represented by the Platform as a Service (i.e.
Force.com).

Therefore, we see that while mashups are generally based on various service
sources available on the Web, software as service is mainly based on a proprietary

http://news.zdnet.com/2422-13569_22-152729.html
http://www.yahoo.com
http://www.google.com
http://www.technorati.com
http://www.technorati.com
http://www.amazon.com

INTERNET

UI

A
P

Is

Mashup

Y
ah

oo

G
oo

gl
e

A
m

az
on

Fl
ic

kr

Fa
ce

bo
ok

Te
ch

no
..

Fig. 5. Mashup Model, (David Berlind, ZDNet)

Platform as a Service

UI

A
P

Is

S
er

vi
ce

 A

S
er

vi
ce

 N

AP
I A

AP
I N

Application

Fig. 6. SaaS Model

centric platform (which may handle different services). In SaaS, new applications
are generated by using only the platform services (i.e. platform as a service).

Due to their ”open” character, mashups besides the characteristics that de-
fine SaaS applications have some other characteristics that arise from the way
they are implemented. Although some of these characteristics might overlap we
present them here:

– Mashups are usually created with a mashup editor such as: Google Mashup
Editor, JackBe,Lotus Mashups, Microsoft Popfly, Mozilla Ubiquity, Yahoo
Pipes.

– Mashups use APIs from different platforms to aggregate and reuse the con-
tent.

– Usually mashups operate on XML based content such as Atom [17], [18],
RSS 2.0 [19], and RDF [20], sometimes directly on the HTML level, strictly
for presentation

– ”Melting Pot” style such that content is aggregated arbitrarily
– Create, read, update and delete (CRUD) operations are preferred to be based

on REST principles

However, an important restriction of actual mashup editors is that they allow
users to build and run mashups on specific platforms.

The rule based approach presented here removes the specific platform level
and works directly on the content that any user has access to through a Web

http://editor.googlemashups.com/
http://editor.googlemashups.com/
http://www.jackbe.com/
http://www-01.ibm.com/software/lotus/products/mashups/
http://www.popfly.com/
http://labs.mozilla.com/projects/ubiquity/
http://pipes.yahoo.com/
http://pipes.yahoo.com/

browser. In this way a simple model of mashups can be imagined as in the Figure
7.

INTERNET

Mashup

Web browser

user defined rules

RuleEngine

Fig. 7. Our Model

Because DOM and JavaScript are the fundamental assets that power the
content that we see every day in browsers, it is natural to use an approach that
uses exactly the same assets because in this way you get finer granularity, and
avoid learning of different APIs.

There are several features that the presented approach offers:

– Mashups can be executed on any browser allowing JavaScript.
– Services can be accessed directly without intermediary parties such as APIs.
– Flows can be defined on top of any component that is available in the service

answer (i.e. any DOM entity can be used)
– The behavior is defined declaratively.
– Data can be accessed as usual (Atom, RSS , RDF) but also in raw format.
– Concerns that are very actual, regarding creation of UI’s based on the service

are overcome because the UI provided as default by the server in the form
of a web page can be used, and modified as desired; Look and aspect can be
managed with rules too.

– Data mapping can be very easy implemented (such as data from Monster to
be submitted to the Google Maps service)

Recall that in our use case there is a service called Choreographer since it
corresponds to the application that puts together data from different services and
defines the way they interact. According to [21] process choreography is used to
define cooperation between process orchestrations. Moreover this collaboration
is specified by collaboration rules. With respect to our approach, rule-based
modeling and execution of mashups are nothing else but collaboration rules and
the mashup itself is a browser-based service choreography.

5 Conclusions and Future work

We have presented how business rules and in particular JSON Rules can be used
to model mashups together with underlining the advantages of this solution

compared to traditional techniques. To achieve this a concrete use has been
presented together with the rules modeling it.

In addition, we studied the similarities between the conceptual models of
SaaS and Mashups and observed that both of them have a common root: service
choreography.

Future work concerns the study of how choreography principles can be re-
lated to JSON rule modeling of mashups towards a methodology of creation and
maintenance of rule-based mashups. Another topic is related to application of
visual modeling techniques for rules as well as building an infrastructure allowing
sharing and reusing.

Acknowledgements

We want to express our gratitude to Prof. Mathias Weske who shared his ideas
with us and gave us his time, comments and valuable insights on SaaS and
choreographies issues.

References

1. Kagermann, H.: Toward a European Strategy for the Future Internet A Call
for Action. White paper, SAP AG (2008) http://www.sap.com/about/company/

research/fields/internet_services/index.epx.
2. Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.:

Service-Based Software: The Future for Flexible Software. In: Proceedings of the
Seventh Asia-Pacific Software Engineering Conference (APSEC2000), IEEE Com-
puter Society (2000) 214–221 http://www.bds.ie/Pdf/ServiceOriented1.pdf.

3. O’Reilly, T.: What is web 2.0. design patterns and business models for the next
generation of software. Oreillynet.com (September 2005) http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

4. McAfee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan
Management Review 47(3) (2006) 21–28

5. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the mashup space. In:
WIDM’08: Proceeding of the 10th ACM workshop on Web information and data
management. (2008) 87–94

6. Jarrar, M., Dikaiakos, M.D.: Mashql: a query-by-diagram topping sparql. In: ON-
ISW ’08: Proceeding of the 2nd international workshop on Ontologies and nforma-
tion systems for the semantic web, New York, NY, USA, ACM (2008) 89–96

7. Phuoc, D.L., Polleres, A., Morbidoni, C., , Hauswirth, M., Tummarello, G.: Rapid
semantic web mashup development through semantic web pipes. In: Proceedings of
the 18th World Wide Web Conference (WWW2009). (April 2009) http://pipes.
deri.org/attachments/004_fp160-lephuoc.pdf.

8. Giurca, A., Pascalau, E.: JSON Rules. In: Proceedings of the Proceedings of 4th
Knowledge Engineering and Software Engineering, KESE 2008, collocated with KI
2008. Volume 425., CEUR Workshop Proceedings (2008) 7–18

9. Hors, A.L., Hegaret, P.L., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S.: Document Object Model (DOM) Level 3 Core Specification. W3C Recommen-
dation (April 2004) http://www.w3.org/TR/DOM-Level-3-Core/.

http://www.sap.com/about/company/research/fields/internet_services/index.epx
http://www.sap.com/about/company/research/fields/internet_services/index.epx
http://www.bds.ie/Pdf/ServiceOriented1.pdf
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://pipes.deri.org/attachments/004_fp160-lephuoc.pdf
http://pipes.deri.org/attachments/004_fp160-lephuoc.pdf
http://www.w3.org/TR/DOM-Level-3-Core/

10. Proctor, M., Neale, M., Frandsen, M., Jr., S.G., Tirelli, E., Meyer, F., Verlaenen,
K.: Drools 4.0.7. http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/

html_single/index.html (May 2008)
11. Crockford, D.: The application/json Media Type for JavaScript Object Notation

(JSON). http://tools.ietf.org/html/rfc4627 (July 2006)
12. Pixley, T.: Document Object Model (DOM) Level 2 Events Specifi-

cation. W3C Recommendation (November 2000) http://www.w3.org/TR/

DOM-Level-2-Events/.
13. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J.,

Simeon, J.: XML Path Language (XPath) 2.0. W3C Recommendation (November
2007) http://www.w3.org/TR/xpath20/.

14. Foster, I., Tuecke, S.: Describing the Elephant: The Different Faces of IT as Service.
Enterprise Distributed Computing 3(6) (July/August 2005) 26–34

15. Lovelock, C., Vandermerwe, S., Lewis, B.: Services Marketing . Prentice Hall
Europe (1996)

16. Traudt, E., Konary, A.: Software as a Service Taxonomy and Research Guide.
Technical report, IDC.com (2005)

17. Nottingham, M., Sayre, R.: Atom Publishing Format (RFC4287). http://tools.
ietf.org/html/rfc4287 (2005)

18. Gregorio, J., de hOra, B.: Atom Publishing Format (RFC5023). http://tools.

ietf.org/html/rfc5023 (2007)
19. RSS: RSS 2.0 Specification, version 2.0.11. http://www.rssboard.org/

rss-specification (March 2009)
20. Klyne, G., Caroll, J.: Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation (February 2004) http://www.w3.org/

TR/rdf-concepts/.
21. Weske, M.: Business Process Management: Concepts, Languages, Architectures .

Springer-Verlag Berlin Heidelberg (2007)

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/xpath20/
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/

	A Rule-Based Approach of Creating and Executing Mashups
	Emilian Pascalau and Adrian Giurca

