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Abstract Due to the growing complexity and adaptability requirements of real-time
embedded systems, which often exhibit unrestricted inter-dependencies among sup-
ported services and user-imposed quality constraints, it is increasingly difficult to
optimise the level of service of a dynamic task set within an useful and bounded
time. This is even more difficult when intending to benefit from the full potential
of an open distributed cooperating environment, where service characteristics are
not known beforehand. This paper proposes an iterative refinement approach for
a service’s QoS configuration taking into account services’ inter-dependencies and
quality constraints, and trading off the achieved solution’s quality for the cost of
computation. Extensive simulations demonstrate that the proposed anytime algo-
rithm is able to quickly find a good initial solution and effectively optimises the rate
at which the quality of the current solution improves as the algorithm is given more
time to run. The added benefits of the proposed approach clearly surpass its reduced
overhead.

1 Introduction

Most of today’s embedded systems are required to work in highly dynamic envi-
ronments, where the characteristics of the computational load cannot always be pre-
dicted in advance and resource needs are usually data dependent and vary over time
as tasks enter and leave the system [1]. Nevertheless, response to events still have to
be provided within precise timing constraints in order to guarantee a desired level
of performance.

One promising solution is to support cooperation among nodes of a distributed
system. A careful partitioning of the workload between a device and their remote
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neighbours has been proved to achieve power and performance gains [2, 4]. Never-
theless, supporting the maximisation of each user’s quality of service (QoS) require-
ments in such a distributed service execution is a key issue [7]. This need imposes a
complexity that may prevent the possibility of computing an optimal QoS configu-
ration within an useful and bounded time. It is therefore beneficial to build systems
that can trade off the needed computation time for the quality of the achieved solu-
tion. In [9], an iterative refinement QoS optimisation that maximises the provided
QoS of a set of independent tasks was proposed. The configuration process can be
interrupted at any time and still provide a solution and a measure of its quality.

However, the problem is even more complex when tasks exhibit QoS dependency
relations among them. Such dependency relations specify that a task offers a certain
level of QoS under the condition that some specified QoS will be offered by the
environment or by other tasks. In this case, the negotiation process has to ensure
that a source task provides a QoS which is acceptable to all consumer tasks and lies
within the QoS range supported by the source task. This paper proposes an anytime
local QoS optimisation, assuming that services share resources and their execution
behaviour and input/output qualities are interdependent, i.e., a constraint on one
quality or resource parameter can constrain other system’s parameters. To guarantee
that a valid solution is available at any time, QoS dependencies are tracked and the
performed changes are propagated to all the affected attributes at each iteration of
the algorithm. To the best of our knowledge no other works propose an anytime
approach for a distributed QoS configuration of resource intensive services in open
real-time embedded services with the ability to handle tasks’ inter-dependencies and
maximise the satisfaction of each user’s quality preferences.

2 System model

With tasks joining and leaving the system at any time both resource demands and
availability can fluctuate rapidly and unpredictably. This may affect the ability to
individually execute services with specific user-imposed QoS constraints and drive
devices to group themselves in a coalition for a cooperative service execution [7].

A real-time service Si = {wi1,wi2, . . . ,win} is a collection of one or more work
units wi j that can be executed at varying levels of QoS to achieve an efficient re-
source usage that constantly adapts to the embedded devices’ specific constraints,
nature of executing tasks and dynamically changing system conditions. Each work
unit wi j = ti1,ti2, . . . ,tin is a set of one or more tasks ti j that must be executed in
the same node due to local dependencies. Dependencies are modelled as a directed
graph Gi j, with each graph node representing a task and the edges representing the
data flow between the tasks. Correct decisions on service partitioning are made at
run time when sufficient information about the workload and communication re-
quirements become available [12].

Given the heterogeneity of services to be executed, users’ preferences, underly-
ing operating systems, networks, devices, and the dynamics of their resource usages,
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QoS specification becomes an important issue in the context of a distributed QoS-
aware cooperative service execution framework. Nodes must either have a common
understanding of how QoS should be specified, or be able to map their individual
specifications into a common one. A sufficiently expressive scheme for defining the
QoS dimensions subject to negotiation, their attributes and the quality constraints
in terms of possible values for each attribute, as well as inter-dependency relations
between some of those QoS parameters was proposed in [7] and can be expressed
in several QoS description languages [3]. This scheme is used to specify in the ser-
vice’s description, known at admission time, how a task’s output quality depends on
the quality of its inputs and on the amount of resources it uses to produce the output.
These inter-dependency relations among the QoS parameters of a particular service
Si can be present (i) among two or more QoS attributes of a single task ti; (ii) among
two or more tasks within a work unit wi j; or (iii) among two or more work units that
may be executed in the same or in different nodes.

Based on a domain’s QoS characterisation, users provide a single specification
of their own range of QoS preferences Qi for a complete service Si, without having
to understand the individual work units that make up the service. Preferences are
defined in a qualitative way, imposing a relative decreasing order of importance on
QoS dimensions, their attributes, and acceptable values. Given the spectrum of the
user’s acceptable QoS levels, each node formulates the best instantaneous service
level agreement (SLA) it can offer. The local QoS optimisation recomputes the set
of QoS levels for the new set of tasks, as it tries to find a feasible set of service
configurations that maximises users’ satisfaction with the provided service as well
as minimises the impact on the current QoS of the previously accepted tasks. At each
iteration, the search of a better solution is guided by a heuristic evaluation function
that optimises the rate at which the quality of the current solution improves overtime.
The time to find a feasible service solution is dynamically imposed as a result of
emerging environmental conditions [10]. A SLA also includes a stability period Dt ,
guaranteeing that during a specific time interval the promised QoS will be assured
by the node’s local QoS optimisation. Dt is dynamically determined in response
to fluctuations in the tasks’ traffic flow, relating observations of past and present
system’s conditions and extending users’ influence also to the services’ adaptation
during execution [8].

With several independently developed applications with different timing require-
ments coexisting in the same node, it is important to guarantee a predictable perfor-
mance under specified load and failure conditions, and ensure a graceful degradation
when those conditions are violated. This is strictly related to the capacity of control-
ling the incoming workload, preventing abrupt and unpredictable degradations and
achieving isolation among services, providing service guarantees to critical applica-
tions [10, 11].
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3 Optimising the QoS of a inter-dependent task set

The formation of a cooperative coalition should enable the selection of individual
nodes that, based on their own resources and availability, will constitute the group
that maximises the user’s QoS requirements Qi associated with service Si, expressed
in decreasing preference order. Each Qi

k j = {Qi
k j[0], . . . ,Qi

k j[n]} is a finite set of n
quality choices for the jth attribute of the kth QoS dimension associated with a work
unit wi j of the new service Si.

This paper extends the anytime local1 QoS optimisation introduced in [9] by
allowing tasks to exhibit unrestricted inter-dependencies among them, only know
at admission time. Service negotiation is based on a iteratively refinement of each
node’s local QoS level, maximising the provided QoS for the new service and min-
imising the quality degradation of previously accepted tasks. The proposed approach
ensures that a source task provides a QoS which is acceptable to all consumer tasks
and lies within the QoS range supported by the source task. Based on the new ser-
vice’s data flow graph Gi and on its set of inter-dependency relations Depsi, Al-
gorithm 1 tracks QoS dependencies and propagates the performed changes in one
attribute to all local affected attributes at each iteration. If, by following the chain of
dependencies, the algorithm finds a task that is already in its list of resolved depen-
dencies, a deadlock is detected and the service proposal formulation is aborted.

In order to be useful in practice, an anytime approach must try to quickly find a
sufficiently good initial proposal and gradually improve it if time permits, conduct-
ing the search for a better feasible solution in a way that maximises the expected
improvement in the solution’s quality. Algorithm 1 starts by keeping the QoS levels
of previously guaranteed tasks and by selecting the lowest requested QoS level for
the new tasks in wi j that complies with any eventual QoS dependency with currently
executing tasks. Note that this is the service configuration with the highest proba-
bility of being feasible without degrading the current level of service of previously
accepted tasks.

The algorithm iteratively work on the problem of finding a feasible set of service
configurations and produces results that improve in quality over time. At each iter-
ation, the search of a better feasible solution is guided by the maximisation of the
users’ expected satisfaction with the provided service. When wi j can be accommo-
dated without degrading the previously accepted tasks’ QoS, the configuration that
maximises the increase in the obtained reward of the new service is incrementally
selected. On the other hand, when QoS degradation is needed to accommodate wi j,
the algorithm incrementally selects the configuration that minimises the decrease in
the obtained reward for all services.

Rewards are determined by considering the proximity of a service proposal with
respect to the weighted user’s QoS preferences expressed in decreasing order (Equa-
tion 1). The penalty parameter can be fine tuned and its value should increase with
the distance to the user’s preferred value for a particular quality attribute.

1 Dependencies among tasks running on different nodes will be handled in future work
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Algorithm 1 Service proposal formulation
Let t p be the set of previously accepted tasks
Let te be the set of tasks whose stability period Dt has expired
Let t§ = t p[wi j be the new set of tasks

Step 1: Improve the QoS level of each task ta 2 wi j
Select Qk j[n], the lowest requested level of service for all k QoS dimensions, considering the
dependencies with the previously accepted tasks t p, for all newly arrived tasks ta in wi j
Keep the current QoS level of previously accepted tasks t p

while the new set of local tasks t§ is feasible do
for each task ta 2 wi j do

for each attribute without dependencies with t p receiving service at Qk j[m] > Qk j[0] do
Upgrade attribute j to the next possible value m°1
Follow dependencies of attribute j in wi j and change values accordingly
Determine the utility increase of this upgrade

end for
end for
Find task tmax whose reward increase is maximum and perform upgrade

end while

Step 2: Find the local minimal service degradation in t§ to accommodate each ta 2 wi j
while the new set of local tasks t§ is not feasible do

for each task ti 2 te[wi j receiving service at Qk j[m] > Qk j[n] do
for all QoS attributes do

Degrade attribute j to the previous possible value m+1
Follow dependencies of attribute j in all local tasks t§ and change values accordingly
Determine the utility decrease of this downgrade

end for
end for
Find task tmin whose reward decrease is minimum and perform downgrade

end while
return new local QoS optimisation

reward(Si) = 1°
8Q jk<Qbest j

Â
j=0

w j § penalty j (1)

By combining the rewards of all services’ configurations, a measure of a node’s
global satisfaction with the proposed QoS for the new task set can be obtained
(Equation 2).

R =

n

Â
i=1

reward(Si)

n
(2)

Note that unless all services are executed at their highest requested QoS level,
there is a difference between the current node’s local reward Rcurrent and the maxi-
mum theoretical local reward Rmax. This difference can be caused by either resource
limitations, which is unavoidable, or poor load balancing. The later can be improved
by using the nodes’ local rewards to select the nodes that are going to constitute the



196 Luı́s Nogueira and Luı́s Miguel Pinho

new cooperative coalition [7]. Selecting the node with a higher local reward for sim-
ilar service proposals, not only maximises a particular user’s satisfaction with the
provided service, but also maximises the global system’s utility, since a higher local
reward clearly indicates that the node’s previous set of tasks had to suffer less QoS
degradation in order to accommodate the new tasks.

Algorithm 1 always improves or maintains the current solution’s quality as it has
more time to run. This is done by keeping the best feasible solution so far, if the
result of each iteration is not always proposing a feasible service configuration for
the new task set. However, each intermediate configuration, even if not feasible, is
used to calculate the next solution, minimising the search effort. Instead of a binary
notion of the solution’s correctness, the algorithm returns a proposal and a measure
of its quality. Equation 3 considers the reward achieved by the new arriving service
rSi , the impact on the provided QoS of previous existing tasks rSp and the value of
the previous generated feasible configuration Q0

con f . Initially, Q0
con f is set to zero

and its value is only updated if the achieved solution is feasible.

Qcon f =
µ

rSi §
Ân

i=0 rSp

n

∂(1°Q0
con f )

(3)

The algorithm can be interrupted at any time as a consequence of the dynamic na-
ture of the environment [10], or finishes when it finds a feasible configuration whose
quality cannot be further improved, or when it finds that even if all the node’s tasks
would be served at the lowest requested QoS level it is not possible to accommodate
the new requesting tasks in wi j. In this later case, the service request is rejected and
the previously accepted tasks continue to be served at their current QoS levels.

4 Behaviour and Evaluation

Since we are primarily interested in dynamic open real-time scenarios a special
attention was devoted to introduce a high variability in the characteristics of the
conducted simulations. The number of simultaneous nodes in the network varied
from 10 to 50 with resources’ capacities being randomly partitioned among all the
nodes. As a result of this non-equal partition, some nodes could have amounts of
some resources which are significantly different from the average, generating a het-
erogeneous environment.

An application that captures, compresses and transmits frames of real-time data
to end users using a diversity of users’ QoS preferences and inter-dependency re-
lations among tasks was used as a scenario. The application was composed by a
source unit to collect the data, a compression unit to gather and compress the data
that may come from multiple sources, a transmission unit to transmit the data over
the network, a decompression unit to convert the data into the user’s specified for-
mat, and an user unit to display the data in the user’s end device.
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At randomly generated times, one or more users generated new service requests
at randomly selected nodes expressed the spectrum of acceptable QoS levels in a
qualitative way, ranging from a randomly generated desired QoS level to the ran-
domly generated maximum tolerable service degradation. The relative decreasing
order of importance imposed in dimensions, attributes and values was also ran-
domly generated. The QoS domain used to generate the requests was composed
by 4 quality dimensions, each with 5 attributes and 10 possible values for each
attribute. Promised stability periods were determined by taking into consideration
the observed variations in the tasks’ traffic flow and correspondent resource usage,
adapting the system to the observed environmental changes [8].

Since the proposed algorithm clear splits the formulation of a new service pro-
posal in two different scenarios according to resource availability, the evaluation
of its behaviour was based on those two scenarios. In the first one, the average
amount of resources per node was greater than the average amount of resources
necessary to execute a new service, while in the second one, average service re-
quirements were greater than the average amount of available resources per node,
demanding QoS degradation of previously accepted services. The reported results
were observed from multiple and independent simulation runs, with initial condi-
tions and parameters, but different seeds for the random values used to drive the
simulations, obtaining independent and identically distributed variables, with a rea-
sonably good statistical performance [5]. The random values were generated by the
Mersenne Twister algorithm [6].

The first study evaluated the algorithm’s behaviour when approaching its opti-
mal solution. Anytime algorithms correlate the output’s quality with time in a per-
formance profile [14], a function that maps the time given to an anytime algorithm
(and in some cases also input quality) to the quality of the algorithm’s produced
solution. The performance profile of the proposed anytime algorithm was estimated
by normalising the results of the conducted simulations with respect to the algo-
rithm’s completion time [13], which is the minimal time when the expected quality
is maximal, rather than measuring the algorithm’s absolute execution time on every
run of the simulation.

When there are enough resources to improve the initial feasible solution with-
out degrading the current QoS of the previous tasks (Figure 1 (a)), the solution’s
quality Qcon f is incrementally improved by increasing the new service’s reward.
Consequently, the node’s local reward that is affected by the initial proposed solu-
tion of serving the new arrived service with the minimal requested QoS level, also
increases as the algorithm approaches its final solution. With limited resources (Fig-
ure 1 (b)), an upgrade of the new service’s reward may result in an unfeasible set
of tasks, which demands service degradation of some tasks. At each iteration, the
configuration that minimises the decrease in the obtained reward for all services is
selected.

From Figure 1, two important conclusions can be taken considering the desirable
properties of an anytime algorithm [14]. First, the solution’s quality measure is a
non-decreasing function of time, since the current feasible configuration is only up-
dated if, and only if, another feasible solution with a higher quality for the user’s
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Fig. 1 Expected solution’s quality in different scenarios

request under negotiation is found. Second, at an early stage of the computation the
quality of the proposed solution is expected to be sufficiently close to its final value
at completion time. With spare resources (Figure 1 (a)), at only 20% of the compu-
tation time, the solution’s quality for the new service is near 74% of the achieved
quality at completion time. When QoS degradation is needed (Figure 1 (b)), the
configuration for the new service achieves near 85% of its final quality at 20% of
the needed computation time.

A second study compared the computational cost required by the anytime ap-
proach to reach its optimal solution against the traditional version of the algorithm.
The traditional local QoS optimisation proposed in [7] was extended to resolve any
QoS dependencies present in its optimal solution and used in this comparison. It
starts by selecting the user’s preferred QoS level for the new service and stops when
it finds a feasible solution that minimises the impact on the provided global level
of service caused by the new service’s arrival. The comparison’s results were nor-
malised with respect to the completion time of the longest solution.

Fig. 2 Computational cost of both approaches

Figure 2 shows that the anytime version can take more time to achieve the same
optimal solution in both scenarios. Two main reasons explain this difference. First,
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the anytime version resolves QoS inter-dependencies at each iteration. Recall that
the goal is to be able to interrupt the algorithm at any time and still be able to return a
valid solution. Without any restriction on the needed time to compute its optimal so-
lution, the traditional version only has to resolve dependencies after finding the best
configuration for the individual tasks in a second phase. Dependencies are resolved
by relaxing the optimal values of some of the individual tasks to the maximum value
constrained by the existing inter-dependency relations.

Second, the different approaches to achieve an optimal solution can have an im-
pact on the number of needed iterations, particularly with spare resources. Since
the anytime version tries to quickly find a feasible solution, it starts by considering
the worst requested QoS values for the new service and iteratively improves that
solution until the optimal one is found. On the other hand, the traditional version
starts by trying to provide the best requested level of service for the new tasks and
iteratively degrades all tasks, stopping when it finds a feasible, optimal solution.

Nevertheless, in both scenarios the anytime version is by far quicker to find a
feasible solution. With spare resources, the first feasible solution with a quality near
10% of its optimal value is almost immediately found, and at near 20% of the run-
ning session the solution’s quality is already around 50% of its optimal value. With
limited resources, the anytime version takes about 20% of its computation time to
reach a feasible solution with 20% of its optimal solution’s quality, and at near 40%
of the running session it achieves 50% of its optimal value. These results are in con-
sonance with the performance profiles plotted in Figure 1, which further validate the
ability of the proposed algorithm to quickly find a feasible solution and maximise
the improvement in the expected solution’s quality at each iteration.

5 Conclusions

It is not possible to predict in advance the characteristics of a dynamic open real-
time system’s computational load. Resource needs are usually data dependent and
vary over time as tasks dynamically enter and leave the system. As such, nodes may
need to cooperate with their neighbours in order to fulfil complex service require-
ments imposed by users. However, finding an optimal resource allocation that deals
with both users’ and nodes’ constraints can be quite complex and may take a long
time. The problem is even harder to solve within a useful time when tasks exhibit
unrestricted inter-dependencies among them only known at admission time.

The proposed anytime approach is able to quickly find a sub-optimal solution
at an early stage of the computation time. This service solution is then iteratively
refined as the algorithm has more time to run. Such flexibility in the needed time to
find a feasible service proposal allows a higher adaptation to the dynamically chang-
ing conditions of open real-time systems and, as the achieved results demonstrate,
can be achieved with an overhead that can be considered negligible when compared
against the introduced benefits.
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