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Abstract Wireless sensor networks (WSNs) present design issues and challenges
in both hardware and software platform development. This paper presents the im-
plementation of a hardware-dependent component library that extends TinyOS in
order to create an abstraction layer on top of a dynamically reconfigurable hardware
architecture. Such hardware architecture is based on a SPARC-compliant processor
and it is the core component of a generic sensor node platform targeted for future
smart sensor networks. Considered as an application programming interface (API),
the components of the implemented library allow the application developer to fully
exploit the functionality of the dynamically reconfigurable function unit (RFU). Be-
sides the RFU, the library also provides an interface to other standard system periph-
erals such as a timer, sensor, and radio transceiver. A simple TinyOS application,
which includes gathering data from an attached sensor and wirelessly communicat-
ing to other sensor nodes has been demonstrated on the prototype nodes. In addition,
a software visualization tool has been developed and integrated to a commercial
logic simulator in order to facilitate software debugging during the cycle-accurate
simulation of the hardware architecture model, described in the VHDL.

1 Introduction

As being a networked embedded system, WSNs present design issues and chal-
lenges in both hardware and software platform development. Generally, the hard-
ware architecture of a wireless sensor node comprises of three components: pro-
cessor, communication interface and sensors. The previous survey of the state-of-
the-art sensor node platforms has shown that the main processing units of currently
existing generic sensor node platforms are mostly based on the low-power, 8/16-bit
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microcontrollers [7]. For the high-performance sensor nodes, the 16/32-bit RISC
processor cores are utilized. All these processor-based platforms can provide flexi-
bility so that they can be used for a wide variety of WSN applications. But they can
suffer from low performance and low energy efficiency. This is often dealt by us-
ing ASICs. Even though ASIC-based, special-purpose sensor nodes can be utilized
for some extremely low-power applications, they are not flexible and has limited
functionality making it difficult to incorporate new applications. An alternative ap-
proach would be to integrate a hardware accelerator in the processing core of a
sensor node. This would give us flexibility as well the meet the energy and perfor-
mance requirements. Such hardware accelerators are often intended to execute spe-
cific computation-intensive tasks or tasks with real-time requirements, such as se-
cure high-speed communication protocols, which are inefficient on general-purpose
processors.

A new generic sensor node architecture for future smart sensor node platforms
has been proposed in [9]. It includes a coarse-grained, domain-specific RFU in a
SPARC-compliant processor core to achieve high energy efficiency. Dynamic re-
configuration technique that changes the hardware functionality quickly during run-
time is used to reconfigure the RFU.

This paper presents an alternative operating system and its programmability sup-
port for a WSN node based on such a dynamically reconfigurable processor. The ab-
straction of the target sensor node architecture is implemented on top of the TinyOS
operating system [8].

The remaining paper is structured as follows. Section 2 gives an overview on the
integration of reconfigurable hardware into the generic sensor node architecture and
the TinyOS operating system. Section 3 describes the new target architecture for a
generic sensor node platform. Section 4 presents TinyOS extensions for the target
architecture. The TinyOS portability is evaluated in Section 5, and the paper ends
with a conclusion and an outlook on future work.

2 Related work

Although, the processing units of currently existing generic sensor nodes are mostly
based on either microcontroller or microprocessor, there have been a few efforts to
integrate reconfigurable hardware into a sensor node architecture to increase perfor-
mance and lifetime of a sensor node.

A conceptual sensor node architecture that includes reconfigurable hardware has
been proposed in PicoNode [13]. In this architecture reconfigurable modules have
been used in both processing and communication components to provide ultra-low
power operation. Modular construction idea of a versatile sensor node for WSNs
has been described in [12]. Here, a FPGA coupled with a microprocessor comprises
the processing unit of the sensor node and this FPGA is reconfigured to deal with
complex signal processing tasks, hence decreasing the load on the microprocessor.
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In order to effectively manage limited hardware capabilities and to support con-
current operations, an operating system is often needed for a sensor node. Many
WSN applications have been developed on top of TinyOS, an open-source run-
time environment designed for sensor network nodes. It is specialized for use on
extremely resource constrained embedded systems and employs an event-driven ex-
ecution model. This execution model allows the underlying hardware to operate
relatively longer without battery re-charge by putting it into sleep mode when there
no event occurs. Also, component based modular design enables the minimal code
size and allows rapid application development by wiring only necessary compo-
nents. A TinyOS program consists of a scheduler and components that are written
in a nesC [6] programming language, which is an extension to the C language.

3 The new target architecture of the generic sensor node
platform

The target sensor node architecture that has been used within this work is depicted
in Fig. 1. It consists of a processing unit that is based on a RISC processor with a
RFU; configuration, instruction and data memories; on-chip peripherals such as an
interrupt controller, timer, and UART, generic sensor and transceiver interfaces; a
simple bus and its arbiter module.

3.1 The dynamically reconfigurable processor

The processing unit of the architecture consists of a 32-bit LEON2 processor [5],
which is the single threaded, SPARC-compliant RISC processor. The RFU is di-
rectly added into the processors instruction pipeline so that it can process the pre-
defined computational-intensive tasks with minimumal processor intervention. For
efficiency reason, the original processor architecture has been slightly modified. Its
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Fig. 1 The architecture of the generic sensor node platform.
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caches and unnecessary peripherals were removed and the AMBA bus was replaced
by a simpler wishbone bus.
The current implementation of the RFU supports following three functions:

e coding and decoding of the Cyclic Redundancy Check (CRC) with code lengths
up to 32 bit

e coding and decoding of Bose-Chaudhuri-Hocquenghem (BCH) codes with code
length up to 255 bit and with error correction capabilities of up to 16 errors

e encryption and decryption of the Advanced Encryption Standard (AES) with a
data block size of 128 bit and key lengths of 128, 192 and 256 bit

A brief description of the overall RFU control, data path and the configuration
mechanism is given in the next subsections.

3.2 The RFU control and data path

The RFU is controlled by three special instructions, which perform single- and
multi-cycle operations on the RFU and reconfiguration: single-cycle execution
(ESR), multi-cycle execution (EMR), and reconfiguration (CRT). These special in-
structions have been added to the original SPARC V8 instruction set. The EMR and
CRT instructions are executed independently by the RFU, by allowing the processor
to execute instructions in parallel with the RFU.

The RFU’s data path includes specifically tailored modules for error correction
and encryption algorithms, such as a multiply accumulate module (MAC), an inver-
sion module, registers, a local memory and a memory access unit as well as flexible
interconnections. The MAC module is based on Galois Field (GF) multiplier and GF
adder cells. The inversion module performs GF division operation that is required
by the AES algorithm. In order to increase local storage capabilities the registers
and the memory modules have been implemented. The memory module can be con-
figured either as look-up table for logic operations or a FIFO buffer with parame-
terized width and depth. The memory access unit supports block data computation
and packet processing by reading or writing data from/to memory consecutively,
starting from the given start address.

3.3 The reconfiguration mechanism

A two-layer reconfiguration mechanism is specially developed to allow rapid recon-
figuration within a function and between different functions.

In order to provide fast reconfiguration, a number of multi-context configuration
tables and a reconfigurable look-up table is utilized. The multi-context configuration
tables are responsible for storing several configurations for each module of the data
path. A desired configuration can then be selected with a special tag within one cy-
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cle. Tag generation is done by the reconfigurable look-up table, which also specifies
the sequence of tags for multi-cycle operations and allows jumps and loops. Hence,
the RFU can autonomously execute very long computations that comprise of multi-
ple cycles. This tag-driven reconfiguration belongs to the first layer reconfiguration.

Loading of configuration data from an external configuration memory to these
tables becomes the second layer reconfiguration. For this purpose, the compressed
control information, which is called a reconfiguration profile, is composed and
stored in the configuration memory along with complete configuration data. The
profile exactly specifies how many entries need to be loaded to each table. In addi-
tion, a task manager module monitors reconfiguration process by verifying the cur-
rent configuration in the tables and can skip unnecessary configuration overhead.
As a result, the reconfiguration latency achieved is one cycle to reconfigure within
a function, and less than hundred cycles to completely reconfigure an another func-
tion.

4 The TinyOS extensions for the target architecture

Even though TinyOS supports several existing sensor node platforms, none of them
uses a SPARC-compliant processor as a processing unit. Thus, it requires the pre-
liminary work of porting TinyOS to the target hardware architecture. The whole
porting process will be briefly described in the next subsections according to the
completion order.

4.1 Platform definitions

In order to define and locate platform specific files, a new subdirectory, called
“leon2mote”, with associated files has been created in the TinyOS directory tree.
These files include: “leon.h”, “leon2_hardware.h” and “hardware.h”. The “leon.h”
file includes details about the LEON2 processor, whereas the “leon2_hardware.h”
and “hardware.h” files contain macros for pin assignment, functions for supporting
atomic statements and other specific hardware definitions for the sensor node.

4.2 Hardware presentation layers

The TinyOS hardware presentation layers (HPLs) are the lowest level components
that directly interact with the underlying hardware. They access the hardware in the
usual way, either by memory or by port mapped input/output (I/O). In the reverse
direction, the hardware can request services by signalling an interrupt. Using this
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communication scheme, the HPLs abstract the details of the hardware and provide
a more usable interface for the upper layer components.

Even though each HPL component will be as unique as the underlying hardware,
all of them will have a similar general structure. Each HPL component should have:

e commands for initialization, starting and stopping of the hardware that are nec-
essary for effective power management policy

e “get” and “set” commands for the registers that control the operation of the cor-
responding hardware
commands with descriptive names for the most frequently used operations
commands for enabling and disabling interrupts triggered by the hardware
interrupt handlers for the interrupts that are triggered by the hardware

According to the target architecture description, HPLs for the hardware initial-
ization, LEDs, timer, sensor and radio interfaces, and the RFU have been imple-
mented. With exception of the RFU, the rest for the underlying hardware module
are accessed by memory mapped I/O addresses. The timer, sensor and radio inter-
faces respond to the overlaying HPLs by generating interrupts that are defined in
the LEON2 interrupt assignment scheme. Table 1 shows all HPLs and the system
components that have been developed within this work.

Table 1 The developed TinyOS components.

Component type| Component name |Description

HPLInitM.nc HPL for the hardware initialization
HPLTimer.nc HPL for the timer unit of the LEON2 processor
Hardware HPLLeds.nc HPL for the LEDs attached to the prototype board
specific HPLRfmRx.nc HPL for the radio interface (receiver mode)
HPLs HPLRfmTx.nc HPL for the radio interface (transmitter mode)

HPLPhotoM.nc HPL for the sensor interface
HPLRFU_CRC.nc |HPL for the RFU (CRC checksum calculation)
HPLRFU_AES.nc [HPL for the RFU (AES block (en)-decryption)
LeonTimerM.nc A system timer component

System LeonSenseTolnt.nc |Gathers sensor sample and displays to the LEDs
components  (LeonIntToRfmM.nc|Sends data to the radio interface
LeonRfmTolntM.nc [Receives data from the radio interface
AESM.nc An AES encryption and decryption component

In case of the RFU, the implementation of associated HPLs is different than
others. For each function (cf. Sect. 3.1) that is provided by the RFU, a number of
task specific subfunctions are assigned. Each task is associated with one specific
function of the RFU with fixed parameters, like 8-bit CRC checksum calculation of
a 32-bit data block. Generally, tasks are executed in the RFU in following steps:

e allocate a new task and reconfigure the RFU for that task (CRT instruction)
e load the required parameters for the task (mainly ESR instruction)
e execute the task and return a result (ESR and/or EMR instructions)
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Hence, each of these steps is defined as a subfunction and further these subfunctions
are used in creating a task specific HPL for the RFU.

Two distinct HPLs have been implemented for the RFU: “HPLRFU_CRC.nc”
and “HPLRFU_AES.nc”. The former HPL sets up the RFU for 8-bit CRC checksum
calculation on 32-bit data block, starts the calculation in the RFU and returns a
resulting checksum. The latter HPL reconfigures the RFU for the AES encryption
and decryption algorithm with 128-bit key, initiates the algorithm in the RFU and
returns a cipher or decrypted data, each having 128-bit block size.

All subfunction definitions are packed in an external library. As stated in Sect. 3.2,
the RFU introduces three new instructions for reconfiguration and execution pur-
pose. In order to make these new instructions available to the standard cross-
compiler for the LEON2 processor, compiler’s source code is modified by including
the mnemonics of these new instructions.

4.3 System components

A TinyOS system component provides a concrete system service to the overlying
application components. It can be used by any application without modifications.

The typical system service in TinyOS is a system timer that can function as mul-
tiple timers, each of which can be managed independently. For this purpose the first
timer of the LEON2 timer unit has been chosen. An implementation of the system
timer component, “LeonTimerM.nc”, has been derived from the original TinyOS
timer component “TimerM.nc”. The main reason of such a distinct timer component
is regarding to the operational mode of the LEON2 processors timer unit. The timer
unit decrements its counter value on each timer tick and generates a timer interrupt
when the counter value underflows. Therefore, the only difference between them is
a modification that reflects such behaviour to the “Timer” interface implementation.

A new block cipher component, “AESM.nc”, that performs the AES encryption
and decryption has been implemented. The component considers an optimized soft-
ware implementation of the AES algorithm on 32-bit platforms proposed in [1].
The applied strategy is to restructure the standard algorithm by introducing a tran-
posed version of the state matrix. Due to the transposed state matrix considerable
amount of computation is saved by eliminating the rotation operations both from
MixColumns and Inverse MixColumns, resulting a performance gain. Moverover,
it employs only the nonlinear byte substitution tables (Sbox and Inverse Sbox) as
look-up tables to keep the required memory as less as possible.

The list of the developed system components is given in Table 1.
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S The validation and evaluation of TinyOS porting

In order to validate the TinyOS porting and demonstrate a typical sensor node op-
eration, the following TinyOS application was developed. One node periodically
gathers samples from a light sensor, displays light intensity on the LEDs and sends
the samples wirelessly to other nodes. Other nodes listen to the radio interface until
data is received. When the transmitted data is received, they display it on the LEDs
and wait for next reception. We have not used any networking mechanism so there
is neither addressing nor routing algorithms included. Hence, our applications are
not directly similar to the standard “SenseToRfm” and “RfmToLeds” applications.

The validation test that checks TinyOS port is done in the ModelSim logic simu-
lator by simulating a VHDL model of the sensor node architecture programmed with
TinyOS application code. In order to track software execution on VHDL model,
an additional monitoring tool has been developed and integrated to ModelSim (cf.
Fig. 2). During VHDL simulations, it informs component interactions of the cur-
rently executing TinyOS application with exact timing information. Besides that it
shows the current state of the LEON2 processor core, which includes control/state
register contents (%psr, %tbr, %wim), register file contents (%g0-%g7, %10-%]17,
%i0-%i7), and state of all the pipeline stages.

[Slicifia)) Modelsim SE PLUS 5.8b

—— INTEGER UNIT PIPELINE STAGES -  ——rme CONTROL/STATE REGISTER - Comple Smiste Toos  Yndow

e R TEx [ T T T T seam| 4= on & e
e wsa[o 1[0 100 [e] (o] [o] [om] o
o eI =
00 [oomossee J[ormeer GENERAL puwp‘nge\srgp,,,;,,, . i

4 s s 7
e Loca [oooooo0 J[0 [0 | [ooomc |
[t s, o) ) ] 1 2 3

i [ooorazor ] [ao0oosce ] [0 (o

wr [oooosses | [cezreera | 4 5 5 ;
TR i [oooooooo | [aooooose | [aooooceo | [1s00 |
I 2 3
wnealo | iova oooonooo_| [anoooonono][aoovoszo ] [eereeres |
4 g 5 7
o[ oonunan ] [aoonnno ] [oomece ] [anomaoc ]
Vs
o o -
| 4‘

M$StdControlSstart, 000023c4, at 353385>
kM§Tiner$start, 000023f0, at 353925>
TimerMSTiner$start, 0000243c, at 355455>
TinerM§LeonClockSsetReload, 00002728, at 366255>
EX: <HPLTinerSLeonClock§setReload, 00003574, at 366885>
EX: <_nesc_atomic_start, 00002048, at 372825> ml’
Ex: (RET/RETL), 00002078, at 380205

3 rstance: eontop_to

~Jfim] | [vims: 7

Fig. 2 The GUI of the monitoring tool added to ModelSim.

The benefit of the RFU is proved by the execution time analysis on the example
applications. In order to show the impact of the RFU on computing a CRC checksum
and encrypting a cipher by the AES algorithm, a couple of example applications are
developed for each case: one uses a software (nesC) component and other one uses
RFU. It can be obviously seen that the execution of CRC and AES functions in RFU
is much faster than if they are executed in software (cf. Table 2). The speed-up factor
of up to 93 and 71 can be reached compared to the software implementations.

For demonstration of example applications, prototypes that consist of an FPGA
board and an additional board have been used. In the FPGA board the complete sen-
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Table 2 Execution time comparison.

Function name| Version Execution, cycles
CRC RFU 11
software (nesC)[1029
AES RFU 238
(encryption) software (nesC)|17093

sor node design, including processor, RFU, memories, peripherals, interfaces and
bus, is implemented. On the additional board the Xemics DP1203 radio transceiver,
a planar antenna and ten LEDs, and extension pins are mounted.

The portability of TinyOS has been evaluated by code size and concurrency po-
tential.

A TinyOS application code size should be as little as possible to fit in resource
constraint hardware. Compared to the compiled applications for the Mica mote,
code size of our test applications are quite large (cf. Table 3). The reason is that
the code includes additional 9Kbytes of code that includes processor boot sequence
(1.5KB), trap table (4KB), trap handling routines (2KB), and processor specific con-
stants (1KB). While the amount of required instruction and data memory seems to
be large, it is still in the range that most sensor nodes have [2].

Table 3 Code size comparison.

Application |Mica mote, bytes| LEON2+RFU, bytes
name ROM|RAM ROM [RAM
Blink 1652 |48 14416{1780
Sense 3602 |83 154081780
RfmToLeds [7538 |280 17072{1804
SenseToRfm|9970 (372 177281796

The main metric for the concurrency potential is context switching speed. The
most expensive switching is related to the hardware interrupt handling. On an aver-
age it takes around 75 clock cycles to signal the respective event after a hardware
interrupt is triggered.

6 Conclusion and future work

This paper presents the first port of the TinyOS operating system (version 1.x) to a
new generic wireless sensor node platform that is based on the customized LEON2
RISC processor with the integrated dynamically reconfigurable function unit (RFU).
The most common TinyOS components that can be contained in every application
have been implemented and tested by using both the commercial hardware simu-
lator and FPGA-based prototype nodes. The analyses from compilations show that
the amount of required memories is still within the range that the most existing
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generic sensor node platforms have. From the simulations, it was shown that the
RFU significantly speeds up error checking and data (en)-decryption processes.

In order to test the TinyOS porting and track software execution during simula-
tion, an additional monitoring tool has been developed and integrated to the com-
mercial hardware simulator, ModelSim. The monitoring tool facilitates software
debugging on cycle-accurate simulation of any LEON2 processor based system-
on-chip (SoC) design.

The further work is directed to improve the current extension and add network
simulation. Hence, some work will be done towards to support the Active Messaging
(AM) protocol stack [3], which is basic communication protocol for the TinyOS
applications. Currently, the TinyOS based sensor network models are only simulated
in TOSSIM [10], a TinyOS simulator with networking support. Therefore, there is a
necessity to implement the TOSSIM components for the target platform and added
to the TOSSIM library. The TOSSIM components can later be used in other existing
frameworks for modelling wireless systems, such as Viptos [4] and SENSIM [11].
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