
Hierarchically Distributing Embedded Systems
for Improved Autonomy

Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Abstract Distribution of functionality among nodes is a contemporary research
issue for embedded systems, e.g. in the field of autonomous mobile robot groups.
In such groups, the concept of distribution is mainly used to achieve flexibility and
robustness that could not be reached by a single robot. Here it will be used as a
design-paradigm for a robot’s internal architecture. In this paper, a hierarchically
distributed robot architecture will be introduced which leads to an improved auton-
omy of the overall system.

Key words: distributed embedded systems, autonomous systems, robot control

1 Introduction

Distribution is a contemporary research issue for embedded systems. Currently, in
the field of distributing a task to a group of nodes much research work is done (e.g.
[2, 15]). By distributing a task, the probability for a system-wide failure or for con-
tinuously incorrect execution decreases because of the diversity and independency
of the distributed system parts.

In robotic soccer, which is a challenging research and application field for the
combination of real time embedded systems design with intelligent autonomous
behavior, distribution is applied at two levels. At the multi-robot level the paradigm
of distribution is mainly used to build homogeneous cooperating teams of robots.
At the level of single robots this paradigm can considerably support robustness and
flexibility. That will be shown in this paper describing the Paderkicker robots.

The Paderkicker team [9] consists of five robots that already participated suc-
cessfully in several international competitions including the RoboCup 2006 World

Claudius Stern · Philipp Adelt · Willi Richert · Bernd Kleinjohann
Universität Paderborn, C-LAB
e-mail: claudis, padelt, richert, bernd@c-lab.de

1



2 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Championship. Our platform asks for the whole range of research areas needed for
a successful deployment in the real world. This includes embedded real-time ar-
chitectures [3, 5, 10], realtime vision [11, 12, 13], learning and adaptation from
limited sensor data, skill learning [7] and methods to propagate learned skills and
behaviours in the robot team [8].

In this paper we focus on the hierarchically distributed architecture of the Pader-
kicker robots. In Section 2 we describe the current system with its components. Sec-
tion 3 then focuses on the modular system design of the Paderkicker robot, covering
the functional design as well as the architecture of hardware. Section 5 gives an
overview of the vision module which includes three individual real-time image pro-
cessing modules whose outputs then are merged. The behavior module is described
in Section 4. Section 8 concludes the paper and a short survey of future develop-
ment directions and research fields is given regarding the architecture described in
this paper.

2 Robot outline

The current generation of the Paderkicker robots is equipped with an omnidirec-
tional drive which enables the robot to do translational and rotational movements
simultaneously. This is a great advantage over the prior generation described in [9]
that featured a differential drive with two driven wheels. Here a four wheel omnidi-
rectional drive is used instead of a three wheel one. The construction of the wheel
suspension ensures that all four wheels are pressed onto the ground which leads to
enhanced stability.

Besides the driving system, the ball handling system has been redesigned from
scratch. The ball handling system consists of two main components: the ball kicking
system and the dribbling system. The previously used mechanical kicking system
has been replaced by an electromagnetic solenoid which provides more control over
the kicking power and reduces the actuation latency. The ball dribbling system has
been redesigned to be more robust concerning collisions. All servo motors have
been mechanically decoupled with rubber blocks so that even hard collisions will
not harm the servos with excessive mechanical shocks.

The same mechanical decoupling has been applied to the servos of the active vi-
sion system to tolerate collisions with high kicked balls. In contrast to omnivision
systems that are currently used by many other teams, three individual pan-tilt cam-
eras are used in the vision system. Each camera may independently focus and track
a different object of interest like ball, goal or other robots.



Hierarchically Distributing Embedded Systems for Improved Autonomy 3

3 System design

In this section the structure of the Paderkicker robot will be shown. First, the func-
tional architecture will be described. Then we will show how this logical structure
maps onto a hardware structure. After the description of the underlying structures,
the behavior system as well as the vision system will be introduced.

3.1 Functional architecture

During the system design process, four main functional units were identified (vision,
driving, ball handling and behavior) and designed in a modular way. A robot of the
Paderkicker team consists of a behavior module, the vision module, the driving mod-
ule, and the ball handling module. The function of the last three is self-explaining
by their respective names. The behavior module is the topmost module in a robot’s
hierarchy. It controls the robot’s overall behavior.

The different modules are realized in a distributed way as described below. All
components communicate with a message format which is used in the entire system
independent of the respective medium for communication.

The functional units were further divided into sub-modules as depicted in Fig-
ure 1. This structure allows the independent development of the different functional
units. Furthermore, the functional units were designed to work autonomously on
their own presenting an already abstracted interface to the rest of the system. A
dedicated interface sub-module manages the communication and merges data. This
hierarchical structure enables the functional unit ”Behavior module” to act on a very
high level of abstraction.

As an example, the driving module is designed to work autonomously and part of
the robot’s low-level behavior has been mapped to it. Distributing the drive-control
task to a group of sub-modules instead of using only one monolithic module leads
to more flexibility and robustness. The sub-modules within are realized on individ-
ual microcontroller boards working as a distributed system. Each microcontroller
board realizes an individual motor controller and odometry data logger with a short
measurement-control latency and therefore can react very fast. Each board also in-
corporates an emergency handling unit which leads to a more robust behavior of the
whole driving module.

Other teams hardly describe their overall software architecture. Often they de-
scribe in detail the behavior system and its mechanisms but not the underlying over-
all structure. Nevertheless, a common approach is a layered structure, e.g. used by
the 5dpo–2000 team [6] or the AIS–BIT Robots team [4]. The AIS–BIT Robots
team uses two layers at different abstraction levels. The first layer deals with low-
level processing of sensor data and image data. The second layer then deals with
abstract behaviors. Both layers contain different modules but the modules within
one layer are not further hierarchically arranged.



4 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Behavior module

Driving module Ball handling module

Vision module

Coordinator

Wheel
controller

Ab
st

ra
ct

 in
te

rfa
ce

Central behavior Behavior
Sub-module

Coordinator

Ball handling
controller

Vision coordinator Video
processing

Fig. 1 Paderkicker hierarchical module structure

3.2 Hardware architecture

The functional structure described above is mapped onto a hardware architecture as
depicted in Figure 2. The central processing unit is a Pentium M ULV PC board
running Linux. The vision algorithms and the behavior system are realized here.
The Mini-ITX board is equipped with a Mini PCI wireless LAN card and handles
team communication.

As described above, the modules for ball handling and driving are divided into
sub-modules. These sub-modules are realized on microcontroller boards equipped
with an Atmel microcontroller which comes with an on-chip CAN bus interface.
Groups of microcontroller boards communicate over CAN with the members of the
according group. One dedicated microcontroller board in each group manages the
communication with the central Mini-ITX board over a USB connection.

4 Behavior based system

The actual version of the behavior system is realized as a parallel distributed soft-
ware system (Figure 3), where parallel running processes are responsible for the
dedicated functional hardware units vision, driving, and ball handling. In addition,



Hierarchically Distributing Embedded Systems for Improved Autonomy 5

3 FireWire

cameras

ultra low voltage

Pentium M

15 Watt total

1 x AVR

System control

3 x AVR

ball handling

5 x AVR

drive

USB

USB

C
A

N
-
B

U
S

FireWire

WLAN

WLAN

Mini PCI

Mini-PCI card

802.11 a/b/g

Fig. 2 Paderkicker hardware architecture

a new timing concept now allows the different subsystems like the above mentioned
to run at different cycle duration. Using a double buffered shared memory approach
it is no problem if e.g. the cycle time of the vision system increases because the
analyzed image contains more detectable objects than usual or if the ball handling
component has to run at a higher frequency than the driving component.

The architecture’s design is driven by the need of the sub-modules Active Vision,
Driving, and Ball Handling to run at different sample rates. In the former archi-
tecture all the functionality was done in the same module at the same speed. The
problem was that functionality that needs to run at a high speed got at some point
corrupted data from modules running at slower speed, which lead to unpredictable
behavior in some cases. To avoid this, at first the different functionality was identi-
fied and regrouped in separate sub-modules. Then we introduced a double-buffered
communication mechanism that separates the actual data on which the individual
modules are working on from the communication process.

Each sub-module has its own Sense-Plan-Act cycle. The Act part is of course no
real action but rather new data for the other modules or part of the final action which
first has to be sent to the hardware via the Router. All sub-modules are running
concurrently. While they are implemented at the moment as Java Threads it is no
difficulty to let them reside on even different processors.



6 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Particle filter Low-level vision Rule system

Brain

Active Vision Drive control Ball handling

Hardware

Router

While (true):
sync period
copy input
compute
copy output

sync.

sync.

While (true):
sync period
copy input
compute
copy output

sync.

sync.

While (true):
sync period
copy input
compute
copy output

sync.

sync.

U
S

B

TCP/IP

Internal communication

Roller Camera servos Drive system

Fig. 3 Asynchronous architecture for the behavior module

5 Vision system

The vision system also has been designed using the paradigm of hierarchical dis-
tribution. The vision systems span four levels of abstraction, beginning with the
low-level vision based on an optimized algorithm for low latency real-time color
segmentation [12]. The original algorithm has been adapted to run on a PC under
an ordinary Linux system. Three digital FireWire cameras are mounted on pan-tilt
units to cover the whole 360� view. Each camera is handled by an independent task
doing the low-level image processing. On the next level of hierarchy the outputs of
these tasks are merged into a robot-centric view of the surrounding objects and land-
marks. Figure 4 shows a visualization of the particle filter. Each triangle indicates a
hypothesis of the robot’s position with the hollow triangle being the resulting posi-
tion estimation of the robot in the world coordinate system. An abstract interface is
presented to the next level of hierarchy enabling the user of the interface to specify
e.g. scan modes of the cameras.

The next level of abstraction includes two particle filters [1] and a specialized
control module. One particle filter estimates the robot’s position relative to known
landmarks. The second particle filter estimates the position of the ball relative to the



Hierarchically Distributing Embedded Systems for Improved Autonomy 7

Fig. 4 Visualization of the particle filter and the robot’s perceived artefacts (dots).

robot. The control module again presents an abstract interface to the next level of
abstraction. Using this interface two views are accessible. One “global view” with
global world coordinates including all absolute coordinates of objects and land-
marks. However, the second view is robot-centric using relative coordinates.

The behavior based system descibed in Section 4 is located on the highest level
of abstraction. A dedicated module within this system takes care about the behavior
of the underlying vision system, e.g. which part of the field is to be examined or
whether the ball has to be tracked.

Compared to systems using an omnivision camera [14], on our system the res-
olution is higher for a given viewing direction. Furthermore the system allows the
over-sampling of a specified region of interest. Due to the constant usage of ab-
straction throughout the system this is done autonomously, e.g. for the position of
the ball. This enables the system to recognize even distant objects that would be
indistinguishable in a typical omnivision setup with only one fixed camera.

6 Coordination of functional units

The architecture does not impose limits upon the way data is exchanged between
functional units. Most units will work asynchronously regarding each other and
can work in a time-triggered or event-triggered manner. An example for an asyn-
chronous time-triggered operation are the cameras attached to the vision system
that will deliver data in periodic intervals that cannot practically be synchronized



8 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

with the rest of the system. The high-level behavior system is running at a different
rate unsynchronized to the cameras. In contrast, sensors like a ball detection sensor
can trigger event processing and event messages that are non-deterministic in their
timing.

To bridge the gap between such different execution semantics, an abstraction
layer is introduced. It decouples the communication of the unit. Double buffering
with atomic copying is used to ensure integrity for data transfers. Depending on the
type of data, new data either is queued or overwrites an old value for a last-recently-
received type of information.

7 Inter-robot strategy

This work focuses on the hierarchical distribution of functional units over embedded
systems onboard a robot. Nevertheless, integrating the robot with its surrounding is
an important task, too. Conceiving multiple autonomous mobile robots as a team
brings up the question of task distribution as well.

Different from onboard the robot, task distribution is dynamic and depends on
external non-deterministic parameters like the amount of robots available. Merging
multiple robots of different types into a heterogeneous team allows for specialized
task fulfillment but further complicates task allocation.

In general a strategy is needed to conquer a given objective with the available
resources. In the existing homogeneous Paderkicker robot team the external archi-
tecture comprises a central dedicated server that oversees availability and state of
the robots. It holds the strategy to be executed and dynamically decides which robot
executes what task. This design has several drawbacks. The central component is a
single point of failure that can render a complete team inoperable when it fails. Since
communication reliability is of major concern in almost all situations, the team was
designed to complete a task autonomously once the role is assigned.

To enhance this situation further, in the future the task decision process will also
be distributed among the robots. This allows for decentralized strategic components
that can be locally implemented on a robot. Integrating new and yet unknown robots
with unique features does not imply having to change a central server rule-set any-
more. Instead the robot specific parts of task assignment strategies can be imple-
mented locally and therefore be distributed among the set of robots.

8 Outlook and conclusion

The future direction clearly indicates an even further distributed approach internal
as well as external of a single robot. A distributed communication framework will
act as a framework towards autonomous decision making in teams. By using a mod-
ular design and distributing functional units of the system onboard a robot among



Hierarchically Distributing Embedded Systems for Improved Autonomy 9

embedded systems, the stability of the whole system increases. Distributing the driv-
ing low-level behavior over multiple microcontrollers leads to faster reactions, e.g.
regarding the compensation of transmission slip.

References

1. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE Transactions on
[see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 50(2):174–188,
Feb 2002.

2. Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha
Gokhale, and Douglas C. Schmidt. A platform-independent component modeling language
for distributed real-time and embedded systems. J. Comput. Syst. Sci., 73(2):171–185, 2007.

3. D. Beier, R. Billert, B. Brüderlin, Bernd Kleinjohann, and Dirk Stichling. Marker-less vision
based tracking for mobile augmented reality. In Proceedings of the Second International
Symposium on Mixed and Augmented Reality (ISMAR 2003), Tokyo, Japan, October 2003.

4. Stefan Christen, Ronny Hartanto, Benjamin Maus, Walter Nowak, Sven Olufs, Paul G. Ploger,
Michael Reckhaus, Christian Rempis, Azamat Shakhimardanov, and Lars Weber. AIS–BIT
Robots Team Description 2006. Technical report, FH Bonn-Rhein-Sieg and Fraunhofer AIS,
2006.

5. Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. Visitrack – video
based incremental tracking in real-time. In Proceedings of the 6th IEEE International Sympo-
sium on Object-oriented Real-time Computing (ISORC ’03), Hakodate, Japan, May 2003.

6. Antnio Paulo Moreira, Paulo Costa, Andr Scolari, Armando Sousa, and Paulo Marques. 5dpo–
2000 Team Description for RoboCup 2006. Technical report, FEUP - Faculdade de Engenharia
da Universidade do Porto, 2006.

7. Willi Richert and Bernd Kleinjohann. Towards robust layered learning. In IEEE International
Conference on Autonomic and Autonomous Systems (ICAS’07), June 2007.

8. Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent societies through
imitation controlled by artificial emotions. In International Conference on Intelligent Com-
puting, ICIC 2005, number 3644 in LNCS, pages 1004–1013. Springer-Verlag Berlin, June
2005.

9. Willi Richert, Bernd Kleinjohann, Markus Koch, and Philipp Adelt. The paderkicker team:
Autonomy in realtime environments. In Proceedings of the Working Conference on Dis-
tributed and Parallel Embedded Systems (DIPES 2006), October 2006.

10. Dirk Stichling. VisiTrack - Inkrementelles Kameratracking fr mobile Echtzeitsysteme. PhD
thesis, Universitt Paderborn, Fakultt fr Elektrotechnik, Informatik und Mathematik, 2004.

11. Dirk Stichling and Bernd Kleinjohann. CV-SDF – a model for real-time computer vision ap-
plications. In IEEE Workshop on Application of Computer Vision, Orlando, Florida, December
2002. IEEE.

12. Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on embedded real-
time systems. In Design and Analysis of Distributed Embedded Systems. Kluwer Academic
Publishers, November 2002.

13. Dirk Stichling and Bernd Kleinjohann. Edge vectorization for embedded real-time systems
using the CV-SDF model. In Proceedings of the 16th International Conference on Vision
Interfaces (VI 2003), Halifax, Canada, June 2003.

14. Felix v. Hundelshausen, Sven Behnke, and Raúl Rojas. An omnidirectional vision system that
finds and tracks color edges and blobs. Lecture Notes In Computer Science, 2377:374–379,
2002.

15. Jules White and Douglas C. Schmidt. Automated configuration of component-based dis-
tributed real-time and embedded systems from feature models. Proceedings of the 17th Annual
Conference of the International Federation of Automatic Control, 2008.



10 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann


