
Analysis of Periodic Clock Relations in
Polychronous Systems

Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

Abstract The polychronous (synchronous, multiclocked) language Signal is used
for the design and analysis of reactive systems. For the purpose of modeling event-
driven systems, we consider an extension of the polychronousmodel of computation
of Signal with periodic equations denoted by ultimately periodic infinite words.
These equations express periodic constraints on the signals of programs, that can be
used to enrich the existing clock calculus of Signal. Thanks to this more powerful
clock calculus, the communications between processes using periodic equations can
be analysed to guarantee their correctness. In particular, the maximal size of buffers
is formally evaluated. We illustrate the design of so-defined periodic systems using
a 4-stroke engine example.

1 Introduction

While synchronous programming has extensively been applied to the design of
control-intensive software for event-driven embedded systems [3], recent work [11,
5] has investigated extensions to symbolic calculus for synchrony in the aim of
analyzing periodic systems and communications between them. Synchronous lan-
guages are appropriate specification formalisms to address the design of such ar-
chitectures, as the otherwise symbolic model of time they support can be equipped
with ad-hoc program analysis techniques to perform needed timing evaluation. As
an example, polychrony, the synchronous multi-clocked model of computation of
the data-flow specification formalism Signal, is dedicated to the specification of
concurrent event-driven embedded software and for the main purpose of architec-
ture exploration. Polychrony provides a discrete and partially ordered model of time
that differs from the classical synchronous hypothesis where time is abstracted by
totally ordered symbolic clocks. For the purpose of modeling periodic systems, we

H. Metivier (University of Rennes) · J-P. Talpin · T. Gautier · P. Le Guernic (INRIA)
Campus de Beaulieu, 35 042 Rennes Cedex France
e-mail: firstname.lastname@irisa.fr

45

46 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

consider an extension of the polychronous MoC with periodic clocks denoted by
ultimately periodic infinite words. This defines a compositional specification struc-
ture to express periodic relations between signals. Applications are the design of
periodic systems and the analysis of communication resources.
Related work Many approaches have been investigated for the design of hybrid
hardware/software, event-driven/time-triggered, synchronous/asynchronous, embed-
ded systems. Most of them are based on the principles of process networks and
inherit from the pioneering work of Kahn [7]. Many examples could be cited, the
Ptolemy [4] project, the Yapi [8] project, etc. While symbolic reasoning on pro-
cess networks has essentially been developed for the purpose of embedded, control-
dominated, software design and in the context of synchronous programming lan-
guages [3], such as Esterel, Lustre and Signal, analytical reasoning has mainly been
studied in the context of high-performance, data-dominated systems.
Some approaches have arisen to combine concepts of both domains. 1) The first

one is, to our knowledge, the work of Smarandache [11]. It aims at combining
the multi-clocked synchronous model of computation of the language Signal with
a topological model of the Alpha specification formalism [6]. Alpha manipulates
convex polyhedral domains to describe high-performance, massively parallel algo-
rithms over multi-dimensional data. Signal-Alpha [11] proposes a calculus of affine
clock relations, associating symbolic signal clocks with affine functions: two pe-
riodic signals x,y are said in (n,m,q− p)-affine relation iff their respective clocks
x̂, ŷ can be expressed as functions x̂ = {n.t+ p |t ∈ ẑ} and ŷ = {m.t+ q |t ∈ ẑ} of
a common reference of discrete time ẑ (m,n, p,q are integers). This yields a very
expressive calculus for the specification and the analysis of time-triggered systems,
while in fact most of the decidable and algorithmically affordable analysis concerns
(1,m,n)-affine relations. 2) More recently, Cohen et al. [5] propose an algebra
of ultimately periodic clocks to interpret synchronization in the synchronous lan-
guage Lucid-synchrone. This yields the capability to model process networks: syn-
chronous functions networked by bounded-buffering communication mechanisms.
The algebra of periodic clock relations under consideration consists of associating
a signal with a period described by a binary word (e.g. (01)). In turn, this defines a
rich algebra in which a clock is itself the generator of an ideal consisting of any pos-
sible stretch of the generator (e.g. (0101), etc.). 3) The UML profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE [1]) provides a general
model of time in different aspects : physical/logical, dense/discrete, single/multiple.
It offers basic operators and relations to combine timed events and clocks : subclock-
ing, periodicity, etc. The calculus we propose could be a way of solving MARTE
clock relations (in particular, periodic ones) in the case of discrete multiple time.
Contribution The results described in this paper can be used for the design and
analysis of periodic systems specified using the polychronous model. Our approach
consists first in the design of a clock calculus that balances the tradeoff between de-
cidability and compositionality pointed out earlier [11]. Just as for the affine clock
relations, we define a calculus of periodic clock relations to support the composi-
tional modeling of multi-rate systems. Like in [5], periods are expressed here using

Analysis of Periodic Clock Relations in Polychronous Systems 47

ultimately periodic infinite words. However, they are expressed using ternary logic
instead of Boolean logic. The ternary logic allows to express periodicity on the val-
ues of boolean signals moreover periodicity on the presence/absence of signals. Our
calculus corresponds to part of the domain of (1,m,n)-affine relations in [11], where
most analyses are decidable and recasts these results in an extension of the algebra
of [5] with ternary logic. Based on that algebra, we define a calculus of periodic
clock relations to compositionally reason about real-time relations in multi-clocked
and multi-rate systems. We provide a new Signal equation that allows the design of
periodic processes. The clock calculus of Signal is extended to take it into account
and an analysis can be applied on periodic processes to guarantee the communica-
tions using bounded buffers. The analysis gives as result the size of needed buffers.
Plan Section 2 gives a presentation of the polychronous language Signal. Sec-
tion 3 presents our algebra of ultimately periodic words. Based on that calculus,
section 4 defines a new Signal equation to write periodic processes using ultimately
periodic infinite words; we illustrate this extension with a model of a 4-stroke en-
gine. Section 5 describes the clock relation inference of Signal and its extension.
Section 6 presents the analysis of periodic processes to guarantee communications
using bounded buffers and the analysis is applied on the 4-stroke engine example.

2 Polychronous model of computation

We start with a definition of some required elements of the polychronous model of
computation [9]. The set of tagsT is the discrete time used in Signal and is partially
ordered with the relation t ≤ u. It stipulates that the tag t occurs before u. A chain
C ∈ C is a subset of T which is totally ordered, predC(t) denotes the immediate
predecessor tag inC. Signals, behaviors and processes are defined as follows :

• a signal s ∈ S = C → V is a function from a chain of tags to a set of values,
• a behavior b ∈ B = X → S is a function from a set of names x to signals, it
represents a possible execution of a program.

• a process p ∈ P is a set of behaviors that have the same domain. This set repre-
sents all the possible executions of the program.

The set of possible values V is defined as union of sets of boolean values, integer
values, etc. The type of a signal is that of its values.Clock signals take their values in
the subset of VB reduced to the { true } singleton. Type constraints are not described
in this paper. We write tags(s) for the chain of tags of a signal s and min(tags(s))
for its first tag. We write b|X for the projection of a behavior b on a set of names X .
A Signal process consists of the synchronous composition of equations on sig-

nals. A signal x is an infinite flow of values that is discretely sampled according to
the pace of its clock, noted x̂. An equation partially relates signals with respect to an
abstract timing model.

P ::= x= f(y,z) |x = y pre v |x= y when z |x= y default z |P ||P

48 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

It is allowed to substitute a signal name by its definition to write concise processes.
For example, x= (y ̸= z) ||z= y pre true may be written as x= (y ̸= (y pre true)).
Semantics of the Signal equations In the functional equation x = f(y,z), the sig-
nals x,y and z are assumed to be synchronous, (their sets of tags are equal). For each
tag the signals are present, x holds the result of the function f applied on the values
of y and z. f can be an arithmetic or boolean classical function (+, ̸=, or . . .).
The delay equation x = y pre v enforces the signals x and y to be synchronous

too. The value of the signal x at a given tag is defined by the value of y from the
previous tag in the chain. For its first tag, x holds the value v.
The sampling equation x= y when z defines x by y when z is true. It means that

the output signal x is present and takes the value of y iff both input signals y and z
are present, and z holds the value true. In the following definition, the notation [z]
represents the clock which is true when z is present and true, and absent otherwise.
The merge equation x = y default z defines x by y when y is present and by z

otherwise. The signal x is present iff either of the signals y or z is present.
The synchronous composition P ||Q is defined by the simultaneous solution of the

equationsP andQ at all times. If we note vars(P) the domain of a processP, it can be
defined by the union b"c of behaviors that match on the interface vars(P)∩vars(Q)
between P and Q.

[[x= f(y, z)]] =
{

b ∈ B|x,y,z

∣

∣

∣

∣

tags(x) = tags(y) = tags(z),
∀t ∈ tags(x),b(x)(t) = f(b(y)(t),b(z)(t))

}

[[x= y pre v]] =
{

b ∈ B|x,y

∣

∣

∣

∣

tags(x) = tags(y) =C,b(x)(t) =

∣

∣

∣

∣

v if t =min(C)
b(y)(predC(t)) if t ̸=min(C)

}

[[x= y when z]] =
{

b ∈ B|x,y,z
∣

∣tags(x) = tags(y)∩ tags([z]),∀t ∈ tags(x), b(x)(t) = b(y)(t)
}

[[x= y default z]] =
{

b ∈ B|x,y,z

∣

∣

∣

∣

tags(x) =C
= tags(y)∪ tags(z) ,∀t ∈C,b(x)(t) =

∣

∣

∣

∣

b(y)(t) if t ∈ tags(y)
b(z)(t) otherwise

}

[[P ||Q]] =
{

b" c
∣

∣b ∈ [[P]], c ∈ [[Q]], b|vars(P)∩vars(Q) = c|vars(P)∩vars(Q)
}

3 An algebra of ultimately periodic infinite words

We now present an algebra of ultimately periodic infinite words used in our ex-
tension of Signal for the design and the analysis of periodic processes. We use the
three-value logic induced by Z/3Z to denote boolean or clock signals by using
atoms a ∈ Z/3Z = {-1,0,1}. The absence is denoted by 0, false by -1 and true by 1.
We introduce this algebra to represent periodicity over boolean and clock signals.
Ultimately periodic infinite words The ultimately periodic infinite words (called
words further) noted w or u(v) under consideration are composed of a prefix u ∈
(Z/3Z)∗ and a period v ∈ (Z/3Z)+.

W = {w= u(v) |u ∈ (Z/3Z)∗ and v ∈ (Z/3Z)+}

Analysis of Periodic Clock Relations in Polychronous Systems 49

A word u(v) represents the infinite sequence of atoms composed by the sequence
u followed by the sequence v repeated infinitely. Words that represent the same
sequence of atoms are equal. We now present a few required notations:

• |u| the length of a sequence u ∈ (Z/3Z)∗

• ⟨u⟩ the number of non-zero atoms of a sequence u ∈ (Z/3Z)∗

• wn the nth atom of a word w
• |w|an the number of atoms a in the nth first atoms of w
• w[n] the nth non-zero atom in the word w
• “.” the classical operation of concatenation.
• ⟨w⟩an the position of the nth atom a in the word w

i.e. ⟨a.w⟩a1 = 1 ⟨b.w⟩an =

(

⟨w⟩an+1 if a ̸= b
⟨w⟩an−1+1 if a= b and n> 1

)

ex: ⟨01(01-10)⟩11 = 2 ⟨01(01-10)⟩12 = 4 ⟨01(01-10)⟩-12 = 9

Operations and operators The partial order w⊑ w′ stipulates that the nth atom in
w precedes the corresponding one in w′, for all non-zero atoms. w ⊑ w′ means that
w′ is stretched variant of w, since the non-zero atoms occur in the same order.

∀n > 0,∀a ̸= 0,
w⊑ w′ ⇔ ⟨w⟩an ≤ ⟨w′⟩an

a.w@b.w′ =

(

0.(a.w@w′) if b ̸= 1
a.(w@w′) if b= 1

)

We define the operatorw@w′ to resample a wordw on an other onew′. The atoms of
w being placed in correspondence with the atoms 1 of w′, then the word w@w′ has
the corresponding atom of w when w′ has the atom 1, and has the atom 0 otherwise.
The @ operator distributes the values of the first stream to the positions where the
second one holds the atom 1. This is an extension of the “w′ on w” operator of [5].
This definition yields that w⊑ w@w′ for all words w,w′ and (w@w′)n = 0 if w′

n ̸= 1
and w|w′|1n

if w′
n = 1.

Example 1. ∀w ∈ W, w@(1) = w and w@(0) = (0)

(0-11)@0(1-1110) = 0(00-11)
w′ 0 1 -1 1 1 0 1 -1 1 1 0 · · ·= 0(1-1110)
w 0 -1 1 0 -1 1 · · ·= (0-11)

w@w′ 0 0 0 -1 1 0 0 0 -1 1 0 · · ·= 0(00-110)

Remark 1. For any pair of words u(v) and x(y), it is always possible to build
equivalent representations u′(v′) = u(v) and x′(y′) = x(y) such that |u′| = |x′| and
|v′| = |y′| [5]. For example, 01(-11) and (-101) can be respectively rewritten as
01(-11-11-11) and -10(1-101-10). Such a rewriting is useful when pointwise oper-
ations have to be applied on words.

Synchronizable words

Definition 1. Two words w,w′ are said stretch-equivalent if ∀n> 0, w[n] = w′[n].

It means that the two stretch-equivalent words have the same order of non-zero
atoms. Obviously, any two words the atoms of which take their values in {0,1}
(called binary words) are stretch-equivalent.
In [5], it is shown that two binary words u(v),u′(v′) are synchronizable iff the

lengths of their periods (|v|,|v′|) and their numbers of presence (⟨v⟩,⟨v′⟩) match
⟨v⟩/|v| = ⟨v′⟩/|v′|. This extends to stretch-equivalent ternary words.

50 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

Definition 2. Two stretch-equivalent ternary words w,w′ are said synchronizable,
written w∼ w′, iff there exists d,d′ such that w⊑ 0d.w′ and w′ ⊑ 0d′ .w.

The relation w⊑ 0d .w′ means that we can delay the atoms of w′ by d zero atoms so
that the nth non-zero atom ofw precedes the nth non-zero atom ofw′. Thenw⊑ 0d.w′

(resp. w′ ⊑ 0d′ .w) implies that the distance between the nth non-zero value of w and
the nth non-zero value of w′ is bounded by d (resp. d’). This definition will be used
to analyse the size of buffers required for communications (Section 6).

Property 1. Two stretch-equivalent words u(v) and u′(v′) are synchronizable iff
⟨v⟩/|v| = ⟨v′⟩/|v′| . (the proof is similar to that of [5]).

4 Periodic processes

Periodic sampling equation We introduce a new operator in Signal, noted @,
derived from the corresponding one defined on periodic words, in order to express
periodic relations. A periodic sampling equation x = w@y relates two (clock or
boolean) signals x,y, with a word w. It defines x to hold the successive non-zero
atoms of w when y takes the value true. We note tx[n] for the nth tag of a signal x.

[[x= w@y]] =
{

b ∈ B|x,y

∣

∣

∣

∣

t ∈ tags(x) ⇔∃n> 0, t = ty[n] and wn ̸= 0
∀n > 0, b(x)(tx[n]) = w[n]

}

Example 2. ∀w ∈ W,x= (1)@y⇒ x= [y], and x= (0)@y⇒ x is always absent.
Recall that [y] is a clock which is present iff the signal y is present and true.

x= 0(10-1)@y
y 1 -1 1 1 1 -1 1 1 -1 1 · · ·

0(10-1) 0 1 0 -1 1 0 -1 · · ·
x 1 -1 1 -1 · · ·

Example 3. To outline the use of a periodic sampling equation in Signal, we consider
the specification of a one-place buffer which is constrained to behave as a mailbox
(every message has to be read once and only once before there is a new one). The
process buffer uses two subprocesses, alternate and current. The process alternate
stipulates that the signals x and y should have exclusive periods (01) and (10) with
respect to the clock c. The process current stores the value of an input signal y
and loads it into the output signal x upon request. The buffer has a main clock
equivalence class r̂ = c and two exclusive samples x̂ = (01)@c and ŷ = (10)@c.

x= buffer(y) def= (x= current(y,c) ||alternate(x,y,c))
alternate(x,y,c) def= (x̂= (01)@c || ŷ= (10)@c)
x= current(y,c) def= (r = y default (r pre initValue) ||x= r when x̂ || r̂ = c)

Use case In a 4-stroke engine, each cylinder performs a cycle with four phases:
intake, compression, combustion and exhaust. During the intake phase, a blend of
fuel and air is put in the cylinder, the compression compresses this blend, the com-
bustion is the action of burning the blend because of an ignition and the exhaust

Analysis of Periodic Clock Relations in Polychronous Systems 51

evacuates the gas of the cylinder. To model this periodic system, like [2] we use a
clock clkSha f t which represents the rotation of the crankshaft. In figure 1, it appears
that the crankshaft turns 720◦ for each cycle of the engine.

0 intake 180 compression 360 combustion 540 exhaust 720 clkShaft

ignition time
calculus

MIAA
ignition

time interval
data

acquisition

startCalc resultCalc startData resultData
Fig. 1 4-stroke engine cycle for one cylinder

The date of ignition occurs during the ‘ignition time interval’ and must be com-
puted for each cycle of the engine for a better efficiency. This date depends on
several measures made during the combustion phase of the previous cycle. ‘Data
acquisition’ is the period where the measures are done and ‘ignition time calcu-
lus’ is the one where the ignition date is calculated. The Maximal Ignition Advance
Angle (MIAA) is the beginning of the ‘ignition time interval’.
The process oneCylinder represents the model of a cylinder in Signal using pe-

riodic sampling equations. The signal clkSha f t is a clock which is present each
time the crankshaft turns one degree. The clocks clkIntake, clkCompress, clkCom-
bust, clkExhaust represent the beginning of the four phases of the 4-stroke engine
(1). For example, the equation clkCompress = (018010539)@clkSha f t constrains
clkCompress to be present when clkSha f t is present for the (181 modulo 720)th
times that correspond to a turn of 180◦ from each beginning of a cycle. The clock
clkMIAA corresponds to the MIAA.
We assume two external components represented by two processes: dataAcqui-

sition for the acquisition of the data (2) and ignitionTime for the computation of
the date of ignition (3). For each cycle, the beginning and the end of the running
of the two processes are constrained by the periodic clocks of the signals startData
and resultData for dataAcquisition and the signals startCalc and resultCalc for
ignitionTime.
The ignition must occur at the MIAA plus a number of degrees contained in the

result resultCalc of the process ignitionTime. The clock clkIgnition (4) is the result
of the process Ignition (5) that computes this date. A buffer is needed to delay the
acquisition of the data at the clock resultData to the use of this data at the clock

ˆstartCalc (in the next cycle of the engine). The management of the buffer to operate
this delay is shown in the global process: 4cylinderEngine. The model of a four
cylinder engine is a composition of four processes oneCylinder, the basic clocks of
which are ‘shifted’ (6): the first cylinder starts running at the first presence of the
clock clk of the crankshaft, the second cylinder starts with a delay of 180 degrees on
the clock clk, the third one with a delay of 360 degrees and the fourth one with a de-
lay of 540 degrees. The process bufferFIFO is a classical FIFO in which an element
is added when one of the signals d1,d2,d3 or d4 (corresponding to the respective
resultData signal of each cylinder) is present; an element is taken from the FIFO

52 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

oneCylinder(clkSha f t, resultData, startCalc) def=
⎛

⎝

clkIntake = (10719)@clkSha f t ||clkCompress = (018010539)@clkSha f t
||clkCombust = (036010359)@clkSha f t ||clkExhaust = (054010179)@clkSha f t
||clkMIAA = (033010389)@clkSha f t

⎞

⎠(1)

||

(

resultData = dataAcquisition(startData)
|| ˆstartData = clkCombust || ˆresultData= (047010249)@clkSha f t

)

(2)

||

(

resultCalc = ignitionTime(startCalc)
|| ˆstartCalc = 0720(10719)@clkSha f t || ˆresultCalc= 0720(015010569)@clkSha f t

)

(3)

|| (clkIgnition= Ignition(resultCalc,clkSha f t,clkMIAA)) (4)

clkIgnition = Ignition(resultCalc,clkSha f t,clkMIAA)
def
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ignitionDelay = resultCalc default (ignitionDelay pre f irstIgnitionDate)
|| i = 0 when clkMIAA

default -1 when (zi== ignitionDelay)
default zi+1 when (zi ̸= -1)

|| zi = i pre -1 || î= clkSha f t
||clkIgnition = true when (i== ignitionDelay)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5)

4cylinderEngine(clk) def=

(6)

⎛

⎜

⎜

⎝

oneCylinder(clk,d1,c1)
||oneCylinder(0180(1)@clk,d2,c2)
||oneCylinder(0360(1)@clk,d3,c3)
||oneCylinder(0540(1)@clk,d4,c4)

⎞

⎟

⎟

⎠

||

⎛

⎜

⎜

⎝

add= d1 default d2 default d3 default d4
|| take= bufferFIFO(add)
||c1 = take when ĉ1 ||c2= take when ĉ2
||c3 = take when ĉ3 ||c4= take when ĉ4

⎞

⎟

⎟

⎠

(7)

when one of the signals c1,c2,c3 or c4 (corresponding to the respective startCalc)
is present (7). The analysis of the necessary size of this buffer is presented in Sec-
tion 6. The figure 2 shows a chronogram of this model.

0 180 360 540 720 900 1080 clkShaft

1st cylinder : intake compression combustion exhaust intake compression
2nd cylinder : intake compression combustion exhaust intake

· · ·3rd cylinder : intake compression combustion exhaust
4th cylinder : intake compression combustion

Fig. 2 a 4 cylinder engine chronogram

5 Inference of clock relations

In this section, we present the clock relations extracted from Signal equations and
the associated clock calculus extended with the periodic sampling equation. In gen-
eral, a clock c denotes a set of tags in the polychronous model of computation. The
clock x̂ of a signal x denotes the tags at which the signal x is present. The clock [x]
(resp. [¬x]) denotes the tags at which a boolean signal x is present and true (resp.
false). The intersection ∩, union ∪ and the complement \ are the usual operators on
sets applied on the sets of tags representing clocks. The expressionw@c denotes the
clock obtained by the periodic sampling defined in Section 4. When we are talking

Analysis of Periodic Clock Relations in Polychronous Systems 53

about clocks, all the words are binary words. Any Signal process P corresponds to
a system of implicit clock relationsC that denotes its implied timing structure.

c,d ::= x̂ | [x] | [¬x] | c∩d | c∪d | c\ d | w@c (clock)
C,D ::= c= d | C ||D (clock relation)

The clock relations are specified by the inference system P : C that is recursively
defined by induction on the syntax of P. In a delay equation x= y pre v, the signals
are synchronous (x̂= ŷ). In a sampling equation x= y when z, the clock x̂ is defined
by the clock ŷ at the sampling condition [z]. In a merge equation x = y default z, x̂
is present if either one of the clock y,z is. In a functional equation x = f(y,z) the
signals x,y,z are synchronous. In a periodic sampling equation x=w@y, x is defined
by the atoms ofwwhen y is true. The rule for composition P ||Q is defined to beC ||D
and by induction on the deductions P :C and Q :D made on its sub-terms.

x= y pre v :(x̂= ŷ)
x= y when z :(x̂= ŷ∩ [z])
x= y default z :(x̂= ŷ∪ ẑ)

x= w@y :(x̂= w2 @ [y] (*)
|| [x] = [w]@ [y]
|| [¬x] = [¬w]@ [y])

P :C Q :D
P ||Q :C ||D

(*) w2, [w] and [¬w] are binary words respectively defined by

(a.w)2 =

⎛

⎝

1,a= 1
1,a= -1
0,a= 0

⎞

⎠.w2 [a.w] =

⎛

⎝

1,a= 1
0,a= -1
0,a= 0

⎞

⎠.[w] [¬a.w] =

⎛

⎝

0,a= 1
1,a= -1
0,a= 0

⎞

⎠.[¬w]

Intuitively, the binary wordsw2, [w] and [¬w] are used to represent respectively pres-
ence, presence and true, presence and false of a boolean signal constrained by a
periodic sampling equation using a word w.

Property 2. Let c,d and e be clocks of a process P and w and w′ two binary words,
P : (c= w@d | d = w′@e) ⇒ P : c= (w@w′)@e
Proof : We know that the operator @ is associative for binary words [5].
c= w@ (w′@e) =⇒ c= (w@w′)@e.

6 Communication analysis

Most of reactive systems use communications between their different components.
In safety-critical domains, like car industry, there is a need for guaranteeing bounded
communications. In the particular case of reactive systems described with our model
of periodic processes, we provide a formal analysis allowing to determine minimal
buffer size required for communications.
Buffer size analysis We consider a definition of periodically equivalent clocks
based on the definition of synchronizable words (definition 2). Two clocks c and d
are periodically equivalent if there exists a clock r such that the tags of c and d are
included in the set of tags of r, and there are constraints c=wc@r, d =wd@r where

54 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

wc,wd are synchronizable. It means that the difference of the number of presence of
the clocks c and d is bounded all times the clock r is present.

Definition 3. Two clocks c,d are periodically equivalent in P, noted c∼ d, iff
∃r a clock, such that P : (c= wc@r, || d = wd @r) and wc ∼ wd
From this definition, we define the synchronization of a clock c on another clock
d, noted c ≻ d. It constrains the nth occurrence of the clock c to precede the corre-
sponding one of the clock d for all n > 0. c and d must be periodically equivalent.
The operator≻ on the clocks is not commutative.

Definition 4. A clock c is synchronizable on a clock d in P, noted c≻ d, iff
1. c∼ d, (i.e. ∃r a clock, such that P : (c= wc@r, || d = wd @r), wc ∼ wd)
2. wc ⊑ wd
When a clock c is synchronizable on a clock d, it means that values can be delayed
from the clock c to the clock d using a bounded buffer. The maximal size of the
buffer used by the delay can be computed. We thus obtain the minimal size of the
buffer to delay a signal of clock c for its use on clock d.

Property 3. Minimal buffer size to guarantee the communication between two syn-
chronizable clocks c and d in a process P.
From definition 4, we have c ≻ d ⇔ P : (c = wc@r, || d = wd @r), wc ∼ wd and
wc ⊑ wd . The minimal size of the buffer to guarantee the delay from the clock c to
the clock d is : size(c,d) =maxn>0(|wd |1n− |wc|1n)
The size(c,d) is the maximal difference between the numbers of presence of the
clocks d and c. This size is computable thanks to remark 1 (section 3).

Analysis of the minimal buffer size required for the process bufferFIFO The
inference system (P :C) defined in Section 5 applied on the process 4cylinderEngine
gives the following relations:

4cylinderEngine : (add = 0291(01791)@clk | take= 0541(01791)@clk)
The two clocks add and take are periodically equivalent (definition 3) and synchro-
nizable (definition 4). So we can calculate the size of the buffer needed to delay
values from the clock add to the clock take : size(add,take) = 2. The communica-
tions between the acquisition of the data from the previous cycle of the engine to
the computation of the ignition date are guaranteed with a two place buffer.
Analysis of the number of components used for the computation of the igni-
tion date. In the 4cylinderEngine process, each process oneCylinder uses a ig-
nitionTime process to compute its ignition date. But this process could be shared
between several oneCylinder processes (ignitionTime is only running during the
intake phases). Just like for the above analysis of the minimal size of the FIFO
buffer, the same kind of analysis can be done to calculate the number of ignition-
Time processes required for the overall application. The ignitionTime process is
running between an occurrence of the startCalc signal to the next occurrence of
the resultCalc signal. The size function (between the clocks corresponding to the
start and the end of the running of the ignitionTime process) can be used here to
determine the maximal number of ignitionTime processes running at the same time.

Analysis of Periodic Clock Relations in Polychronous Systems 55

(
⋃

startCalc= 0541(01791)@clk |
⋃

resultCalc= 0690(01791)@clk)
The result is size(

⋃

startCalc,
⋃

resultCalc) = 1. Therefore one single compo-
nent can be used for the computation of the ignition date of the four processes
oneCylinder. The previous computation is always finished when a new computa-
tion starts.
Applying the same analysis for a 4-stroke engine with 6 cylinders defined on a

similar model than the 4cylinderEngine (with a delay of 120 degrees between the
clocks clkShaft) gives a result size of 2, so that two components are needed for the
computation of the ignition date of the six processes oneCylinder.

7 Conclusion

We have presented an extension of the polychronous model of computation of the
Signal formalism with a periodic sampling equation using ultimately periodic infi-
nite words. We have shown that periodic clock relations provide a calculus to com-
positionally reason about real-time relations in multi-clocked systems. Our main
contributions are the adaptation of periodic relations of [5] to Z/3Z and their han-
dling in the clock calculus associated with the polychronous model. This extension
is used for the design of periodic systems in Signal and we illustrated it with an ex-
ample of a 4-stroke engine. We gave an analysis allowing to guarantee the commu-
nications using bounded buffers; the maximal size of buffers is formally evaluated.
The work that has been done allows to analyse periodic systems that are designed

using the new specific periodic sampling equation introduced in Signal. A further
study would be to define a static analysis that would extract periodic relations from
implicit periodicities of the systems. This will allow to analyse a greater set of peri-
odic systems.

References
1. C. André, F. Mallet, R. de Simone. Modeling time in UML. Research report ISRN I3S/RR-
2007-16-FR, I3S Laboratory, 2007.

2. C. André, F. Mallet, M-A. Peraldi. A multiform time approach to real-time system modeling.
SIES, 2007.

3. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
Synchronous Languages Twelve Years Later. Proceedings of the IEEE. IEEE, 2003.

4. J. Buck, S. Ha, E. Lee, D. Messerschmitt. Ptolemy: a framework for simulating and prototyping
hetrogeneous systems. International Journal in Compuer Simulation, v4(2), 1994.

5. A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-synchronous
Kahn networks: a relaxed model of synchrony for real-time systems. In POPL. ACM, 2006.

6. C. Dezan, P. Quinton. Verification of regular architectures using Alpha. In Adaptative Sensor
Array Processing Workshop. IEEE Press, 1994.

7. G. Kahn. The semantics of a simple language for parallel programming. Information Process-
ing, North Holland, 1974.

8. E. Kock, et al. Yapi: Application modeling for signal processing systems. Design Automation
Conference. ACM, 2000.

9. P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. In Journal for
Circuits, Systems and Computers. World Scientific, 2003

56 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

10. H. Marchand, E. Rutten, M. Le Borgne and M. Samaan. Formal Verification of programs spec-
ified with Signal : application to a power transformer station controller. In Science of Computer
Programming. Elsevier, 2001.

11. I. Smarandache, T. Gautier, P. Le Guernic. Validation of mixed Signal-Alpha real-time systems
through an affine calculus on clock synchronization constraints. In Formal Methods Europe.
Springer, 1999.

