
Formal Correctness of an Automotive Bus
Controller Implementation at Gate-Level

Eyad Alkassar, Peter Böhm, and Steffen Knapp

Abstract We formalize the correctness of a real-time scheduler in a time-triggered
architecture. Where previous research elaborated on real-time protocol correctness,
we extend this work to gate-level hardware. This requires a sophisticated analysis
of analog bit-level synchronization and message transmission. Our case-study is a
concrete automotive bus controller (ABC). For a set of interconnected ABCs we
formally prove at gate-level, that all ABCs are synchronized tight enough such that
messages are broadcast correctly. Proofs have been carried out in the interactive
theorem prover Isabelle/HOL using the NuSMV model checker. To the best of our
knowledge, this is the first effort formally tackling scheduler correctness at gate-
level.

1 Introduction

As more and more safety-critical functions in modern automobiles are controlled by
embedded computer systems, formal verification emerges as the only technique to
ensure the demanded degree of reliability. When analyzing correctness, as a bottom
layer, often, only some synchronous model of distributed electronic control units
(ECUs) sharing messages in lock-step is assumed. However, such models are im-

Eyad Alkassar1 · Steffen Knapp1

Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany
e-mail: {eyad,sknapp}@wjpserver.cs.uni-sb.de

Peter Böhm1

Oxford University Computing Laboratory, Wolfson Building, Oxford, OX1 3QD, England
e-mail: peter.boehm@comlab.ox.ac.uk

1 Work partially funded by the German Research Foundation (DFG), by the German Federal Min-
istry of Education and Research (BMBF), and by the International Max Planck Research School
(IMPRS).

57

58 Eyad Alkassar, Peter Böhm, and Steffen Knapp

plemented at gate-level as highly asynchronous time-triggered systems. Hence it
can not suffice to verify certain aspects of a system, as algorithms or protocols only.

In this paper we examine a distributed system implementation consisting of
ECUs connected by a bus. Our study has to combine arguments from three differ-
ent areas: (i) asynchronous bit-level transmission, (ii) scheduling correctness, and
(iii) classical digital hardware verification at gate-level.

Our contribution is to show, by an extended case-study, how analog, real-time
and digital proofs can be integrated into one pervasive correctness statement.

The hardware model has been formalized in the Isabelle/HOL theorem prover [11]
based on boolean gates. It can be translated to Verilog and run on a FPGA. All lem-
mata relating to scheduling correctness have been formally proven in Isabelle/HOL.
We have made heavy use of the model checker NuSMV [5] and automatic tools, e.g.
IHaVeIt [18], especially for the purely digital lemmata. Most lemmata dealing with
analog communication (formalized using reals) have been shown interactively.

Overview. The correctness of our gate-level implementation splits in two main
parts: (i) the correctness of the transmission of single messages and (ii) the correct-
ness of the scheduling mechanism initiating the message transmission and providing
a common time base. Next we outline these two verification goals in detail.

The verification of asynchronous communication systems must, at some point,
deal with the low-level bit transmission between two ECUs connected to the same
bus. The core idea is to ensure that the value broadcast on the bus is stable long
enough such that it can be sampled correctly by the receiver. To stay within such
a so-called sampling window, the local clocks on the ECUs should not drift apart
more than a few clock ticks and therefore need to be synchronized regularly. This
is achieved by a message encoding that enforces the broadcast of special bit se-
quences to be used for synchronization. The correctness of this low-level transmis-
sion mechanism cannot be carried out in a digital, synchronous model. It involves
asynchronous and real-time-triggered register models taking setup and hold-times
of registers as well as metastability into account. Our efforts in this respect are based
on [3, 8, 16].

Ensuring correct message transmission between two ECUs is only a part of the
overall correctness. Let us consider a set of interconnected ECUs. The scheduler has
to avoid bus contention, i.e. to ensure that only one ECU is allowed to broadcast at
a time and that all others are only listening. For that, time is divided into rounds,
which are further subdivided into slots. A fixed schedule assigns a unique sender to
a given slot number. The gate-level implementation of the scheduler has to ensure
that all ECUs have roughly the same notion of the slot-start and end times, i.e. they
must agree on the current sender and the transmission interval. Due to drifting clocks
some synchronization algorithm becomes necessary. We use a simple idea: A cycle
offset is added at the beginning and end of each slot. This offset is chosen large
enough to compensate the maximal clock drift that can occur during a full round.
The local timers are synchronized only once, at the beginning of each round. This
is done by choosing a distinguished master ECU, being the first sender in a round.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 59

The combination of the results into a lock-step and synchronous view of the
system is now simple. The scheduler correctness ensures that always only one ECU
is sending and all other ECUs do listen. Then we can conclude from the first part
that the broadcast data is correctly received by all ECUs.

Organization of the paper: In the remainder of this section we discuss the re-
lated work. In Section 2 we introduce our ABC implementation. Our verification
approach is detailed in Section 3. Finally we conclude in Section 4.

Related Work. Serial interfaces were subject to formal verification in the work
of Berry et al. [1]. They specified a UART model in a synchronous language and
proved a set of safety properties regarding FIFO queues. Based on that a hardware
description can be generated and run on a FPGA. However, data transmission was
not analyzed.

A recent proof of the Biphase-Mark protocol has been proposed by Brown and
Pike [4]. Their models include metastability but verification is only done at specifi-
cation level, rather than at the concrete hardware. The models were extracted man-
ually.

Formal verification of clock synchronization in timed systems has a long his-
tory [9, 12, 17]. Almost all approaches focused on algorithmic correctness, rather
than on concrete system or even hardware verification. As an exception Bevier and
Young [2] describe the verification of a low-level hardware implementation of the
Oral Message algorithm. The presented hardware model is quite simplified, as syn-
chronous data transmission is assumed.

Formal proofs of a clock-synchronization circuit were reported by Miner [10].
Based on abstract state machines, a correctness proof of a variant of the Welch-
Lynch algorithm was carried out in PVS. However, the algorithm is only manually
translated to a hardware specification, which is finally refined semi-automatically
to a gate-level implementation. No formal link between both is reported. Besides,
low-level bit transmission is not covered in the formal reasoning.

The formal analysis of large bus architectures was tackled among others by
Rushby [15] and Zhang [19]. Rushby worked on the time-triggered-architecture
(TTA), and showed correctness of several key algorithms as group membership
and clock synchronization. Assuming correct clock synchronization, Zhang verified
properties of the Flexray bus guardian. Both approaches do not deal with any hard-
ware implementation. The respective standard is translated to a formal specification
by hand.

In [14] Rushby proposes the separation of the verification of timing-related prop-
erties (as clock synchronization) and protocol specifications. A set of requirements
is identified, which an implementation of a scheduler (e.g. in hardware) has to obey.
In short (i) clock synchronization and (ii) a round offset large enough to compensate
the maximum clock drift are assumed. The central result is a formal and generic PVS
simulation proof between the real-time system and its lock-step and synchronous
specification. Whereas the required assumptions are similar to ours, they have not
been discharged for concrete hardware.

60 Eyad Alkassar, Peter Böhm, and Steffen Knapp

In [12] Rushby’s framework is instantiated with the time triggered protocol
(TTP). Pike [13] corrects and extends Rushby’s work, and instantiates the new
framework with SPIDER, a fly-by-wire communication bus used by NASA. The
time-triggered model was extracted from the hardware design by hand. But neither
approaches proved correctness of any gate-level hardware.

2 Automotive Bus Controller (ABC) Implementation

We consider a time-triggered scenario. Time is divided into so-called rounds each
consisting of ns slots. We uniquely identify slots by a tuple consisting of a round-
number r 2 N and a slot-number s 2 [0 : ns�1]. Predecessors (r,s)�1 and succes-
sors (r,s)+1 are computed modulo ns.

The ABC is split in four main parts: (a) the host-interface provides the connec-
tion to the host, e.g. a microprocessor, and contains configuration registers (b) the
send-environment performs the actual message broadcast and contains a send-buffer
(c) the receive-environment takes care of the message reception and contains a
receive-buffer (d) the schedule-environment is responsible for the clock synchro-
nization and the obedience to the schedule.

Configuration Parameter. Unless synchronization is performed, slots are locally
T hardware cycles long. A slot can be further subdivided into three parts; an initial
as well as a final offset (each off hardware cycles) and a transmission window (tc
hardware cycles). The length of the transmission window is implicitly given by the
slot-length and the offset. Within each slot a fixed-length message of ` bytes is
broadcast.

The local schedule sendl, that is implemented as a bit-vector, indicates if the
ABC is the sender in a given slot. Intuitively, in slot s, if sendl[s] = 1 then the ABC
broadcasts the message stored in the send-buffer. Note that the ABC implementation
is not aware of the round-number. It simply operates according to the slot-based
fixed schedule, that is repeated time and again.

The special parameter iwait indicates the number of hardware cycles to be
awaited before the ABC starts executing the schedule after power-up.

All parameters introduced so far are stored in configuration registers that need to
be set by the host (we support memory mapped I/O) during an initialization phase.
The host indicates that it has finished the initialization by invoking a setrd command.
We do not go into details here, the interested reader may consult [7, 8].

Message Broadcast. The send-environment starts broadcasting the message con-
tained in the send-buffer sb if the schedule-environment raises the startsnd signal.

The receive-environment permanently listens on the bus. At an incoming mes-
sage, indicated by a falling edge (the bus is high-active), it signals the start of a re-
ception to the schedule-environment by raising the startedrcv signal for one cycle.
In addition it decodes the broadcast frame and writes the message into the receive
buffer rb.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 61

offwait:
inccycle

iwait:
inccycle

reset

Twait:
inccycle

eqiwait:
clrcycle,clrslot

rcvwait

startbroad:
startsnd,
inccycle

idle

setrd ∧ sendl0:
clrcycle

¬eqiwait

eqoff ∧ sendlcur

eqT ∧ ¬eqns:
clrcycle, incslot

eqT ∧ eqns
∧ sendl0:

clrcycle, clrslot

eqoff ∧ ¬sendlcureqT ∧ eqns
∧ ¬sendl0

startedrcv:
setoff,
clrslot

¬eqT

¬startedrcv setrd ∧
¬sendl0

¬eqoff

¬setrd

Fig. 1 Schedule Automaton

Scheduling. The schedule-environment maintains two counters: The cycle counter cy

and the current slot counter csn. Both counters are periodically synchronized at the
beginning of every round. All ECUs except the one broadcasting in slot 0 (we call
the former slaves and the latter master) synchronize their counters to the incoming
transmission in slot 0. Hence, the startedrcv signal from the receive environment is
used to provide a synchronized time base (see below). Furthermore, the schedule-
environment initiates the message broadcast by raising the startsnd signal for one
cycle.

The schedule environment implements the automaton from Fig. 1. The automa-
ton takes the following inputs: The startedrcv signal as described above. The signal
setrd denotes the end of the configuration phase. The signal sendl0 indicates if the
ECU is the sender in the first slot and thus the master. Three signals are used to
categorize the cycle counter; eqiwait indicates if the initial iwait cycles have been
reached, similar to eqoff and eqT . The signal eqns indicates that the end of a round
has been reached, i.e. that the slot counter equals ns�1. Finally sendlcur indicates
if the ABC is the sender in the current slot, i.e. sendlcur = sendl[csn].

The automaton has six states and is clocked each cycle. Its functionality can be
summarized as follows: If the reset signal is raised (which is assumed to happen only
at power-up) the automaton is forced into the idle-state. If the host has finished the
initialization and thus invoked setrd we split cases depending on the sendl0 signal. If
the ABC is the master, i.e. if sendl0 holds, the ABC waits first iwait hardware cycles
(in the iwait-state), then an additional off cycles (in the offwait-state) before it starts
broadcasting the message (in the startbroad-state) and proceeds to the Twait-state.

If the ABC is a slave (sendl0 = 0), it waits in the rcvwait-state for an active
startedrcv signal and then proceeds to the Twait-state. There all ABCs await the end
of a slot indicated by eqT . Then we split cases if the round is finished or not. If
the round is not finished yet (indicated by ¬eqns), all ABCs proceed to the offwait-
state. Furthermore, the sender in the current slot (indicated by sendlcur) proceeds
to the startbroad-state, initiates the message broadcast and then proceeds to the
Twait-state; all other ABCs skip the startbroad-state and proceed directly to the
Twait-state. At the end of a round, the master simply repeats the ‘normal’ sender

62 Eyad Alkassar, Peter Böhm, and Steffen Knapp

cycle (from the Twait-state to the offwait-state and finally to the Twait-state again).
All other ABCs proceed to the rcvwait-state to await an incoming transmission.

Once initialized, the master ABC follows the schedule without any synchroniza-
tion. At the beginning of a round it waits off many cycles and initiates the broadcast.

The clock synchronization on the slave ABCs is done in the rcvwait-state. In this
state the cycle counter is not altered but simply stalls in its last value. At an incoming
transmission (from the master) the slaves clear their slot-counter and set their cycle
counter to off , i.e. the number of hardware cycles at which the master initiated the
broadcast. After this all ABCs are (relatively) synchronized to the masters clock.

Hardware Construction. The number of ECUs connected to the bus is denoted ne.
Thus an ECU number is given by u 2 [0 : ne� 1]. We use subscript ECU numbers
to refer to single ECUs.

We denote the hardware configurations of ECU

u

by h

u

. If the index u of the ECU
does not matter, we drop it. The hardware configuration is split into a host configu-
ration and an ABC configuration. Since we do not go into details regarding the host,
we stick to h to denote the configuration of our ABC. Its essential components are:

• Two single bit-registers, one for sending and one for receiving. Both are directly
connected to the bus. We denote them h.S and h.R.

• A second receiver register, denoted h.R̂, to deal with metastability (see Sect. 3).
• Send buffer h.sb and receive buffer h.rb each capable of storing one message.
• The current slot counter h.csn and the cycle counter h.cy.
• The schedule automaton is implemented straight-forward as a transition sys-

tem on an unary coded bit-vector. We use h.state to code the current state (see
Fig. 1).

• Configuration registers.

The configuration registers are written immediately after reset / power-up. They
contain in particular the locally relevant portions of the scheduling function.

To simplify arguments regarding the schedule we define a global scheduling
function send. Given a slot-number s it returns the number of the ECU sending
in this slot. Let sendl

u

denote the local schedule of ECU

u

, then send(s) = u ,
sendl

u

[s] = 1. Note that this definition implicitly requires a unique sender definition
for each slot. Otherwise correct message broadcast becomes impossible due to bus
contention.

Thus if ECU

u

is (locally) in a slot with slot index s and send(s) = u then ECU

u

will transmit the content of the send buffer h.sb via the bus during some transmission
interval. A serial interface that is not actively transmitting during slot (r,s) puts by
construction the idle value (the bit 1) on the bus.

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r,s), then transmission will be successful. The clock synchronization algorithm
together with an appropriate choice of the transmission interval will ensure that.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 63

e (i)

ts th

Ω
x

y

tpd

R

clk

ce

s

clkr

s

e (j)r

r
din r

r

ΩSs,

Fig. 2 Clock Edges

time

te(r,s)ts(r,s)
ECU

ECU

ECU

send(s)

u

v
α (r,s)
v α ((r,s)+1)v

Fig. 3 Schedule

3 Verification

To argue about asynchronous distributed communication systems we have to for-
malize the behavior of the digital circuits connected to the analog bus. Using the
formalization of digital clocks we introduce a hardware model for continuous time.
In the remainder of this section we sketch the message transmission correctness, de-
tail the scheduling correctness and combine both into a single correctness statement.

Clocks. The hardware of each ECU is clocked by an oscillator having a nominal
clock period of t

ref

. The individual clock period t
u

of an ECU

u

is allowed to deviate
by at most d = 0.15% from t

ref

, i.e. 8u. | t
u

�t
ref

| t
ref

·d . Note that this limitation
can be easily achieved by current technology.

Thus the relative deviation of two individual clock periods compared to a third
clock period is bounded by | t

u

� t
v

| t
w

· D where D = 2d/(1�d).
Given some clock-start offset o

u

< t
u

the date of the clock edge e

u

(i) that starts
cycle i on ECU

u

is defined by e

u

(i) = o

u

+ i · t
u

.
In our scenario all ECUs are connected to a bus. The sending ECUs broadcasts

data which is sampled by all other ECUs. Due to clock drift it is not guaranteed, that
the timing parameter of the sampling registers are obeyed. This problem is solved
by serial interfaces. To argue formally we first introduce a continuous time model
for bits being broadcast.

Hardware Model with Continuous Time. The problems solved by serial inter-
faces can by their very nature not be treated in a standard digital hardware model
with a single digital clock clk. Nevertheless, we can describe each ECU

u

in such a
model having its own hardware configuration h

u

.
To argue about the sender register h.S of a sending ECU transmitting data via

the bus to a receiver register h.R of a receiving ECU, we have to extend the digital
model.

For the registers connected to the bus –and only for those– we extend the hard-
ware model such that we can deal with the concepts of propagation delay (t pd),
setup time (ts), hold time (th), and metastability of registers. In the extended model
used near the bus we therefore consider time to be a real valued variable t.

Next we define in the continuous time model the output of the sender register h

u

.S
during cycle i of ECU

u

, i.e. for t 2 (e
u

(i) : e

u

(i+1)]. The content of h

u

.S at time t is

64 Eyad Alkassar, Peter Böhm, and Steffen Knapp

denoted by S

u

(t). In the digital hardware model we denote the value of some register,
e.g. R, during cycle i by h

i.R which equals the value at the clock edge e

u

(i+1).
If in cycle i�1 the digital clock enable Sce(hi�1

u

) signal was off, we see during
the whole cycle the old digital value h

i�1
u

.S of the register. If the register was clocked
(Sce(hi�1

u

) = 1) and the propagation delay t pd has passed, we see the new digital
value of the register, which equals the digital input Sdin(hi�1

u

) during the previous
cycle (see Fig. 2). Otherwise we cannot predict what we see, which we denote by W :

S

u

(t) =

8
><

>:

h

i�1
u

.S : Sce(hi�1
u

) = 0^ t 2 (e
u

(i) : e

u

(i+1)]
Sdin(hi�1

u

) : Sce(hi�1
u

) = 1^ t 2 [e
u

(i)+ t pd : e

u

(i+1)]
W : otherwise

The bus is an open collector bus modeled as the conjunction over all registers S

u

(t)
for all t and u.

Now consider the receiver register h

v

.R on any ECU

v

. It is continuously turned
on; thus the register always samples from the bus. In order to define the new digital
value h

j

v

.R of register R during cycle j on ECU

v

we have to consider the value
of the bus in the time interval (e

v

(j)� ts,e
v

(j) + th). If during that time the bus
has a constant digital value x, the register samples that value, i.e. 9x 2 {0,1}. 8t 2
(e

v

(j)� ts,e
v

(j)+ th). bus(t) = x) h

j

v

.R = x. Otherwise we define h

j

v

.R = W .
We have to argue how to deal with unknown values W as input to digital hard-

ware. We will use the output of register h

u

.R only as input to a second register h

u

.R̂
whose clock enable is always turned on, too. If W is clocked into h

u

.R̂ we assume
that h

u

.R̂ has an unknown but digital value, i.e. h

j

u

.R = W) h

j+1
u

.R̂ 2 {0,1}.
In real systems the counterpart of register R̂ exists. The probability that R be-

comes metastable for an entire cycle and that this causes R̂ to become metastable
too is for practical purposes zero.

Continuous Time Lemmata for the Bus. Consider ECU

s

is the sender and ECU

r

is a receiver in a given slot. Let i be a sender cycle such that Sce(hi�1
s

) = 1, i.e. the
output of S is not guaranteed to stay constant at time e

s

(i). This change can only
affect the value of register R of ECU

r

in cycle j if it occurs before the sampling
edge e

r

(j) plus the hold time th, i.e. e

s

(i) < e

r

(j)+th. The first cycle that is possibly
being affected is denoted by cy

r,s(i) = min{ j | e

s

(i) < e

r

(j)+ th}.
In what follows we assume that all ECUs other than the sender unit ECU

s

put the
value 1 on the bus and keep their Sce signal off (hence bus(t) = S

s

(t) for all t under
consideration). Furthermore, we consider only one receiving unit ECU

r

. Because
the indices r and s are fixed we simply write cy(i) instead of cy

r,s(i).

Theorem 1 (Message Broadcast Correctness). Let the broadcast start in sender-

cycle i. The value of the send buffer of ECU

send(s) is copied to all receive buffers on

the network side within tc sender cycles, i.e. 8u. h

cy(i+tc)
u

.rb = h

i

send(s).sb.

This theorem is proven by an in-depth analysis of the send-environment and the
receive-environment. For details see [8]. We do not go into details regarding the
message transmission here. Instead we focus on the scheduling correctness.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 65

Scheduling. We assume w.l.o.g. that the ECU with number 0 is the master, i.e.
send(0) = 0. Let p

u

be the point in time when ECU

u

is switched on. We assume
that at most cp

max

hardware cycles have passed on the master ECU from the point
in time it was switched on until all other ECUs are switched on, too. Thus 8u. |
p

u

� p0 |  cp

max

· t0.
Once initialization is done, all hosts invoke a setrd command. The master ECU

waits iwait hardware cycles before it starts executing the schedule. We assume that
that there exists a point in time denoted I

max

at which all slaves have invoked the
setrd command and await the first incoming message. This assumption can be easily
discharged by deriving an upper bound for the duration of the initialization phase,
say i

max

hardware cycles in terms of the master ECU, and choosing iwait to be
cp

max

+ i

max

. The upper bound can be obtained by industrial worst case execution
time (WCET) analyzers [6] for the concrete processor and software.

We introduce some notation to simplify the arguments regarding single slots.
The start time of slot (r,s) on an ECU

u

is denoted by a
u

(r,s). Initially, for all u we
define a

u

(0,0) = I

max

. To define the slot start times greater than slot (0,0) we need
a predicate schedexec that indicates if the schedule automaton is in one of three
executing states, i.e. schedexec(hi

u

) = h

i

u

.state 2 {offwait,Twait,startbroad}. Let c

be the smallest local hardware cycle such that e

u

(c) is greater than a
u

((r,s)� 1),
schedexec(hc

u

) holds, h

c

u

,cy = 0, and h

c

u

.csn = s. Moreover let c

0 be the smallest
cycle sucht that e

u

(c0) is greater than a
u

((r,s)�1) and h

c

0
u

.state = rcvwait.

a
u

(r,s) =
⇢

e

u

(c) : u = 0_ s > 0
e

u

(c0) : otherwise

Using the definition of a clock edge we obtain the hardware cycle corresponding
to a

u

(r,s), denoted by at

u

(r,s).
The local timers are synchronized each round. Next we define the point in time

when the synchronization is done in round r. The synchronization end time of round
r on ECU

u

, denoted by b
u

(r), is defined similar to the slot start time. Let c be
the smallest hardware cycle such that that schedexec(hc

u

) holds, cycle

c

u

= off , and
slot

c

u

= 0. Then b
u

(r) is defined by e

u

(c).

Lemma 1 (Synchronization Times Relation). For all u the synchronization of

ECU

u

to the master is completed within the adjustment time ad = 10 cycles rel-

ative to an arbitrary clock period t
w

, i.e. b0(r) = a0(r,0) + off · t0 and b
u

(r) <
b0(r)+10 · t

w

The proof of this lemma is split in two parts. First, an analysis of the sender bounds
the delay between an active startsnd signal and the actual transmission start. Second,
we need to bound the delay on the receiver side until the startedrcv signal is raised
after an incoming transmission plus an additional cycle to update the counters and
the schedule control automaton. Next we relate the start times of slots on the same
ECU.

Lemma 2 (Slot Start Times Relation). The start of slot (r,s) on the master ECU

depends only on the progress of the local counter, i.e. a0(r,s) = a0((r,s)�1)+T ·t0.

The start of slot (r,s) on all other ECUs is given by:

66 Eyad Alkassar, Peter Böhm, and Steffen Knapp

a
u

(r,s) =

(
b

u

(r)+(T �off) · t
u

: s = 1
a

u

((r,s)�1)+T · t
u

: s 6= 1

Proof by induction on r and s using arguments for the concrete hardware.
The transmission is started in slot (r,s) by ECU

send(s) if the local cycle count
equals off . This point in time is denoted by ts(r,s) = a

send(s)(r,s)+off ·t
send(s). Ac-

cording to Theorem 1 the transmission ends at time te(r,s) = ts(r,s)+ tc · t
send(s) =

a
send(s)(r,s)+(off + tc) · t

send(s).
The schedule is correct if the transmission interval [ts(r,s), te(r,s)] is contained

in the time interval, when all ECUs are in slot (r,s), as depicted in Fig. 3.

Theorem 2 (Schedule Correctness). All ECUs are in slot (r,s) before the transmis-

sion starts. Furthermore, the transmission must be finished before any ECU thinks

it is in the next slot, i.e. a
u

(r,s) < ts(r,s) and te(r,s) < a
u

((r,s)+1)

This theorem is proven by a case split on (r,s) using Lemmata 1 and 2. Now we can
state the overall transmission correctness in the digital hardware model:

Theorem 3 (Overall Transmission Correctness). Consider slot (r,s). The value of

the send buffer of ECU

send(s) at the start of slot (r,s) is copied to all receive buffers

by the end of that slot, i.e. 8u. h

at

u

((r,s+1))�1
u

.rb = h

at

send(s)(r,s)
send(s) .sb

To prove this theorem we combined Theorem 1 and Theorem 2. According to The-
orem 1 the actual broadcast is correct if the transmission window [ts(r,s), te(r,s)] is
big enough. The latter is proven by Theorem 2.

4 Conclusion

In this paper we present a formal correctness proof of a distributed automotive sys-
tem at gate-level (Sect. 3) along with its hardware implementation (Sect. 2). The
hardware model has been formalized in Isabelle/HOL on boolean gates.

While a simple version of the message transmission correctness has already been
published before [8,16], in this new work, we have formally analyzed the scheduler
itself and have integrated both results into a single correctness statement. All lem-
mata relating to scheduling correctness have been formally proven in Isabelle/HOL
which took about one person year.

We used automatic tools as the symbolic, open source model checker NuSMV,
to discharge properties related to bit-vector operations and the schedule automaton
of the hardware. With our implementation heavily using bit-vectors, we ran into
the infamous state explosion problem. By resorting to IHaVeIt (a domain-reducing
preprocessor for model checkers) we were able to cope with this problem. However,
missing support for real-linear arithmetic in the automatic tool landscape, made the
verification of the analog and timed models tedious. Yet the integration of decision
procedures of dense-order logic would be helpful. In short: automatic tools took a

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 67

heavy burden from us in the digital world but were almost useless for continous-
timed analysis.

Summing up, our work provides a strong argument for the feasibility of formal
and pervasive verification of concrete hardware implementations at gate-level.

References

1. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a syn-
chronous language. In: ICCAD, pp. 433–440 (2003)

2. Bevier, W., Young, W.: The proof of correctness of a fault-tolerant circuit design. In: Second
IFIP Conference on Dependable Computing For Critical Applications, pp. 107–114 (1991)

3. Beyer, S., Böhm, P., Gerke, M., Hillebrand, M., In der Rieden, T., Knapp, S., Leinenbach, D.,
Paul, W.J.: Towards the formal verification of lower system layers in automotive systems. In:
ICCD ’05, pp. 317–324. IEEE Computer Society (2005)

4. Brown, G.M., Pike, L.: Easy parameterized verification of biphase mark and 8N1 protocols.
In: TACAS’06, LNCS, vol. 3920, pp. 58–72. Springer (2006)

5. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Marco Pistore, M.R., Sebastiani,
R., Tacchella, A.: NuSMV 2: An open source tool for symbolic model checking. In: CAV ’02,
pp. 359–364. Springer-Verlag (2002)

6. Ferdinand, C., Martin, F., Wilhelm, R., Alt, M.: Cache Behavior Prediction by Abstract Inter-
pretation. Sci. Comput. Program. 35(2), 163–189 (1999)

7. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of perva-
sive system verification. In: ICCD ’05, pp. 309–316. IEEE Computer Society (2005)

8. Knapp, S., Paul, W.: Realistic Worst Case Execution Time Analysis in the Context of Pervasive
System Verification. In: Program Analysis and Compilation, LNCS, vol. 4444, pp. 53–81
(2007)

9. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. J. ACM
32(1), 52–78 (1985)

10. Miner, P.S., Johnson, S.D.: Verification of an optimized fault-tolerant clock synchronization
circuit. In: Designing Correct Circuits. Springer (1996)

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

12. Pfeifer, H., Schwier, D., von Henke, F.W.: Formal verification for time-triggered clock syn-
chronization. In: DCCA-7, vol. 12, pp. 207–226. IEEE Computer Society, San Jose, CA
(1999)

13. Pike, L.: Modeling Time-Triggered Protocols and Verifying Their Real-Time Schedules. In:
FMCAD’07, pp. 231–238 (2007)

14. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE
Transactions on Software Engineering 25(5), 651–660 (1999)

15. Rushby, J.: An overview of formal verification for the time-triggered architecture. In:
FTRTFT’02, LNCS, vol. 2469, pp. 83–105. Springer-Verlag, Oldenburg, Germany (2002)

16. Schmaltz, J.: A Formal Model of Clock Domain Crossing and Automated Verification of
Time-Triggered Hardware. In: FMCAD’07, pp. 223–230. IEEE/ACM, Austin, TX, USA
(2007)

17. Shankar, N.: Mechanical verification of a generalized protocol for byzantine fault tolerant
clock synchronization. In: FTRTFT’92, vol. 571, pp. 217–236. Springer, Netherlands (1992)

18. Tverdyshev, S., Alkassar, E.: Efficient bit-level model reductions for automated hardware ver-
ification. In: TIME 2008, to appear. IEEE Computer Society Press (2008)

19. Zhang, B.: On the Formal Verification of the FlexRay Communication Protocol. Automatic
Verification of Critical Systems (AVoCS’06) pp. 184–189 (2006)

68 Eyad Alkassar, Peter Böhm, and Steffen Knapp

