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Abstract Complex control oriented embedded systems with hard real-time con-
straints require real-time operation system (RTOS) for predictable timing behavior.
To support the evaluation of different scheduling strategies and task priorities, we
use an abstract RTOS model based on SystemC. In this article, we present an anno-
tation method for time estimation that supports flexible simulation and validation of
real-time-constraints for task migration between different target processors without
loss of simulation performance and less memory overhead.

1 Introduction

Complex control oriented embedded systems with hard real-time constraints require
real-time operation system (RTOS) for predictable timing behavior [1]. Different
scheduling strategies are applied and evaluated to guarantee deadlines for a given
task set. If accurate execution times for tasks are known, a schedulability analysis
can validate if the selected trategy leads to feasible schedules for a given task set.
Interrupts complicate the predictability of deadlines as they do not rely on the

RTOS scheduling decisions. Accurate timing analysis in consideration of interrupts
are currently executed by means of instruction set simulators (ISS), which imple-
ment a complete model of the target processor including I/Os, interrupts, pipelines
and memories. The use of ISS requires the embedded software to be fully imple-
mented and is therefore only applicable in late development phases. Schedulability
tests and response time analysis helps to evaluate different scheduling strategies
and task priorities in early design phases. For this, timing information for execution
times of atomic blocks of a task has to be available. Those timing information can
be achieved by worst case execution time analysis (WCET) or empirical studies.
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In combination with an abstract RTOS model library, SystemC allows functional
simulations of task scheduling with timing. This approach has proven to be adequate
for early HW/SW co-design decisions and delivers good approximations for timing
analysis with small errors compared to complex instruction set simulations and gives
a simulation speedup up to 1000x [2].
In our approach, we simulate a given task set based on our abstract SystemC

RTOSmodel. For schedulability and interrupt analysis, tasks are divided into atomic
blocks and each block is annotated by its execution time on a specific target proces-
sor. To validate real-time constraints for task migration in multi processor environ-
ments, the annotated execution times have to be flexibly adapted to the target pro-
cessor for each migration. For analysis of the execution time and implementation
of the annotation it has some advantages to annotate the start and not the end of an
atomic block, which is explained later. Thus, the execution time of an atomic block
is simulated at the beginning of the next atomic block. Typically, a block can have
different predecessors and thus the previous simulated block must be identified to
simulate the correct execution time. This can be realized by:
(i) hard-coded switch-statements, which are very efficient but do not support task
migration and flexible adaptation and
(ii) a look-up table, where the column index identifies the previous atomic block and
the row the actual atomic block. These tables are of quadratic size in the number of
atomic blocks.
Our approach uses processor-specific look-up tables to store execution times. For
each target processor one look-up table, which is of linear size in the number of
atomic blocks, is generated. Task migration can be simply performed by the ex-
change of tables. We compare our approach with the two above mentioned solu-
tions for time annotation. Our evaluation shows, that our approach compares to the
fast simulation of alternative solutions but due to the linear table size our tables
support more complex applications and are easily applicable to different processor
platforms.
The paper is structured as follows. Section 2 gives an overview about existing

RTOS models. In Section 3 we present our main approach, which is evaluated in
Section 4. The article closes with a conclusion in Section 5.

2 Related Work

Today, the functional analysis of embedded SW is mostly executed on an Instruc-
tion Set Simulator (ISS). ISS simulations can give accurate timing analysis for a
specific target processor if the software code is already available. However, such
simulations are considerably slow and thus can have only limited use for early de-
sign stages. Early design steps typically apply a static Worst case Execution Time
(WCET) analysis [3]. WCET analysis takes the static program in higher-level pro-
gramming language or machine code and typically extracts graph representations,
e.g., control and/or data flow graphs, for worst case runtime estimation computation.
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For this approach we use a representation similar to T-Graphs [7] as input. Cur-
rently available professional WCET tools for static analysis like aiT (AbsInt) and
SymTA/S (SymtaVision) support static WCET execution and response time analy-
sis. Advanced processor behavior like pipelining, caching, and branch prediction are
considered. ISS based simulation is usually very accurate since it executes the real
SW on a virtual platform. However, it also comes with a very slow execution (i.e.,
0,5-500MHz) so that no detailed evaluations and analysis like the evaluation of dif-
ferent scheduling strategies can be efficiently performed. Due to this drawback sev-
eral research groups have developed abstract canonical RTOS models implemented
in SpecC and SystemC give simulation speeds 500-1000 faster than the comparable
ISS execution [2, 5, 4, 6]. Whereas those models lacked precision in the beginning,
most recent reports indicate an accurate simulation and a well coverage of task and
interrupt scheduling behavior with a fast simulation speed at the same time.
Gerstlauer et al. present a methodology based on SpecC/C in [2] for transac-

tion level based refinement. They introduce a canonical abstract RTOS model for
scheduling analysis of tasks which covers basic operations for process state transi-
tions, context switching, and semaphores. Tasks are annotated by additional control
statements. Synchronization between the scheduler and tasks and between tasks is
realized by events. Their approach covers task and interrupt scheduling.
Huss and Klaus present a similar RTOS model in SystemC [5]. They introduce

a scheduler class with basic RTOS functions where individual schedulers can be
inherited from. Their model covers task scheduling but lacks interrupt management.
Posadas et al. [6] considers tasks divided into different basic blocks. A sepa-

rate time manager monitors interrupts and segment execution times where non-
predictable and predictable (i.e., timer and timeouts) are distinguished. The sim-
ulation is based on a implementation of the POSIX API in SystemC. They report an
8% worst case deviation with respect to ISS. This work estimates execution times
during simulation by replacing C++ operators, which comes at costs of longer sim-
ulation times.
We have developed a canonical SystemC library based on the concepts of [2] for

simulation at PV-T (programmers view with timing) transaction level which also
overcomes the drawback of non-preemptive tasks for accurate interruptmanagement
including nested and prioritized interrupts. In contrast to other works, our approach
comes with separated management for tasks and interrupts to support the analysis
of different interrupt and task scheduling strategies.
All those approaches are based on the insertion of timing estimation information

of the target platform. Timing information, which defines the consumed CPU time
of a particular SW block, is typically directly inserted into the SW code by back
annotation. In this article, we present an approach to include timing information into
SystemC by means of a table. Thus, we can easily exchange the timing information
without the need of recompilation of the complete model. We introduce an approach
with lookup tables of size 2*n where n is the number of annotated atomic blocks.
Our experimental results demonstrate that our lookup tables are a flexible approach
and have no impact on the simulation time.
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3 Automated Runtime Estimation

RTOS analysis focuses on the time points when a specific basic block is executed.
This supports tracing of simulation results with respect to their execution time. Es-
pecially for timing analysis in combination with interrupts, this is of great help. For
analysis of execution times, the code is separated into atomic blocks and annotated
by its execution time. By means of our SystemC RTOS model we can simulate tasks
and allocate them to different virtual CPUs to analyze their timing behavior. To de-
fine these blocks the designer marks individual locations in the source code. The
automated runtime estimation is then performed in two phases: (1) the execution
time from one mark to the next mark is evaluated by disassembling the firmware
for target processor and (2) the source code is back-annotated by extending marks
with time labels of the estimated times. This code can be compiled for simulation
on common PC which allows a runtime estimation of the software with high per-
formance. We present an annotation technique based on a small sized table with for
fast simulation. The possibility to exchange those tables during runtime supports the
efficient simulation of task migration.

3.1 Code Estimation

For dividing the source code of functions into atomic blocks, the designer marks
specific points in the source code by, e.g., special C-macros like Mark CC(). To
keep changes to the source code as small as possible we use assembler labels to
mark specific points in the source. Therefore C-macros are mapped to assembler
labels for cost estimation. Labels are used to mark entry points followed by some
lines of code.

short rc = 0;
if (a > b)
{
rc = b;
if (a > 0)
{

rc = -b;
MARK_CC(A);

}
MARK_CC(B);

}
MARK_CC(end)

short rc = 0;
if (a > b)
{

MARK_CC(B);
rc = b;
if (a > 0)
{

MARK_CC(A);
rc = -b;

}
}
MARK_CC(end);

Fig. 1 Different Annotations: end of an if-statements is marked with a label (left) and beginning
of each if-statement is marked with a label (right)

There are two possibilities to mark blocks by labels, like depicted Figure 1:

(1)the end of a block is marked. Because the marks are replaced by back annotations
later on, this location refers to the annotation of a atomic block after its execution.
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(2)the beginning of each branch of a conditional control flow is marked. Therefore
the end of a block is implicit defined at the start of the next one. Here the previous
mark has to be considered to annotate an execution time.
In the first approach, it is most likely that the optimization made by the compiler

will remove label ”A”, because the entry-point of ”A” and ”B” are the same. This
eliminates the separation between the two if-statements so that the mark becomes
useless for timing estimation. As the second approach does not have this problem,
we apply marking at the beginning of branches.
To give an example, we evaluate the cost estimation for the Atmel AT90CAN128

RISC processor. The CPU uses a 2 stage pipeline with no cache. The above men-
tioned marks have to be added into each function of the program. If the source code
is not available, the estimation tool can also follow calls to subroutines. However,
subroutines must have no loops. When the function has conditional branches with
different exertion times, the estimated costs can be inaccurate. For estimation the la-
bels of marks are mapped to assembler labels like shown in Figure 2 by the example
of the Euclidean algorithm.

short euklid (short a,short b)
{
MARK_CC(euklid_start);
while (b != 0){

MARK_CC(euklid_loop);
short h = mod (a,b);
a = b;
b = h;

}
MARK_CC(euklid_end);
return a;

}

000000e2 <euklid>:
e2: cf 93 push r28
e4: df 93 push r29
e6: 9c 01 movw r18, r24
e8: eb 01 movw r28, r22

000000ea <euklid_start>:
ea: 67 2b or r22, r23
ec: 11 f4 brne .+4 ; 0xf2
ee: 09 c0 rjmp

.+18 ; 0x102
f0: ec 01 movw r28, r24

000000f2 <euklid_loop>:
f2: be 01 movw r22, r28
f4: c9 01 movw r24, r18
f6: 0e 94 51 00 call 0xa2 <mod>
fa: 9e 01 movw r18, r28
fc: 00 97 sbiw r24, 0x00 ; 0
fe: c1 f7 brne .-16 ; 0xf0

100: 9e 01 movw r18, r28

00000102 <euklid_end>:
102: c9 01 movw r24, r18
104: df 91 pop r29
106: cf 91 pop r28
108: 08 95 ret

Fig. 2 Euclidean algorithm in C and the corresponding assembler for the Atmel AT90CAN128
processor

The compiler links these labels to unique addresses in program memory space.
Thereafter, an estimation tool can generate a time graph G = (V,E) from those ad-
dresses. Each address defines a node N ∈ V in the graph and an edge e ∈ E de-
notes the costs, i.e., estimated execution times. For the Euclidean example nodes are
N0=”euklid”, N1=”euklid start” (start), N2=”euklid loop” (loop), N3=”euklid end”
(end) and N4=”ret” where the latter is given by the return-instruction. We can now
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compute the cost Ci, j from node Ni to Nj by disassembling the firmware and eval-
uating all possible execution paths through the control flow by depth-first search
(DFS). The DFS assigns values for each pair of Ni,Nj ∈ {1, ..,#N} and to the return-
instruction. The DFS terminates when a label in N \{Nj} is reached. The case i= j
is important for loop estimation. If at least one direct path from Ni to Nj is detected
an edge is added to the graph with the estimated worst case execution time. For the
above example, this estimation leads to a graph like it is shown in Figure 3.

Fig. 3 Annotation Graph: Nodes are identified by annotated marks and edges denote costs given
in numbers of CPU cycles.

When there is more than one path between two nodes in the assembler, costs can
be an interval and the annotation is only an upper bound.

3.2 Back-annotation

For simulation the marks in the source code are replaced by function calls to sim-
ulate the execution time of the previous block. The time consumption is simulated
by means of the SystemC. For annotating node Ni all edges leading to Ni must be
onsidered. The fastest and most obvious way doing this, is to implement the graph
by a C++ switch-statement, which store the successor-predecessor relationships of
nodes by their index. Alternatively, a look-up table of size (#N)2 can be used to
store the cost of ei, j. Our approach uses a table presentation with a direct access
through the node index and a reduced table size of 2 ·#N. The key idea in our table
representation is to assign relative input costs CINi and static output costs of COUTi
to each node Ni like depicted in Figure 4.
When leaving mark Ni a variable cc cost is initialized with output cost COUTi

and when reaching mark Nj the relative cost CINj is added to cc cost and con-
sumed by a function call. Additionally, it has to be ensured, that COUTi +CINj is
exactly the cost Ci, j of the edge from Ni to Nj. Figure 4 gives a possible solu-
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Fig. 4 general graph with divided input and output costs (left), timing graph for the Euclidean
algorithm example with nodes N1-N3

tion for N1-N3 of the Euclidean example. The equations COUTi +CINj = Ci, j forms
a system of linear equations and can be solved by the Gauss algorithm as fol-
lows. Let A ∈ M(#E,2 ∗ #N,N ) be a matrix (#N number of nodes and #E num-
ber of edges in the time graph) and b ∈ N #E a vector with ∀el = (Ni,Nj) ∈ E, l ∈
{1..#E} : Al,2∗i+1 = 1,Al,2∗ j = 1,bl = cost from Ni to Nj . Then solving Ax= b with
x = (CIN1 ,COUT1 , ..,CIN#N ,COUT#N ) ∈ N #N delivers the wanted values for the in- and
out-cost, if and only if Ax= b is solvable. Since we only need one solution it is not
important if this solution is unique or not. If the linear equations are unsolvable, this
annotation technique is not applicable at the moment.
The result x is finally stored in an integer-array with exactly 2 ·#N elements. The

relative incoming cost CINi of Ni is stored at index 2 · i and the static outgoing cost
is stored at index 2 · i+ 1. Therefore the table look-up can be implemented easily
without complex access function to retrieve the corresponding costs for node Ni.

4 Evaluation

We evaluated our approach by four examples for the Atmel AT90CAN128 proces-
sor. The examples are at first simulated with the AVR-Studio 4.12 from ATMEL to
get reference values tre f for the execution times in CPU cycles. Thereafter, we ana-
lyzed the binaries with our execution time estimation tool and annotated the source
code as mentioned above with a table with the solutions of our linear equations,
namely ”table 2N” next. We finally compared simulation speed of ”table 2N” with
hard-coded switch-statements and the table with (#N)2 entries and direct access,
i.e., ”table N2”.
Our estimation tool generates header files for each annotation, which redefines

the previous introduced marks. Thus, the annotation can be performed without
changing the original source code. The annotated code is compiled on a standard
PC (with Core2 Duo 6600) and simulated to achieve the required cycles tsim and the
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simulation speed. The following condition should be true: |tre f − tsim| < ε with a
very small ε . In our example, ε was always zero.
Our benchmarks implemented the following examples:

primf implements a factorization of 4 byte unsigned integer into its primal fac-
tors. To avoid the addition of optimized assembler code for 32bit integer opera-
tion to the firmware by avr-compiler, we use our own implementations to evaluate
the quotient and remainder.

sort implements an array sorting with recursion and nested loops. The array is
sorted by quick-sort and then a copy of this array is sorted by bubble sort. In the
end these arrays are compared in order to validate both results.

chk implements a small checksum check with bit-wise operations. The checksum
is combined by an evaluation of a linear function.

fib implements the computation of a Fibonacci number as a final example for
recursion.
All functions are invoked once for cost estimation and 106 times during sim-

ulation. Figure 5 shows the simulation results with not optimized code and Fig-
ure 6 with optimized code. The optimization corresponds to the compilation of the
firmware, for simulation the embedded software is always compiled with optimiza-
tion.

Cycles Switch Array N2 Array 2N
primf 310421(*) 33.5us 2692 32.17us 3608 34.4us 2916
sort 288130 19.78us 3243 20.01us 3259 22.4us 2991
chk 30007 12.54us 1898 14.77us 2220 12.5us 2068
fib 233815 30.56us 1474 27.56us 1598 32.3us 1566

(*) 308111 for Array 2N, since some edges are estimated via two pathes

Fig. 5 Evaluation results for non-optimized firmware (-O0)

Cycles Switch Array N2 Array 2N
primf 76682 33.46us 2676 31.45us 3452 32.6us 2740
sort 97888 21.11us 3243 19.42us 3259 22.5us 2991
chk 12655 12.43us 1896 14.78us 2168 12.2us 2060
fib 119373 30.55us 1474 31.54us 1598 32.2us 1566

Fig. 6 Evaluation results for optimized firmware (-O2)

The tables show the estimated cycles, measured execution times and the code
size of the simulation. The estimated cycles are almost the same for all solution
and match the reference values from the AVR-Studio. Only for primf the value for
the array 2N differs by about 0.7%. The execution times for the simulation remain
similar for the different annotations. This demonstrates that our approach can be ap-
plied without loss of performance. The smaller object size for Array 2N (compared
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to Array N2) are due to the smaller table size with our approach. This is mainly
due to the smaller data sections, which includes the tables. The advantage of the
table approach is that the implementation of the marks for simulation is indepen-
dent from the generation of the lookup-tables, means the accessed data. When using
switch statements, as mentioned above, implementation and annotation is one part.
Additionally, the table can be replaced during runtime to simulate a task migration
without the loose of performance.
We also measured the execution speed of the AVR-Studio with 220 thousand

instructions per second. Our backannotated simulation was executed with around
1−10 ·109 instructions per second, which finally is a speed-up of more than 4000x.
Here, simulation times for optimized and unoptimized code were almost the same,
because during simulation only the cost for the edges changes, but not the simu-
lated code (except some constant optimization made by the compiler). Because the
optimized code for the AT90CAN128 is considerably smaller than the unoptimized
one, that leads to significant differences in performance during an instruction set
simulation.

5 Conclusion

In this article, we present a method for time estimation and back-annotation based on
an abstract RTOS in SystemC. It supports the flexible simulation and validation of
real-time-constraints for task migration between different target processors without
loss of simulation performance and less memory overhead.
For our approach we use prepared source code as input, which contains marks

at the beginning of each branch. For timing estimation the marks are mapped to
assembler and we evaluate a timing graph, where the edges denote the cost from
one mark to another. We separate the cost of each edge as static output and relative
input cost for each node (mark) by solving a system of linear equations. The solution
is stored as an array of size 2 ·n, where n is the number of nodes (marks). Then, the
back-annotation can be efficiently implemented by table lookups, since the table-
indices are static at compile time.
We demonstrated our approach by four examples for the Atmel AT90CA128

processor. At first, our back-annotated simulations deliver the same cycle counts
like simulations with the AVR-Studio. At second, this annotation approach achieves
similar simulation performance in comparison to hard-coded switch statements and
uncompressed tables, but needs less space and allows easy simulation of task mi-
gration by replacing the tables.
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