
On the Use of Software Quality Metrics to
Improve Physical Properties of Embedded
Systems

Ricardo M. Redin, Marcio F. S. Oliveira, Lisane B. Brisolara, Julio C. B. Mattos,
Luis C. Lamb, Flávio R. Wagner, and Luigi Carro

Abstract As software production achieves a growing importance in the embedded
systems world, quality evaluation of embedded software and its impact on physical
properties of embedded systems becomes increasingly relevant. Although there are
tools for embedded software design that improve software specification and veri-
fication, we are still short of a tool that supports the designer’s decisions on the
best design strategy regarding low level, physical characteristics like performance,
energy, and memory footprint, which are critical in the embedded domain. In this
paper, we provide an analysis of the correlation between software quality metrics
and physical metrics for embedded software. By means of experiments, we inves-
tigate the impact of software engineering best practices on embedded software and
show that software quality metrics can be used to guide design decisions toward
improving physical properties of embedded systems.

Key words: embedded software, software engineering, measurement, quality met-
rics

1 Introduction

Software engineers have been improving the software design process, and new
methods have been proposed for all software development steps, from requirements
specification to testing. New programming paradigms have arisen, such as Object-
Orientation (OO) and Aspect-Orientation (AO), as well as new development meth-
ods such as Model-Driven Engineering. A key factor of any engineering process
is the measurement and assessment of its characteristics; thus different metrics to
gauge and improve the quality of software products have been also proposed. Such

Ricardo M. Redin · Marcio F. S. Oliveira · Lisane B. Brisolara · Julio C. B. Mattos · Luis C. Lamb ·
Flávio R. Wagner · Luigi Carro
Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

101



102 Ricardo M. Redin et al.

metrics have been designed to evaluate concepts such as reuse, abstraction, cohe-
sion, coupling, and other software attributes.

In the case of embedded systems, differently from the traditional software do-
main, the main metrics currently in use are the physical ones, such as performance,
memory, energy, power, size, and weight, guided by design constraints. Other im-
portant and related metrics are reuse, time-to-market, and price. Although many
methodologies extract the physical metrics by proposing estimation or simulation
tools, the reuse and time-to-market factors are approached only through design
methods without direct or indirect evaluation.

However, the hard constraints typically found in embedded systems do not allow
the embedded system community to benefit from the advances in traditional soft-
ware methodologies As a result, the most critical challenge for Systems-on-Chip
(SoC) design is the software development process, which now accounts for 80%
of the cost of embedded system development. Notwithstanding the growth in the
use and application of software engineering methodologies in embedded software
development, the current practice of embedded software development is still unsat-
isfactory, in particular in industry .

Traditional (or classical) quality metrics provided by software engineers have
been successfully applied to improve the software quality for general-purpose sys-
tems, leading to improvements in reuse and time-to-market. Traditionally, these met-
rics help designers to increase properties such as abstraction and reuse, which are
good for time-to-market and maintainability. However, some best design practices
for conventional software cannot be applied to embedded software because they can
cause a negative impact on the physical metrics.

In this work, we investigate the relationship between traditional (classical) soft-
ware quality metrics and the relevant physical metrics for embedded systems. Dif-
ferent design decisions over the application model influence these metrics, thus we
intend to find out which software quality metrics are relevant for embedded software
design. Moreover, we show that the best design practices of traditional software can
negatively impact the physical properties of embedded systems, which implies that
some sacrifices in terms of reuse or maintainability are required to achieve a better
performance. Finally, we propose to use the knowledge about the relationship be-
tween quality and physical metrics to suggest modifications in the modeling solution
that will improve this solution regarding the physical metrics.

The remaining of this paper is organized as follows. Section 2 presents related
background work. Section 3 describes the software quality metrics selected for our
analysis. Section 4 presents the experiments conducted and our main results. Sec-
tion 5 concludes the paper and points out directions for future work.

2 Related work

There are several proposals of metric frameworks to evaluate the quality of the soft-
ware products in the software engineering literature, see e.g.. In the case of object-



On the Use of Software Quality Metrics to Improve Physical Properties 103

oriented software, a well-known survey of quality metrics is. In a more recent empir-
ical study of OO metrics, the authors apply several quality metrics to three different
projects and study the relationship between these metrics .

However, only a few works relating software quality measures for embedded
software products and physical metrics for embedded systems have been published
so far. For instance, in the authors describe the results of an experiment where four
different mobile devices running Role Playing Games applications are analyzed in
terms of software quality metrics and performance. The study shows that the de-
velopment effort can be greatly reduced without compromising the performance
through the reuse of platform and/or software components.

Our work focuses on measuring the correlation between object-oriented quality
metrics for traditional software design and physical metrics for embedded systems
design. We aim at finding out how the correlation between these metrics can be used
to aid a designer to improve the embedded software quality and still achieve better
results in terms of performance, memory, and power consumption. Moreover, we
show that one can use specific quality metrics as reliable predictors for the impact
of software design decisions on the final system physical metrics.

3 Software metrics

As the key of any engineering process is measurement, research efforts have pro-
vided many measures and metrics to evaluate processes, software products, and
projects in order to guide design decisions. A set of important metrics was selected
from and. Since there is no well-defined or widely accepted metrics classification,
we group these metrics by the attribute which the metric refers to, in order to facili-
tate the presentation. The classification and the used metrics are as follows.

Coupling: It measures the relationship between components, including calls, and
number of instances. High values of these metrics lead to an application that is
poor in encapsulation, reuse, and maintainability. The following metrics fit into this
category: Afferent Coupling (Ca), Efferent Coupling (Ce), and Instability (I).

Cohesion: It measures the degree to which the elements of a scope are func-
tionally related. The recommendation from software engineering is to use strongly
cohesive modules, which implement functionality that is related to one feature of the
software and requires little or no interaction with other modules. Lack of Cohesion
of Methods (LCOM) is the cohesion metric used in this work.

Extensibility and reuse: These metrics evaluate the possible reuse of a scope and
the capacity of it to be extended. Abstractness (A), Normalized Distance from Main
Sequence (Dn), and Depth of Inheritance Tree (DIT) are metrics used in this work.

Population (or size) metrics: These metrics measure the system in terms of at-
tributes, methods, and classes. They are also associated to complexity. In general,
higher values of these metrics mean an increase in memory footprint, lower perfor-
mance, and a more complex solution. Nevertheless, the distribution of the popula-
tion metrics has more impact on the dynamic behavior of the application. Almost



104 Ricardo M. Redin et al.

all population metrics count the number of a given structure inside the application
code. The used population metrics are: Number of Attributes (NOA), Number of
Classes (NOC), Number of Methods (NOM), Number of Packages (NOPK), Num-
ber of Parameters (NOP), Number of Static Attributes (NOSA), Number of Static
Methods (NOSM), and Total Lines of Code (TLOC).

Complexity: These metrics measure the hardness to understand or express the
problem/algorithm. They are related to alternative execution flows, element gran-
ularity/hierarchy, and nested execution. Metrics in this category are: McCabe Cy-
clomatic Complexity (VG), Method Lines of Code (MLOC), Nested Block Depth
(NBD), and Weighted Methods per Class (WMC).

There is a large number of software metrics. We have selected this set of metrics
because they are commonly and widely used in the software engineering domain
and there are several tools to automatically extract them from source code or even
from UML models. Surely, other metrics could be applied in this study, and other
important metrics are planned for future experiments.

4 Experiments

We have carried out experiments aiming at: (1) verifying the correlation between
software quality metrics and physical ones; (2) identifying the relevant quality soft-
ware metrics for embedded software design; (3) measuring the impact of specifica-
tion strategies by using software quality metrics. Furthermore, we show that these
metrics can be used to improve embedded software with respect to its physical prop-
erties. We will also show that some sacrifices in terms of reuse or maintainability
are required in order to achieve a hard constrained performance.

The analyzed applications are a wheelchair control and an MP3 player. The
wheelchair control application consists of a real-time embedded system dedicated to
the automation and control of an intelligent wheelchair that helps people with spe-
cial needs. For this experiment, we have implemented only the wheelchair move-
ment control, which is an essential use case of the system. The MP3 player is an
application that is usually embedded in many consumer electronics systems, used to
play music in a compressed data format. This application presents a dataflow pro-
cessing channel in which many algorithms must be executed until the compressed
data can be played.

Different solutions were developed for both applications. All solutions were im-
plemented using Java for the target platform. For every alternative implementation,
a synthesis tool was used to obtain the hardware description and the Java byte codes
for the application. From the final implementation, in Java byte codes, we extracted
the physical metrics by using a cycle-accurate simulation , while from the Java
source code we extracted the software quality metrics by using the Eclipse Met-
rics plug-in.

The physical data from cycle-accurate simulation and software metrics from
Eclipse Metrics were matched using the cross-correlation formula that measures



On the Use of Software Quality Metrics to Improve Physical Properties 105

the similarity of two arrays of data. Results obtained for both quality and physical
metrics, including the cross-correlation between them, are presented in the follow-
ing.

4.1 Experimental results

Firstly, we have analyzed the cross-correlation between these different metrics for a
given application and afterwards among different applications to observe whether
the achieved correlation is similar for all applications or not. A positive cross-
correlation means that an increase on a given quality metric results in an increase
on the related physical property. On the other hand, negative values translate to an
inverse relationship.

In the MP3 player experiment three different solutions were analyzed. Sol-1 is
object-oriented and follows as much as possible the recommendations of software
engineering. Sol-2 is OO too, but much more concerned with physical proprieties of
the final system. Sol-3 is entirely targeted at good values for physical proprieties of
the resulting product and thus entirely static. Table 1 shows the physical properties
obtained for each MP3 solution. Analyzing these results, one can observe that the
best solution considering traditional software engineering paradigms (Sol-1) is the
worst one regarding physical metrics.

Table 2 presents the quality metrics and the correlation between them and the
physical properties. For all software metrics the maximum value or total is showed,
except the metrics marked with an asterisk (*), for which we have used the average
value because their total values just tell us where to look for bad code constructs.
An average value, in turn, shows us how much a good or bad behavior is distributed
across the entire application.

Table 1 Extracted physical metrics from the MP3 player.
Property Sol. 1 Sol. 2 Sol. 3
Program memory 238,484 237,192 242,688
Data memory 146,812 117,756 324,733
Cycles 1,830,675,876 830,365,894 239,748,559
Energy (J) 79.8575 36.2221 21.9624

For the wheelchair experiment four solutions were analyzed. Sol-1 is the most
concerned about performance, energy, and memory of the final system. All oper-
ating system services were implemented by the application, and only the required
services are implemented. Sol-2, in turn, is the most concerned with the quality of
the software product. It uses threads and an underlying platform that supports mul-
tithreading, among other features. Sol-3 and Sol-4 use the same platform as Sol-2
and differ from each other in design strategies. Table 3 summarizes the physical
proprieties of the wheelchair solutions, and Table 4 shows the software metrics val-



106 Ricardo M. Redin et al.

Table 2 Extracted software quality metrics and its cross-correlation to physical metrics on MP3
Player.

Property Sol. 1 Sol. 2 Sol. 3 Prog. Data Cycles Energy
Mem. Mem.

Abstractness 0.143 0 0.2 0.858 0.804 -0.132 0.005
Afferent Coupling 3 2 5 0.994 0.979 -0.536 -0.416
Depth of Inheritance Tree 2 1 2 0.682 0.608 0.147 0.281
Efferent Coupling 4 2 3 0.225 0.130 0.622 0.723
Instability 0.75 1 1 0.293 0.384 -0.930 -0.972
Lack of Cohesion of Methods* 0.655 0.42 0.245 -0.671 -0.740 0.998 0.980
McCabe Cyclomatic Complexity* 1.832 7.448 6.492 0.137 0.232 -0.860 -0.922
Method Lines of Code 4101 4618 5675 0.850 0.897 -0.942 -0.887
Nested Block Depth* 1.188 2.23 2.305 0.349 0.438 -0.951 -0.984
Normalized Distance* 0.707 0.556 0.626 0.184 0.088 0.654 0.752
N. of Attributes 186 112 6 -0.797 -0.852 0.969 0.926
N. of Children 106 22 4 -0.447 -0.531 0.978 0.997
N. of Classes 27 26 64 0.979 0.994 -0.769 -0.674
N. of Methods 463 85 47 -0.371 -0.458 0.957 0.988
N. of Packages 5 3 6 0.884 0.834 -0.185 -0.048
N. of Parameters 7 14 6 -0.761 -0.695 -0.033 -0.169
N. of Static Attributes 98 58 597 0.987 0.998 -0.740 -0.641
N. of Static Methods 127 2 71 0.283 0.189 0.574 0.681
Total Lines of Code 7891 6853 8423 0.887 0.838 -0.191 -0.055
Weighted methods per Class 1081 648 766 -0.030 -0.127 0.800 0.875

ues and the cross-correlation between software and physical metrics. In Table 3, BC
identifies the metric value for the Best Case execution of the controller.

Table 3 Physical metrics obtained from the Wheelchair Movement Controller.
Property Sol. 1 Sol.2 Sol. 3 Sol. 4
Program memory 2,063 6,248 5,208 5,094
BC Data memory 372 582 431 421
BC Performance 1,898 28,588 9,104 7,776
BC Energy 2,714,132 40,569,570 12,916,022 11,026,748

As one of the applications is dataflow and the other one is control flow, some
correlations differ from one experiment to the other. As expected, performance and
energy are highly-correlated physical properties. In all experiments these two met-
rics follow the same tendencies, and correlation between software metrics and each
of them hardly differ significantly from the other.

4.2 Experimental results analysis

While some good practices of software engineering cause an overhead in the phys-
ical properties of embedded systems, other ones can help to design better products



On the Use of Software Quality Metrics to Improve Physical Properties 107

Table 4 Extracted software quality metrics from the Wheelchair Movement Controller and its
cross-correlation to physical ones.
Property Sol. 1 Sol. 2 Sol. 3 Sol. 4 Prog. Data Cycles Energy

Mem. Mem.
Abstractness 0 0 0 0 0.000 0.000 0.000 0.000
Afferent Coupling 1 4 2 2 0.849 0.994 0.992 0.992
Depth of Inheritance Tree 1 2 2 2 0.958 0.584 0.572 0.571
Efferent Coupling 1 2 2 2 0.958 0.584 0.572 0.571
Instability 1 0.5 0.667 0.667 -0.995 -0.846 -0.837 -0.837
Lack of Cohesion of Methods* 0.71 0.639 0.51 0.519 -0.588 0.025 0.040 0.041
McCabe Cyclomatic Complexity* 1.238 1.312 1.261 1.25 0.773 0.995 0.996 0.996
Method Lines of Code 58 94 62 49 0.525 0.916 0.922 0.922
Nested Block Depth* 1.143 1.25 1.174 1.15 0.720 0.983 0.985 0.985
Normalized Distance* 0.5 0.567 0.583 0.583 0.885 0.419 0.405 0.404
N. of Attributes 0 22 20 17 0.988 0.710 0.700 0.699
N. of Children 0 0 0 0 0.000 0.000 0.000 0.000
N. of Classes 5 7 7 7 0.958 0.584 0.572 0.571
N. of Methods 2 29 20 17 0.982 0.883 0.876 0.875
N. of Packages 3 4 4 4 0.958 0.584 0.572 0.571
N. of Parameters 3 3 3 2 -0.163 0.224 0.234 0.234
N. of Static Attributes 20 28 17 19 0.408 0.864 0.870 0.871
N. of Static Methods 8 3 3 3 -0.958 -0.584 -0.572 -0.571
Total Lines of Code 146 283 190 170 0.782 0.996 0.996 0.996
Weighted methods per Class 26 42 29 25 0.629 0.962 0.966 0.966

without affecting physical properties or even improving them. In this section, we
analyze our experimental results and show some tradeoffs between software engi-
neering guidelines and code optimizations to improve as much as we can physical
properties of the final system, looking for a good balance between both sides.

The best OO practices indicate that a reduced coupling is desired, so the coupling
metrics Ca, Ce, and Instability should have small values. We observed that there is
a high correlation (around 0.9) among the metric Ca and data and program memory,
which suggests that this metric impacts on the memory footprint. This is confirmed,
by the case studies, where Sol-1 of the wheelchair controller and Sol-2 of the MP3
player present the smallest Ca value and achieve the smallest memory size in com-
parison with the other solutions. Instability (I) indicates if a package is stable or not.
A value of zero is required. A correlation around -0.9 was found between Instability
and energy as well as between Instability and performance, showing that this quality
metric has a negative impact on these physical metrics. It means that solutions with
higher I values are the best ones in terms of performance/energy, as confirmed by
our results.

The OO paradigm leads designers to build cohesive modules that require lit-
tle or no interaction with other modules. It suggests that, in order to have compo-
nents architecturally and logically well defined, smaller values for Lack of Cohesion
(LCOM) are desired. We have observed that the best solution for the MP3 player in
terms of energy/performance is Sol-3, which has the smallest LCOM value. The
opposite situation is found for the wheelchair controller, where Sol-1 is the best so-



108 Ricardo M. Redin et al.

lution for all physical properties and presents the highest LCOM. The reason for
that is the fact that Sol-1 of the wheelchair controller has the smallest number of
attributes (NOA), which is a metric strongly related to performance and energy.

High reuse is desired in all traditional software projects. High values for the met-
rics Abstractness (A) and Depth of Inheritance Tree (DIT) are thus required, because
they indicate that the components are extensible and can be reused. Abstractness
measures the number of abstract classes and has an impact on the memory foot-
print, as can be observed in the results for the MP3 player. For the wheelchair case
study, no abstract class or interface is used. DIT measures the depth of inheritance
tree, and high values for this metric lead to higher reuse. As expected, inheritance
causes an overhead in memory, performance, and energy. The best solution for all
of these physical aspects has the smallest DIT numbers.

Normalized Distance (Dn) is another reuse metrics, but numbers close to zero
indicate a good packaging design. The best solutions for physical metrics in our
experiments also show the smallest Dn values. However, the variation of Dn is too
small in our experiments to consider it as an interesting correlation.

The quality of software is also evaluated using population metrics. However,
there are no safe value ranges for these metrics because they depend on the size of
the project. Since these population metrics also impact on the physical properties,
we have also analyzed the correlation between them.

As expected, when the number of static attributes (NOSA) increases, the data
memory also increases, which is confirmed by our results. Sol-3 of the MP3 player
and Sol-2 of the wheelchair controller have the highest values for NOSA in compar-
ison with the other solutions, and, consequently, these solutions are the less efficient
regarding data memory.

A considerable high correlation among the number of attributes (NOA) and the
performance and energy is found for both case studies. The solution with small
NOA is the best one regarding performance and energy. As expected, the number of
attributes impacts on the required data memory size. Sol-1 of wheelchair controller
presents NOA equal to 0 and has the smallest data memory size. It is interesting to
notice that Sol-3 of the MP3 player has the smallest number of attributes (NOA) but
has the highest number of static attributes (NOSA). This shows that the designer of
this solution decided to pay an overhead in memory footprint by the use of static
attributes in order to improve the performance and energy metrics. The high corre-
lation between the NOA and memory cannot be found in the MP3 player because
of the strong correlation between NOA and NOSA. The reduction on the number
of dynamic attributes (NOA) and the increase of static attributes (NOSA) lead to a
better result in terms of performance and energy. This can be observed in Sol-4 of
the wheelchair controller and in Sol-3 of the MP3 player.

It is known that the number of packages (NOPk) impacts the program memory
size, and this has been observed in our experiments by the high correlation among
these metrics and by the fact that the solutions with less NOPk present small pro-
gram memories.

As expected, the number of methods (NOM) has a direct impact on the number of
cycles and on the energy, as confirmed by the high correlation found among them.



On the Use of Software Quality Metrics to Improve Physical Properties 109

The best solutions regarding performance and energy are those that have a small
number of methods. However, in the OO paradigm using a small numbers of large
methods is not a good practice.

Embedded software designers usually replace dynamic methods by static ones
in order to reduce the overhead for method invocation. In the wheelchair con-
troller case study, the results confirmed this statement, since the best solution in
performance and energy is Sol-1, which has the highest number of static meth-
ods (NOSM). However, in the MP3 player case study, this is not found. For this
case study, Sol-1 has the highest NOSM (127), but this solution is not the best one
regarding performance/energy. The reason for this is that the number of methods
(NOM) is strongly related to the NOSM and this solution has the highest (NOM)
value (463), which causes a huge overhead in both performance and energy that was
not compensated by the variation in NOSM values. Sol-3 is more efficient regarding
performance and energy and has an intermediate (NOSM) value (71).

5 Conclusions and future work

We have presented an analysis of the relationship between software quality metrics
and physical metrics for embedded systems. The experiments have shown that de-
cisions on the software design phase can greatly impact on the physical properties
of the final system. We have shown that it is also possible to use software quality
metrics to help in design decisions in order to improve the physical properties of em-
bedded systems. However, our experiments show that there are strong correlations
between some quality metrics and, in this case, they cannot be separately analyzed.

Moreover, we have proposed the use of software quality metrics to indicate mod-
ifications that can be applied to a given modeling solution in order to obtain a better
solution in terms of performance, energy, or memory footprint, with a small de-
crease, for instance, in code reuse. We are currently developing a tool to modify a
modeling solution with respect to the quality metrics in order to find a sweet spot in
the design space.

A large subset of the metrics used in this work can be measured directly on UML
models. Using these metrics on UML models can help designers to early explore
the solution space, looking for sweet spots without the use of a previously measured
library of components directly in UML.

References

1. Aggarl, K. K. et al. Empirical Study of Object Oriented Metrics. Journal of Object Technol-
ogy, v. 5, n. 8, 2006.

2. Beck, A.C. et al. CACO-PS: A General Purpose Cycle-Accurate Configurable Power Simu-
lator. In: Proc. of Symposium on Integrated Circuits and Systems Design (SBCCI), 2003.



110 Ricardo M. Redin et al.

3. Graaf, B.; Lormans, M.; Toetenel, H. Embedded Software Engineering: the State of the Prac-
tice. IEEE Software, v. 20, n. 6, p. 61- 69, Nov. – Dec. 2003.

4. Henderson-Sellers, B. Object-Oriented Metrics, Measures of Complexity. Prentice Hall,
1996.

5. Henzinger, T.A.; Sifakis, J. The Discipline of Embedded Systems Design. IEEE Computer, v.
40, n. 10, p. 32-40, Oct. 2007.

6. Ito, S.; Carro, L.; Jacobi, R. Making Java Work for Microcontroller Applications. IEEE De-
sign & Test of Computers, v. 18, n. 5, 2001.

7. Jerraya, A.A. et al. Embedded Software for SoC. Kluwer Academic Publishers, 2003.
8. Martin, R. Agile Software Development, Principles, Patterns and Practices. Prentice Hall,

2002.
9. Metrics. Eclipse Plug-in Available at: http://metrics.sourceforge.net/

10. Sommerville, I. Software Engineering, 7th ed. Pearson, 2004.
11. Xenos, M. et al. Object-oriented Metrics - A Survey. In: Proc. of the Federation of European

Software Measurement Associations (FESMA), 2000.
12. Zhang, W.; Jarzabek, S. Reuse without Compromising Performance: Industrial Experience

from RPG Software Product Line for Mobile Devices. In: LNCS, n. 3714, 2005.


