
The Components Data Flow Machine: An

Intermediate Modeling Format to Support the

Design of Automobiles E/E Systems

Architectures

Augustin Kebemou and Ina Schieferdecker

Abstract The design of the architectures of automobiles E/E (Electric/Electronic)
systems consists in the allocation of the hardware platform and the distribution of
the computing and the communication loads of the application software within the
allocated hardware. This operation is called the partitioning. Following the actual
model-driven design schemes, the input of the partitioning is generally a functional
specification of the system under development in the form of communicating soft-
ware components that must be mapped on the allocated hardware platform. How-
ever, even though these models are sufficient to describe the structure of a system,
they are not good enough to support a CAD-supplied partitioning. They lack the
facilities needed to support the analysis of the data flow and to investigate the close-
ness between the elements of the specification, thus to support the mapping. In this
paper, we define the Components Data Flow Machine (CDFM), a modeling format
that is defined to support the design of automobiles E/E systems architectures. The
CDFM defines the semantics of a synthesis model that results from a transformation
of standard models like SysML, EAST ADL or AUTOSAR models.

Key words: automotive systems, architecture, design, partitioning, mapping

1 Introduction

With the increasing demand for electronic-actuated features in automobiles, two so-
lutions are broadly proposed to optimize the cost of new vehicles. The first solution

Augustin Kebemou
Fraunhofer Institute for Software and Systems Engineering (ISST)
Mollstrasse 1, 10178 Berlin, Germany

Ina Schieferdecker
Fraunhofer Institute for Open Communication Systems (FOKUS)
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

89



90 Augustin Kebemou and Ina Schieferdecker

proposes to develop flexible and particularly portable automotive software compo-
nents. The second solution is to reduce the amount of hardware in automobiles’ E/E
systems. In reality, these two options are complementary since the efficient usage
of the hardware resources is achieved by both a goal-oriented definition of the ar-
chitecture of the E/E system and an advantageous resource allocation policy. This is
the duty of the partitioning. The optimal partitioning must minimize the quantity of
processing units, memories and cables that are needed to execute the functionality
of the system, to store its data and its software code and to realize the inter-device
communication. The partitioning involves three activities: The allocation, the map-
ping and the deployment. The allocation is concerned with the design of the physical
configuration of the system. This consists in the definition of the number of devices
(ECUs, sensors, actuators, gateways), the definition of their individual equipments
(processing units, memories, internal buses, etc.), their positioning within the phys-
ical system (i.e. the topology of the system) and the choice of the communication
media and protocols for the inter-device communications. The mapping deals with
the distribution of the working load of the system’s application among the available
devices while the deployment is the task of distributing the individual computation
power of the devices among the tasks and assigning the available memory space and
the intra-devices communication bandwidths to the system’s data. During the map-
ping, each functional component of the system is assigned to one or several devices
depending on the required redundancy grade of its implementation. Two functional
components that are assigned to different devices must communicate through the
inter-devices communication channels. As these are mostly bus systems running
frame-oriented communication protocols like CAN, MOST, FlexRay, LIN, etc., the
mapping must also pack the inter-devices communication data in the communica-
tion frames in the most economical way.

Thus, a good partitioning must assign closely related components, e.g. highly
communicating components, to the same device in order to minimize the inter-
devices communication and maximize the hardware sharing [1]. Currently, this is
done manually by highly experienced system architects. They usually add the new
software components on the existing system without changing the precedent con-
tents of the devices. When the existing devices are overloaded, they generally de-
cide to add new devices. This optimistic approach of the partitioning is justified by
the fact that the existing systems are well-functioning and reliable configurations
with stable communication matrices. A new design of the system’s architecture is
practically equivalent to a design from scratch, economically unsupportable in this
fast evolving industry where the time to market is vital for each OEM. But, the di-
rect consequence of this practice is the excessive number of buses and processors
installed in the vehicles. Moreover, without efficient CAD techniques to support
the partitioning, unexperienced designers cannot expect to design good systems. A
CAD-supported partitioning will allow automotive systems architects to investigate
and compare different architectural options. This necessitates a global view of the
system’s specification and a reasonable degree of portability of the software com-
ponents at the system-level. With the implementation of the concepts developed
within the AUTOSAR[2], standard and platform-independent software components



The Components Data Flow Machine: An Intermediate Modeling Format 91

will enlarge the solution space of the partitioning of automobiles’ E/E systems and
thus, will allow the consideration of much more architectural options and enable
the design of more cost-sensitive E/E systems than today. The E/E design can take
advantage of this only if it is provided CAD-support for the partitioning.

2 Problem Presentation

However, a CAD-supplied partitioning tool needs a model that can enable the anal-
ysis of the data flow and highlight the closeness between the elements of the speci-
fication. This is not provided by the mostly used modeling formats, e.g. SysML[3],
EAST ADL[4] and AUTOSAR[5] models. Although these prominent meta-models
optimally describe the logical structure of E/E systems, they cannot be used to syn-
thesize the inter-components communication or to determine the closeness between
the elements of a model as it is needed to make the mapping decisions. For example,
there are generally multiple connectors and interfaces joining two communicating
components, making the tracing of the communication paths extremely difficult for
a computer system. To solve this problem, we defined a modeling solution called
the FN -for ”Functional Network”- that copes with the deficits of the usual auto-
motive modeling solutions concerning the requirements for a CAD-supplied parti-
tioning such as the screening of the communication paths and the traceability of the
communication data. The FN is an intuitive modeling solution that inherits the con-
cepts of interconnected software components with ports and interfaces from UML,
SysML and EAST ADL, plus the atomicity and portability principles defined within
the AUTOSAR. But, in contrast to an AUTOSAR VFB (Virtual Functional Bus), the
FN interfaces allow clear screening of the communication paths and an easy tracing
of the data flowing on each connector by transforming for example the branched
connectors found in a VFB into single P2P connectors.

Each FN model can be formally defined with a quintuple hF,R,P, I,Ci as fol-
lows: F (Functions) is the set of all the behavioral components in the model,
i.e. F =

©

F1,F2, ...,Ff
™

where each Fi represents a functional component, i, f 2
N; R (Repositories) is the set of all the data components in the specification,
i.e. R = {R1,R2, ...,Rr} where each Ri represents a data component, i,r 2 N; P
(Ports) is the set of input and output ports, i.e. P =

©

P1,P2, ...,Pp
™

i, p 2 N with
P = IPorts©OPorts (i.e. Input ports © Output ports); I (Interfaces) is the set of all
the port interfaces in the specification, i.e. I =

©

I1, I2, ..., Ip
™

where each Ii represents
the interface of the port i, i, p 2 N; C (Connectors) is the set of all the connectors in
the specification, i.e. C = {C1,C2, ...,Cl} where each Ci represents a connector, i, l 2
N; Each component Fi or Ri is defined by its internal behavior beh and its interface
Int, i.e. each component is completely defined by a tuple < beh, Int > with Int µ P
and beh is defined by the runnables and the RTEEs (Runtime Environment Events);
Each port Pi is defined by its behavior beh and its interface Int, i.e. Pi =< beh, Int >
with Pi.Int 2 I; For each connector Ci, 9src 2 OPort, dst 2 IPort and Int so that
Ci =< src,dst, Int > where Ci.src is the port source of the connector Ci, Ci.dst is



92 Augustin Kebemou and Ina Schieferdecker

the port destination of the connector Ci and Ci.Int is the set of the data that might
flow on Ci; Ci.Int = Ci.src.Int \Ci.dst.Int.

Due to its P2P conception of ports inter-connections, the FN enables the pro-
duction of specifications that are more compliant with the requirements of an auto-
matic partitioning than the standard modeling solutions. Nevertheless, the FN does
not provide any advanced feature to synthesize the communication and extract the
closeness values between the elements of a specification. This can be achieved with
a formal representation format on which efficient mathematical tools can be used to
analyze and quantify the relationships between the elements of the functional spec-
ification of a system. We call our solution the ”Components Data Flow Machine
(CDFM)”. The CDFM is a synthesis model that enables the automatic analysis of
the inter-components communication, the determination of the closeness values be-
tween them and the assignment of the exchanged data to the communication frames.
A more detailed specification of the requirements for such a synthesis model con-
cerning the partitioning of automobiles E/E systems is given in section 3. Then, the
CDFM and the rules that govern the translation of FN models into CDFM models
are defined in section 4 and illustrated in section 7 while the annotations of CDFM
models and their formal definition are presented respectively in section 5 and section
6.

3 Requirements for the synthesis model

The usefulness of a synthesis model is given by its ability to support the intended
design task, in the present case, the partitioning. This includes the ability to reflect
the system architecture as given in the FN input model, the ability to specify the
information that is needed for the partitioning and the ability to enable rapid estima-
tion of the partitioning metrics, in particular the closeness between the components.
Reflecting the system architecture requires that the synthesis model must be at least
at the same level of granularity with the input model. Enabling rapid metrics estima-
tions requires that as much information as possible is known before the partitioning
begins. Depending on the type of representation used, the formal representations
that meet the requirements for the synthesis model can be roughly classified in two
groups: Those based on FSMs or Petri nets and those based on graphs. In contrast to
graph-based representations that consider a unique system state, FSMs [6] and Petri
nets-based representations [7] are powerful in modeling and verifying the dynamics
of a system. But, they are obviously not the best representation forms when the ar-
chitecture of the system is important. The main kinds of architecture-oriented forms
of FSMs used in the design of embedded systems include the FSM with data paths
(FSMD) [8] and the FSM with Coprocessors (FSMC) [9]. Even these forms cannot
reproduce the system’s architecture in a useful way. Moreover, they considerably
suffer from the state explosion problem.

The most usual graph-based systems representations include data flow graphs
(DFG)[10], control flow graphs (CFG), data control flow graphs (DCFG)[11] and



The Components Data Flow Machine: An Intermediate Modeling Format 93

task graphs. DFGs are well-featured to describe the data dependencies. CFGs are
well-suited to model control-oriented systems, but they provide restricted facilities
for the data flow analysis. CDFGs extend the DFG with control nodes. They pro-
vide good models for data flow oriented applications whose the control information
is important. Task graphs are similar with DFGs in their structure. But, in opposition
to DFGs, special types of task graphs may be cyclic or undirected [10, 12]. Like in
[13], various special task graph-based modeling formats have been used for prob-
lems that are similar to the one presented in this work. In [14], a directed task graph,
called access graph, is used to model the accesses (i.e. data exchange) between the
functional components of the system, while a similar, but undirected graph, called
communication graph is used in [15] to model the communication between a set
of tasks. These solutions yield static models that however effectively reproduce the
structure and the communication of a system, providing a good basis for our syn-
thesis model.

4 The CDFM

The synthesis model is intended to specify the components of a system, their com-
munication and every relevant relationships between them. We defined it as a task
graph (V,E,W ,S) in with each node vi 2 V represents a behavioral or a data com-
ponent of the corresponding FN model. In contrast to FN models, it exists only one
edge between two nodes of a CDFM model. Each edge ei j = (vi,v j) = (v j,vi) 2 E
materializes the communication between the FN components represented by vi and
v j. The semantic of such a node is reduced to: ”These connected nodes exchange
data in some way” , i.e. the direction is ignored by the edge itself. However, trans-
forming multiple and oppositely directed connectors into a single undirected link
introduces two problems: Firstly, we need a convenient interpretation of the orig-
inal connections that will allow to properly capture the data shared between the
connected nodes. Secondly, as the edges are undirected, the direction of the com-
munication must be specified somewhere else.

We solved this problem by introducing the concept of tokens in the CDFM. A
token models a data object that is exchanged between the nodes of a CDFM model.
The set of the tokens flowing around the graph is W . A token T k

i j 2W represents the
data object k that is exchanged between two nodes vi and v j. A token is unbounded
in the dimension and is not supposed to contain any additional information such as
the beginning of the token or the end of the token. Independently of the connector
through which a data object k is exchanged within a FN model, the corresponding
token T k

i j is associated with the edge ei j that connects the nodes vi and v j. Thus, the
set of the tokens associated with an edge models the intensity of the communica-
tion between the two nodes. As the edges are undirected, we model the direction
of the communication in the tokens, i.e. the direction of a token defines the sense
of its transfer. This definition of the CDFM leads to the following straightforward
transformation of FN models into the corresponding synthesis models:



94 Augustin Kebemou and Ina Schieferdecker

• Each component of a FN model is transformed into a node,
• Each connection of a FN model is transformed into an edge and
• Each data object exchanged between two components of a FN model is trans-

formed into a token.

Note that several mechanisms can be used on this basic modeling format to de-
scribe the data exchange procedure. For example, a node can send data by placing it
on the dedicated edge, i.e. the token is addressed exclusively to the node connected
at the other end of this edge, or the sender can just put the token on its output where it
will be collected by the destination node. These two mechanisms are fundamentally
different concerning the resulting behavior of the system. The first one processes
a peer-to-peer communication while the second one, if not enhanced with restric-
tive routing rules, is merely adapted to realize broadcast communication since each
component that is related with the sender can access the data that is on the sender’s
output port. Note that it is also conceivable that the sender node pushes the data to
the destination and so synchronous and asynchronous communication schemata can
be designed. Defining such mechanisms would introduce a dynamical dimension in
the specification of the communication in CDFM models. But, as the CDFM is yet
not intended to support the simulation, the dynamics of the data exchange and the
routing mechanisms will not be discussed in this paper. However, we agree that a
token is created as soon as the corresponding data object is emitted. We then say that
the token is available. Thus, a token is available at the date of its creation. Note that
a token is available solely means that the token can be transfered. However, the date
at which a token is sent is not absolutely the date at which it is available. Depending
on its freshness requirements, a very hasty token must be transfered as soon as it is
available while the transfer date of a less hasty token can be delayed. These concepts
are introduced in the CDFM to support the scheduling of the communication and to
control the occupation of the communication buses.

In addition to the technical factors of cost optimization such as the communi-
cation and the resource usage, the design of an E/E system typically underlies a
full range of constraints and strategic concerns that arise from the commercial, the
technological, the organizational circumstances of the design as well as the procure-
ment, the production issues, etc. Consequently, some components of the functional
model might be required to run on the same device while others are required to run
on different devices, e.g. for safety reasons. These relationships between the compo-
nents typically have heavy consequences on the partitioning and must be specified
in the synthesis model. We model them by means of needs and excludes relations:

• Two nodes vi and v j are in a needs relationship, i.e. needs(vi,v j) is TRUE, if vi
and v j must be implemented on the same device;

• Two nodes vi and v j are in an excludes relationship, i.e. excludes(vi,v j) is TRUE,
if it is forbidden to implement vi and v j on the same device.

The needs and excludes relationships are also defined between the tokens. Note that
several similar relationships can be defined on CDFM models. They are managed
within the set S. So defined, the CDFM enables the synthesis of the communication,
but it does not yet contain the information required to guide the partitioning, i.e. the



The Components Data Flow Machine: An Intermediate Modeling Format 95

information on the basis of which the clustering decisions must be made during the
mapping and those through which the cost and the quality of the resulting partition
can be investigated. This is provided by means of attributes.

5 Annotations for the CDFM

Annotations for the nodes: The performance and the cost of a node are determined
by its execution time, the frequentness of its execution, the size of the resulting
software code or the size of the hardware that should be needed to implement the
component. Assuming that a particular hardware unit or a family of hardware units
have been identified to implement or to store each component so that the memory
needs for the code size and for the stacks or the heaps of its runnables are known (or
can be estimated), the attributes of the nodes of a CDFM model include:

– The software size (swSize): The total amount of memory required to store
the code and the data of the corresponding FN component when implemented in
software.

– The hardware size (hwSize): The total amount of hardware components that
would be used to implement the function of the corresponding component.

– The execution rate (eR): The maximum of the execution rates of the runnables
of the corresponding component. The execution rate of a runnable is the mean num-
ber of times that it is executed during an activation time of the system.

– The priority (prio): The priority order of the most prioritized runnable of the
corresponding component.

– The execution time (eT): The ”sum” of the execution times of the runnables of
the corresponding component.

Annotations for the edges: The attributes of the edges of a CDFG model in-
clude:

– The weight (T): The set of tokens that flow over it during an activation period
of the system.

– The access frequency (accFreq): The access frequency of the most accessed
connector within the corresponding FN connection.

– The constraints (cons): Are given by all the consistent sets of all the constraints
on the connectors of the corresponding FN connection. This include e.g. the latency,
the reliability, the security, the safety constraints, etc.

Annotations for the tokens: The most relevant attributes of the tokens include:
– The direction (dir): It defines the sense in which the token is transferred. It is

given by the source and the destination nodes of the token.
– The resolution or dimension (res): The number of bits that is needed to encode

the corresponding data object.
– The frequency (freq): The mean frequency of emission of the corresponding

data object.
– The priority (prio): The priority level that the corresponding data object enjoys

in the occupation of a given communication channel.



96 Augustin Kebemou and Ina Schieferdecker

– The date of occurrence (occur): The date at which the token is available.
– The freshness requirements (fresh): Determine the latest date at which the token

must be sent.
– The constraints (cons): The data objects, thus the tokens, may underly some

constraints concerning for example their freshness, their safety, their security level,
etc.

6 Formal definition of the CDFM, model transformation

Given a FN model A = hF,R,P, I,Ci of the functionalities of a E/E system with the
components M = {M1,M2, ...,Mk} = F [R, the corresponding synthesis model is a
graph G = (V,E,W ,S), where V = M is the set of the nodes, E is the set of the edges
ei j = (vi,v j) = (v j,vi), W is the set of the tokens and S is the set of the relationships
induced by the constraints and the strategic concerns of the design over the set of
the nodes and the set of the tokens, i.e.

– for each Mi 2 M there is a corresponding node vi 2V ,
– for each data object k exchanged between two components Mi and Mj there is a

corresponding token T k
i j or T k

ji 2 W ,
– each relation between two components (resp. two data objects) also exists be-

tween the corresponding nodes (resp. the corresponding tokens), and:

• Each node vi = hswSize,hwSize,eR, prio,eT i where vi.swSize (resp. vi.hwSize)
is the software (resp. the hardware) size of vi, vi.eR is the execution rate of vi,
vi.prio is the priority of vi, vi.eT is the execution time of vi.

• Each edge ei j = e ji = hT,accFreq,consi where ei j.T = Ti j [Tji is the weight of
the edge ei j, i.e. of the edge e ji, where Ti j =

n

T k
i j,k 2 N

o

is given by the set of

the tokens transferred from node vi to node v j and Tji =
n

T k
ji,k 2 N

o

is given by
the set of the tokens transferred from node v j to node vi (note that ei j.T = e ji.T
for all i, j 2 N but Ti j 6= Tji for each given pair of nodes i, j), ei j.accFreq is the
access frequency of the edge ei j, i.e. of e ji and ei j.cons is the set of constraints
on the edge ei j, i.e. on e ji.

• Each token T k
i j = hdir,res, f req, prio,occur, f resh,consi where T k

i j.dir is the di-
rection in which T k

i j flows, (the direction is also given by the foot notation i j of
the token), T k

i j.res is the resolution of the token T k
i j, T k

i j. f req is the emission rate
of the token T k

i j, T k
i j.prio is the priority of the token T k

i j, T k
i j.occur is the date of

occurrence of the token T k
i j, T k

i j. f resh are the freshness requirements on the token
T k

i j, T k
i j.cons is the set of the constraints and requirements on the token T k

i j.

The metric that is used to determine the weight of the edges of CDFM models
is defined as follows: Given a FN model A and its corresponding CDFM model
G, consider the operator widthi j that defines the set of connectors of A that are



The Components Data Flow Machine: An Intermediate Modeling Format 97

represented by the edge ei j in G (i.e. these are the connectors that relate Ai with A j).
Assume that the operator srcConnectors(Ai) returns the set of connectors for which
Ai is the source and the operator dstConnectors(Ai) returns the set of connectors for
which Ai is the destination, i.e.:

srcConnectors(Ai) = {c 2C|c.src 2 Ai.Int} and
dstConnectors(Ai) = {c 2C|c.dst 2 Ai.Int}, then
widthi j = srcConnectors(Ai)\dstConnectors(A j) and thus, given two nodes vi

and v j of G, the weight of ei j (i.e. the set of tokens transferred over the edge ei j) is:
ei j.T = Ti j [Tji =

[

c2widthi, j

c.Int

7 Applications

The figures 1 and 2 illustrate the results of the transformation of FN models into
CDFM models. Figure 1 shows a part of the FN model of the ACC (active cruise
control) functionality and figure 2 shows the corresponding CDFM model. In the
CDFM version, the relationships between the components are clearly identifiable.
Each connection is materialized by a single edge and the exchanged data objects are
specified in terms of tokens associated each with the corresponding edge so that the
magnitude of the communication between the components can be easily estimated
and compared with each other.

speed_actual 
speed_regulation_state 

acceleration_min 
set_distance_min 

potencial_stationary_objects 
regulation_obl_objects 

objects_sto

display_collision_alert 
display_driver_reation 

max_acceleration 
obstacle_nomination 

nominal_distance

speed_actual 
speed_lateral_state 
acceleration_angle 
nominal _distance 
acceleration_min 
obstacle_detection 

objects_sto

Curve treatment
acceleration_limit_ped 
acceleration_limit_eng 

display_speed 
limit_accelerationSpeed control 

overall

speed_actual 
speed_regulation_state 

acceleration_min 
speed_odometer 
speed_selection

distance_selection

tempomat_setting

display_distance 
set_distance_min display_max_speed 

speed_selection

Max speed setting

Security distance 
setting

Obstacle 
screening

object_nomination 
speed_angle_wheel 

radar_signal 
speed_actual

object_found 
state_radar_sensor 

hor_just_state 
ver_just_state

object_found

speed_angle_wheel 
radar_signal 
speed_actual

Lane 
determination

lane_attributes

potencial_stationary_objects 
regulation_obl_objects 

objects_sto

Obstacle 
identification

Speed control 
retarder

Fig. 1 The ACC FN model

The following simplified example illustrates the transformation of a FN con-
nection in a CDFM edge. Suppose that two FN components are connected with
a sender-receiver port interface, i.e. an interface through which they can exchange
data elements, and a client-server interface, i.e. an interface through which operation
calls can be initiated. Every 10 seconds, the first component A1 sends for example
the actual distance covered since the very first starting of the system (as read from
the odometer) to the second component A2. This is done through the sender-receiver



98 Augustin Kebemou and Ina Schieferdecker

Curve 
treatment

Speed control 
retarder

Lane 
determination

Obstacle 
screening

Speed control 
overall

Obstacle 
identification

Security distance 
setting

Max speed 
setting

objects_sto

object_found 
state_radar_sensor 

hor_just_state 
ver_just_state

lane_attributes

speed_selection

set_distance_min

potencial_stationary_objects 
regulation_obl_objects 

objects_sto
nominal_distance

Fig. 2 The corresponding CDFM model

interface. Then following a time interval of 1 minute, A1 triggers A2 periodically to
calculate the total mileage, i.e. the total distance that has been covered by the vehi-
cle since the beginning of the actual trip. The mileage is communicated to A1 that
displays it to inform the user. This is done through the client-server interface. In
an AUTOSAR model, these two communication interfaces would be specified by
means of one sender-receiver and one client-server interface. But, in a FN model,
they are specified with three connectors as shown in figure 3. In fact, following the
semantics of the FN, as A1 must receive the result of the mileage computation done
by A2, the client-server interface will be modeled by two connectors, one from A1
to A2 and the other one from A2 to A1. In the end, the weight of the edge e12 in the
corresponding CDFM model shown in figure 4 is the set of data objects, i.e. tokens,
exchanged between A1 and A2, resp. between v1 and v2.

A1 A2

odometer_St
req_mileage

resp_mileage

Fig. 3 The FN graphical representation of the mileage inquiry

A1 A2

odometer_State 
req_mileage 
resp_mileag

Fig. 4 Graphical representation of the corresponding CDFM



The Components Data Flow Machine: An Intermediate Modeling Format 99

8 Conclusion

The CDFM provides a powerful modeling format for the design of E/E systems ar-
chitectures. It is featured to support the analysis, the synthesis and the measurement
of the data flow for the mapping in very complex E/E system specifications at the
hight level. The representation of the components interconnections through single
unified edges with the corresponding data flow simplifies the measurement and the
comparison of the communication between the system components. The graph for-
mulation of CDFM models enables the application of usual graph partitioning algo-
rithms to realize the clustering. Due to the concept of directed tokens, the CDFM is
well-adapted to support the frames packing problem that is inherent to the resource
allocation in automotive communication networks such as CAN, MOST, LIN, etc.
Furthermore, CDFM models are obtained from a simple and straightforward trans-
formation of FN models that allow the implementation of CAD system to support
the transformation of FN into CDFM models. Thereto, the CDFM format allows
the design of flexible models, since CDFM models scalable and do not underly any
restriction on the granularity of their elements (nodes and tokens). They can easily
be enhanced to support the simulation.

References

1. A. Kebemou, “Partitioning Metrics for improved Performance and Economy of Distributed
Embedded Systems,” IESS proceedings on IFIP TC10 Working Conference, pp 289-300, Aug.
15-17 2005.

2. AUTOSAR, “www.autosar.org.”
3. Systems Modelling Language (SysML) Specification, OMG document: ad/2006-03-01; version

1.0 Draft.
4. EAST-EEA, “ Embedded Electronic Architecture. Definition of Language for Automotive

Embedded Electronic Architecture v. 1.02,” ITEA, Tech. Rep., 30.06.2006.
5. UML Profile for AUTOSAR; V1.0.0; AUTOSAR Adminstration web content, 28.04.2006.
6. M. von der Beeck, “A Comparison of Statecharts Variants,” in Proceedings of the Third Inter-

national Symposium Organized Jointly with the Working Group Provably Correct Systems on
Formal Techniques in Real-Time and Fault-Tolerant Systems ; pp 128 - 148, 1994.

7. M. Varea, “Modelling and Verification of Embedded Systems based on Petri Net oriented
Representations,” Ph.D. dissertation, University of Southampton, United Kingdom, Sep 2003.

8. D. D. Gajski and L. Ramachandran, “Introduction to High-Level Synthesis,” in IEEE Design
and Test of Computers, Vol. 11, No. 4, pp. 44-54, Dec, 1994.

9. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni, “Behavioral Synthesis and Component
Reuse with VHDL,” Kluwer Academic Publishers, Boston/ London / Dortrecht, 1996.

10. E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Program
for Digital Signal Processing,” in IEEE Transactions on Computers, 75(9):1235-1245, Jan.
1987.

11. J. H. D. Herrmann, J. Henkel, and R. Ernst, “An Approach to the Adaptation of Estimated
Cost Parameters in the COSYMA System,” in Proceedings of the 3 rd International Workshop
on Hardware /Software Codesign - CODES/CASHE ’94, pp 100–107,, 1994.

12. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs,
M. Norwell, Ed. Kluwer Academic Publishers, 1996.



100 Augustin Kebemou and Ina Schieferdecker

13. K. Koutsougeras, C. A. Papachristou, and R. R. Vemuri, “Data Flow Graph Partitioning to
Reduce Communication Cost,” in Proceedings of the 19th annual workshop on Micropro-
gramming; pp 82 - 91, 1986.

14. F. Vahid and D. D. Gajski, “SLIF: A Specification-Level Intermediate Format for System
Design,” in 1995 European Design and Test Conference (ED&TC ’95), 1995.

15. P. Arato, Z. A. Mann, and A. Orban, “ Algorithmic Aspects of Hardware/Software Partition-
ing,” in ACM Transactions on Design Automation of Electronic Systems, Vol. 10, Nr. 1, pp
136-156, Jan 2005.


