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Abstract In this paper we investigate whether multi-objective evolution of digital
hardware components has advantages over single-objective evolution in terms of
convergence and robustness. To that end, we experimentally compare a standard
genetic algorithm to several multi-objective optimizers on a set of test problems. The
results show that, for more complex test problems, the multi-objective optimizers
TSPEA2 and NSGAII indeed outperform the single-objective genetic algorithm as
they more often evolve correct circuits, and mostly with less computational effort.

1 Introduction

Self-adaptive and self-optimizing systems are able to react to changes in the en-
vironment and the internal system state autonomously. Systems with such self-X
properties find applications in, for example, highly complex scenarios where clas-
sical methods fail, or in scenarios which require autonomous operation for long
mission periods. To design such systems, often principles from biology or sociol-
ogy are transferred into engineering domains and combined with modern hardware
and software technology to form what is denoted as organic computing.

In our work, we focus on organic computing methods to develop hardware
components. More than a decade ago, the emergence of reconfigurable hardware
architectures together with natural computing methods gave rise to the field of
biologically-inspired hardware, which includes several areas [1]: Evolvable hard-
ware denotes the combination of evolutionary algorithms with reconfigurable hard-
ware to construct self-adaptive and self-optimizing hardware systems. Embryonics
tries to apply developmental processes as found in multicellular organisms to design
fault-tolerant circuits with self-repair and self-healing capabilities. Immunotronics
uses principles of the immune system to support fault tolerance and protection for
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hardware circuits. Finally, neural hardware denotes hardware implementations of
models of the nervous system.

We concentrate on evolvable hardware, a term coined by de Garis [2] and Higuchi
[3] in 1993. The common denominator of all evolvable hardware approaches is the
application of evolutionary algorithms directly at the hardware level. Here, hardware
means both digital and analog electronic circuits, and the hardware level comprises
all models of hardware, from configuration bitstreams for reprogrammable devices
over netlists of gates to behavioral descriptions. In a sense, evolutionary algorithms
exploit a form of collaborative computing as they keep a set of individuals and
try to improve them over generations by applying biologically-inspired operators
such as selection, mutation, and crossover. Especially crossover allows to pass on
information between individuals.

Most work in evolvable hardware has been focusing on evolving functionally
good or correct components. In contrast, we consider several objectives and include
also the required hardware area and the resulting circuit speed in the evolution-
ary process. While a few previous approaches applied two-stage fitness functions
[4, 5], we employ multi-objective evolutionary algorithms (MOEAs). There are two
motivations for using MOEAs in evolvable hardware design: First, MOEAs are de-
signed to keep diversity in the population and generate Pareto sets of circuits. Au-
tonomous systems can switch between the solutions in the Pareto set in order to
react on quickly changing resource situations and performance goals [6]. Second,
MOEAs can possibly be used for a faster and more robust evolution of functionally
good circuits. The argument is that putting too much selection pressure on only one
objective (the functional quality of the circuit), instead of keeping the population di-
verse with respect to other objectives (area and speed of a circuit), one might more
easily get stuck in the optimization process and, hence, need a higher computational
effort to evolve components with acceptable functional quality.

In this paper, we want to investigate whether multi-objective evolution of dig-
ital hardware components has advantages over single-objective evolution in terms
of convergence and robustness. To that end, we experimentally compare a standard
genetic algorithm (GA) to several recent multi-objective evolutionary algorithms on
a set of test problems. The paper is structured as follows: In Section 2, we present
the hardware representation model that is used to encode circuit individuals, and
the computation of objectives. The different evolutionary algorithms including four
multi-objective optimizers are discussed in Section 3. Section 4 shows the test prob-
lems, the experimental setup and the results, before Section 5 concludes the paper.

2 Hardware Representation Model and Metrics

Cartesian genetic programming (CGP) is a very popular hardware representation
model introduced in [7]. CGP is a structural hardware model, where a circuit is
formed by combinational logic blocks arranged in a two-dimensional array and an
interconnect (wires) between the blocks. Figure 1 presents the CGP model and its
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parameters. The array consists of nc× nr combinational blocks, ni primary inputs,
and no primary outputs. The primary inputs can be connected to the inputs of any
logic block in the array. A logic block in column j has nn inputs that can be con-
nected to the columns j− l, . . . , j−1 of the array and to the primary inputs, respec-
tively. This ensures that no combinational feedback loops are generated. A combi-
national block implements one out of n f different logic functions of its inputs.

An individual is defined by its chromosome (genotype). The length of the chro-
mosome is given by nc · nr(nn + 1) + no. Each of the logic blocks in the array is
defined by nn + 1 values, one for each input and one for the logic function. Addi-
tionally, an no-tuple of values selects the block outputs that are connected to the
primary outputs of the array.
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Fig. 1 The cartesian genetic programming model for hardware representation with its main pa-
rameters

The main reason for the popularity of the CGP model is its closeness to the
architectures of field-programmable reconfigurable hardware arrays (e.g., FPGAs
or coarse-granular arrays). The block functions can be set to simple two-input gates,
to nn-input lookup tables, or to more complex word-based arithmetic operators. The
interconnect can model bit wires or busses. While the original CGP model implicitly
encodes block placement, more recent CGP variants rely on only one row of blocks,
i.e., nr = 1 and l = nc. Routing is not encoded in the CGP model, mainly to keep
the genotype (chromosome length) short and, thus, to increase the efficiency of the
evolutionary operators.

Generally, the genotype has to be mapped to a corresponding phenotype for eval-
uating the fitness. The phenotype represents the actual circuit and is achieved from
the genotype by removing all blocks of the array that do not contribute to the out-
puts. Note that there might still be redundancy in the phenotype. An important previ-
ous result with the CGP model is that propagating redundant and currently unused
structures inside the chromosomes through the search process of the evolutionary
algorithm can increase the speed of convergence [7].

In this paper, we are interested in evaluating the circuits’ fitness with regard to
three objectives: the functional quality, the speed of the circuit, and the required
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hardware area. Accordingly, we have to define three metrics to evaluate circuit fit-
ness. Following related work in evolvable hardware, we use logic and arithmetic
functions as test problems [8]. As we know the correct outputs for all input value
combinations for these functions, we determine the functional quality as reciprocal
of the summarized square error distances between the output vectors of an evolved
individual c and a correct function c∗:

f (c) =
1

1+ 1
N ∑

N
i=1 ham(c∗(i),c(i))2

, (1)

where N denotes the number of test vectors and ham refers to the Hamming
distance of two bit vectors. A correct circuit receives a functional quality of one.

We estimate the delay of a circuit by the number of wires or logic blocks on the
longest path. Given the CGP model, the delay is in the range {0, . . . ,nc +1}. A delay
of zero means that the longest path of the circuit connects an input directly with an
output. A delay of nc means that the longest path traverses all logic blocks of the
model, whereas a delay of nc + 1 indicates that none of the outputs is connected to
an input. The fitness with respect to circuit speed is determined as:

speed(c) = 1− delay(c)
nc +1

(2)

The speed metrics equals one for the fastest possible circuit (a circuit that maps
primary inputs directly to primary outputs) and zero for a circuit that has no con-
nection at all from primary inputs to primary outputs.

The number of logic blocks used by a circuit c, denoted as used blocks(c), is
in the range {0, . . . ,nc · nr}. Based on this value, we define a circuit’s fitness with
respect to area as:

area(c) = 1− used blocks(c)
nc ·nr

(3)

A circuit of minimal size, i.e., a circuit not using any logic block, receives an area
of one, a circuit that utilizes all available logic blocks has an area of zero.

3 Multi-objective Optimizers

In this section, we review the multi-objective evolutionary optimizers SPEA2, TS-
PEA2, NSGAII, and µGA that are compared in our experiments. As a reference al-
gorithm, we use a standard single-objective genetic algorithm (GA). The parameters
for GA are set as follows: The top 5% of the individuals are selected and transferred
without any modification to the next generation. Then, we apply two-stage binary
tournament as selection scheme, followed by a two-point crossover with a recom-
bination probability of 90%, and mutation. We choose the mutation rate such that
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only one combinational block or wire is mutated each time the mutation operator is
applied. Each recombined child is mutated exactly once.

SPEA2 is a recent multi-objective evolutionary optimizer introduced by Zitzler
et al. [9]. SPEA2 maintains two sets of individuals: an archive that contains non-
dominated individuals and a breeding population. In each generation, the two sets
are merged and the fitness of the individuals is evaluated. The non-dominated in-
dividuals are then copied to the new archive. If the archive exceeds a predefined
maximum size, SPEA2 applies a nearest neighbor density estimation technique to
thin out clusters on the Pareto front. The fitness assigned to an individual consid-
ers thenumber of individuals it dominates (the dominance count), the number of
individuals that are dominators (the dominance rank), and a density estimate based
on the k-th nearest neighbor method. All individuals undergo a binary tournament
selection which selects parents for recombination and mutation.

TSPEA2 is an algorithm we have devised in order to increase selection pressure
on one objective while trying to keep diversity [6]. This should be beneficial for
evolving circuits with a correctness property, where we will not be satisfied with
a circuit unless the functional quality reaches a predefined level. Both SPEA2 and
TSPEA2 use an archive and a breeding population and a selection scheme based on
Pareto dominance ranking. TSPEA2, however, checks as a first selection rule in a
binary tournament whether one of the two individuals dominates the other regarding
the main objective. TSPEA2 has been motivated by an earlier algorithm, MO-Turtle
GA presented by Trefzer et al. [10], that preferred a main objective over several
other objectives during the evolution of analog circuits.

NSGAII was presented by Deb et al. in [11]. NSGAII separates the population
into a hierarchy of Pareto fronts. The first level Pareto front is formed by the non-
dominated individuals. These individuals are then removed from the population,
and the second level Pareto front is formed by the now non-dominated individuals,
and so on. A new elite population is filled by incrementally adding these Pareto
fronts, starting with the level one front. In case the addition of the next level Pareto
front exceeds the population’s capacity, a density metric is used to select among the
individuals of that front. A breeding population is created by using a standard GA
scheme. Here, the selection operator takes the hierarchical Pareto front information
and the density metric into account to achieve both diversity and a minimal distance
to the optimal Pareto front.

µGA follows the original idea of Goldberg [12] who observed that a small num-
ber of individuals in a population is often sufficient for a converging optimization
process. Consequently, he suggested an optimization scheme where a GA operates
on a very small population. The situation in which all individuals have similar chro-
mosomes is called nominal convergence. If such a nominal convergence is reached,
the search process is relaxed by inserting randomly initialized individuals into the
population. In [13], Coello Coello and Pulido combined the idea of Goldberg with
the Pareto front diversity technique of Knowles and Corne [14]. Their µGA algo-
rithm relies on three populations: an external archive population which contains
non-dominated individuals of high diversity, the population memory which corre-
sponds to the classical GA breeding population, and a non-replaceable population
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which carries arbitrarily initialized individuals for the case of nominal convergence.
In each step, a standard GA is applied on a small set of randomly selected individ-
uals from the breeding and the non-replaceable population. After reaching nominal
convergence, the best individuals are copied to the breeding and the external pop-
ulation. After several iterations of this scheme, a part of the breeding population is
replaced by non-dominated individuals from the external population.

4 Experiments and Results

We have applied the different evolutionary optimizers to the following commonly
used benchmarks for evolving digital circuits [15, 16, 5]: the 6 and 7 even parity
function, 2+2 and 3+3 adders, and 2×2 and 3×3 multipliers. For the experiments,
we have configured the CGP model as a single line of two-input gates (nodes). For
the 6-parity function, the chromosome consists of 12 nodes, for the 7-parity func-
tion of 15 nodes, for the 2 + 2 adder and 2× 2 multiplier of 50 nodes, and for the
3+3 adder and 3×3 multiplier of 200 nodes. As for the reference GA, the MOEAs
rely on a two-point crossover with a recombination probability of 0.9. In each new
individual, a single gene is mutated by modifying either the logic function or an
input connection. The function set for the nodes is not restricted for the adder and
multiplier experiments, i.e., the node function can be an arbitrary function of two in-
puts. For the parity experiments, however, the node function set has been restricted
to AND, NAND, OR and NOR. Particularly, the XOR logic function is excluded, as
otherwise the evolution of correct parity functions is not a challenge. All experi-
ments have been conducted using the MOVES framework [17] for multi-objective
evolutionary optimization of digital circuits.

As an example result, Figure 2 displays the development of the average func-
tional quality for the 2×2 multiplier circuit. For this test problem, TSPEA2 shows
the fastest convergence, followed by NSGAII, GA, SPEA2, and µGA. This result
clearly shows that some multi-objective optimizers outperform the standard single-
objective GA in evolving functionally correct circuits.

As we are interested in the asymptotical behavior of the algorithms regarding the
functional quality of the evolved circuits, we have conducted several optimization
runs for each test problem. We have stopped an optimization run when a correct
circuit has been evolved. Otherwise, we have stopped the evolution after a prede-
fined number of fitness evaluations. For the parity function this limit has been set to
14 ·106 fitness evaluations, for the 3×3 multiplier to 6 ·106 fitness evaluations, and
for all other experiments to 20 ·106 fitness evaluations.

We use two metrics to compare the algorithms. The first is the number of suc-
cessfully evolved circuits among all runs of an experiment. This metric relates to
robustness. The second metric is the computational effort as defined by Koza in [18]
and can only be determined if a sufficient number of experiment runs produces cor-
rect circuits. In each run the optimization goal, i.e., the evolution of a functionally
correct circuit, will be reached by some generation i. Having M fitness evaluations
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Fig. 2 Average functional quality of the best individuals over the number of fitness evaluations for
the 2×2 multiplier (10 experiments runs)

per generation, the probability of reaching the optimization goal by generation i can
then be expressed as follows:

P(M, i) = (#succeeded runs by generation i)/(#runs)

From that we can determine R(z), the number of independent runs that have to
be conducted to reach the optimization goal with a certain probability z:

R(z) = dlog(1− z)/ log(1−P(M, i))e

The estimated overall number of fitness evaluations required to reach the goal
with probability z is then set to:

I(M, I,z) = M · (i+1) ·R(z)

For each experiment with given M and z, the minimal value for I(M, i,z) is deter-
mined as the computational effort of the experiment. In our experiments, we have
set z to 99%.

The complete set of results is presented in Table 1. This table shows the com-
putational effort and the number of successfully evolved circuits for 10 experiment
runs for each test problem. SPEA2 and µGA did not succeed in evolving a suffi-
cient number of correct circuits within the predefined number of fitness evaluations.
Therefore, we did not compute the computational effort for these optimizers. The
ranking of the algorithms with respect to the computational effort is shown in Table
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2, where bold values indicate that the optimizers were able to evolve a functionally
correct circuit in each single experiment run.

Table 1 Computational effort and number of correctly evolved circuits for standard GA and the
MOEAs. The computational effort is given in multiples of 106. SPEA2 and µGA could not evolve
a sufficient number of correct circuits to determine the computational effort.

6-parity 7-parity 2+2 add 3+3 add 2×2 mult 3×3 mult
GA 0.09 / 10 0.25 / 10 0.09 / 10 6.63 / 9 0.79 / 8 – / 5

TSPEA2 0.15 / 10 2.02 / 10 1.42 / 10 1.55 / 8 0.59 / 10 1.89 / 10
NSGAII 1.14 / 10 3.65 / 10 1.10 / 10 3.61 / 10 1.04 / 10 3.29 / 9
SPEA2 – / 2 – / 0 – / 1 – / 0 – / 0 – / 0

µGA – / 1 – / 0 – / 6 – / 2 – / 7 – / 0

From the results, we observe that the simpler functions, i.e., parity and 2 + 2
adder, are easily evolved by the GA, and also by TSPEA2 and NSGAII. However,
the multi-objective optimizers TSPEA2 and NSGAII require considerably more ef-
fort to evolve correct circuits. For the 3+3 adder and the multipliers, the GA could
not compete with TSPEA2 and NSGAII either in computational effort, the number
of successfully evolved circuits, or both. The results indicate that with rising bench-
mark complexity, evolving a diverse population with regard to objectives such as
circuit speed and area yields an improved robustness.

Table 2 Computational effort ranking. Bold values indicate experiments where every run produced
a functionally correct circuit.

6-parity 7-parity 2+2 add 3+3 add 2×2 mult 3×3 mult
GA 1 1 1 3 2 3

TSPEA2 2 2 3 1 1 1
NSGAII 3 3 2 2 3 2
SPEA2 4 4 5 5 5 4
µGA 5 4 4 4 4 4

5 Conclusion

In this paper, we have presented an experimental comparison of several multi-
objective evolutionary optimizers and a standard genetic algorithm for the evolution
of digital circuits. The goal was to investigate whether optimizing for circuit speed
and area, besides functional quality, can improve the speed of convergence and ro-
bustness. We consider robustness a parameter of prime importance, especially for
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self-optimizing autonomous systems that continuously run the evolutionary opti-
mization process.

Our experimental results show that, for more complex benchmark problems, the
classic genetic algorithm is indeed outperformed by two multi-objective optimiz-
ers, TSPEA2 and NSGAII. Two further optimizers, SPEA2 and µGA did not per-
form well for this task. In future, we plan to look at other secondary objectives to
improve convergence and robustness. For example, there might be circuit proper-
ties besides area and speed that should be enforced. As scalability is one of the
main challenges in evolvable hardware, the identification of suitable objectives for
a scalability-driven evolution is of utmost importance.
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