
Self-optimized Routing in a Network-on-a-Chip

Wolfgang Trumler, Sebastian Schlingmann, Theo Ungerer, Jun Ho Bahn, Nader
Bagherzadeh

Abstract Many-cores are on the cusp of becoming state-of-the-art processor tech-
nology for the next decade. To guarantee efficient communication between multiple
cores, a Network-on-a-Chip (NoC) is considered as an alternative to overcome the
limitations of the ubiquitous bus technology.

In this paper, we present an approach to further improve the routing in an NoC
with a self-optimized routing strategy. We extended the routers of a network to mea-
sure their load and to send an appropriate load information to their direct neighbors.
The load information is used to decide in which direction a packet should be routed
to avoid hot-spots. Evaluation results show a significant increase in the network
throughput. With the self-optimized routing, the NoC is capable of routing up to
two times more packets compared to the original routing algorithm proposed by
Lee and Bagherzadeh, 2006.

1 Introduction

In 2007 Intel announced a prototype 80-core tera-scale processor [11] using Network-
on-a-Chip (NoC) [7] technology. NoC is used as an alternative to the ubiquitous bus
technology in order to facilitate communication among many cores. As the process
technology shrinks and more cores are integrated on the same chip, the current bus
approach for communication among cores will not be sufficient and a technology
such as NoC is needed.
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In an NoC system, processor cores exchange messages using a network as trans-
portation system that is constructed from multiple point-to-point data links inter-
connected by routers such that messages can be relayed from any source module to
any destination module over several links by making routing decisions at the local
routers. NoCs apply message passing communication networks similar to massively
parallel systems. For NoCs, the advantage of a low latency communication, com-
pared to the off chip communication on high-speed channels among processors,
offers new possibilities but also new challenges for the routing in such networks.

There is only limited room for improvements to the topology of an NoC com-
pared to the 2D-mesh due to space and energy constraints on a chip. Therefore,
most NoCs employ a simple 2D-mesh for communication infrastructure. On the
other hand, significant efforts have been spent on the optimization of routing for
NoCs concerning both, the overall throughput and the average latency.

The O1TURN algorithm [18] for example has a provable near-optimal worst
case throughput. Another routing algorithm with good performance and deadlock
free routing is ROMM [14].

In this paper, we present an approach to increase the network throughput and
to lower the average latency based on the local load information of the nodes. The
nodes exchange their local load values with their neighboring nodes, which route
incoming packets based on this information. The basic idea of this self-organizing,
adaptive routing algorithm is inspired by the self-optimization algorithm [20] for
load balancing in large scale networks, which is based on the notion of the human
hormone system. The underlying architecture [13] for our algorithm, which does
not rely on virtual channels, has been developed at the University of California in
Irvine.

The artificial hormone system described in [20] piggy backs load information on
the outgoing messages. This information is extracted by the receiving node, which
decides wether to transfer load, in form of a service, to the origin of the message.
In this scenario the communication was constrained by the uniquely identified com-
munication partners of each service. We assumed that one service will not send the
message to all other services, but only one of its communication partners at a time.
This simulates the way information flows in object oriented software, where one
object can call methods of only a few other objects. Furthermore, it is similar to the
way hormones distribute their information to only those parts of the tissue which
have receptors for these specific hormones and thus can act on this information.

The communication pattern of the self-optimizing algorithm in this paper is more
related to the way information is distributed known from the process of morpho-
genese [21], first described by Turing in 1952. Turing mathematically described his
idea of messengers that diffuse into neighboring regions in the tissue of animals and
plants, used to organize the creation of regular structures. The concentrations of dif-
ferent messengers are responsible for the creation of the patterns of a zebras or the
regular leaf structure of woodruff for example.

The communication pattern of the NoC routers does not change over time nor
does the structure or the layout of the routers on the die change. In this sense the
self-optimization is more related to the findings of Turing. On the other hand, the
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simple approach of local load values, without the complicated differential equations
of the morphogeneses, is more related to the artificial hormone system as desribed
in [20].

The remainder of this paper is structured as follows. The next section describes
the architecture of the underlaying hardware. In Section 3, the calculation of the
local load is described and the routing algorithm is explained in detail. Simulation
results are presented in Section 4 and related work is discussed in Section 5. The
paper closes with a conclusion and the description of future work in Section 6.

2 Basic router architecture

The network topology of the NoC is a 2D-mesh with NxM routers. Figure 1 shows
the architecture of a single router. The router consists of three subsections, the left,
the right, and the internal router.

The task of the internal router is to inject packets into the network. Packets that
arrived at their destination are also ejected by the internal router. The left router is
used to route packets to the left (west) and the right router routes packets to the right
(east), respectively. Both routers can route packets to the north as well as to the south
but there is no connection between the east and west direction. This assumption
divides the network into two separate networks where packets can go either to the
east or the west of a router, but there is no turning back in the horizontal routing
direction. This architectural approach guarantees the NoC to be dead-lock free [5].

Clock boosting was introduced to improve the performance of the NoC. A packet
consisting of multiple flits (flow control digits) can be transmitted at different clock
speeds. With clock boosting only the routing decision for the head flit is done at
normal clock speed. After the route for the packet is chosen, the body flits can be
routed with an increased clock speed. By multiplying the clock frequency more
than one body flit can be routed during a normal clock cycle. The clock boosting
can double or quadruple the basic clock frequency, allowing two or four body flits
to be routed at the same time.

The routing decision of a router is straight forward using a clockwise priority
scheme to select the packets for routing. Starting from the north (top) input channel
the router examines the head flit from the buffer and tries to set the route for this
packet if possible. If there is no head flit in front of the buffer or if the route can not
be set because the output channel is already occupied by another packet, the router
picks the next buffer in a clockwise order and repeats the aforementioned steps.
More details about the clock boosting and the routing decision can be found in [13].

The internal FSM of the router is easy to implement but does not take the current
load situation of the network into account. Our approach is to improve the routing
decision by considering the current load of the neighboring routers, finding routes
to avoid hot-spots. Furthermore, when the original algorithm stops routing due to a
congested network, our algorithm can use alternative routes, bypassing the heavily
loaded routers, which leads to a higher overall network throughput.
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Figure 3: Adaptive router architecture.

router. The second term is serialization latency, the time for
a packet of length L to cross a channel with bandwidth b.
The proposed mechanism reduces the serialization latency
by boosting clock frequency during the body flit transfer.
The boosting of clock frequency results in increasing the
bandwidth and reduces the zero-load latency. To evaluate
the upper bound of average latency between the proposed
mechanism and the original one, average latency versus of-
fered traffic curves are obtained by the discrete event simu-
lation in Section 6, demonstrating the performance improve-
ment with the proposed mechanism.

4. BASELINE ADAPTIVE ROUTER
We propose an adaptive routing algorithm and architec-

ture for a flexible on-chip interconnection. This technique
uses a wormhole switching technique with a deadlock- and
livelock- free algorithm for 2D-mesh topology. The pro-
posed router demonstrated near-optimal performance with
comparison to O1TURN [5] in terms of average latency.
Moreover the bandwidth and the total area overhead of the
router enabled the router as a feasible alternative to existing
routers for NoC. In this paper, we use the adaptive router as
a baseline router and improve the throughput by adopting
the proposed clock boosting mechanism.

4.1 Overview
We assume the network topology in 2D-mesh which is

N×M routers. The overall block diagram of a single router
is shown in Figure 3. There is an input FIFO queue per
each input channel and each output port has an associated
arbiter to choose the proper packet among the given incom-
ing packet from each candidate input port. We consider a
router with seven interfaces, suitable for a 2D-mesh with an
additional interface to an integrated processing element. We
assume that a packet coming through an input port does not
loop back, thus each input port is connected to four output
ports.

The router is composed of three architectural blocks: Right
Router, Left Router, and Internal Router. The Right Router
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Figure 4: Packet format.

serves the port set {W-in, N1, E-out, S1}. On the contrary,
the Left Router serves the port set {E-in, N2, W-out, S2}.
The Internal Router supports the additional interface to an
integrated processing element. The separated routing paths
for vertical direction and unidirectional path for horizon-
tal direction allow the network avoid cycles in its channel-
dependency-graph, resulting a dead lock-free operation [7,
8]. Also by choosing the shortest path in routing, a livelock
free operation is guaranteed.

4.2 Packet Format
The Figure 4 shows the packet format. Each packet has

the DestPE addr field to indicate the destination node in the
head flit. The address of the destination node is represented
by relative distance of horizontal and vertical direction. A
positive value represents southern and eastern direction in
vertical and horizontal direction, respectively. Each relative
distance is signed magnitude value, i.e. MSB of each X-dir
and Y-dir field represents its sign and the rest of bits repre-
sent its magnitude. For instance, if destPE addr has 0x91 in
hexadecimal format, it represents that the destination node
is located at western 1 hop and southern 1 hop from the
current node. Its vectorized representation in X − Y coor-
dinate is (-1, 1). The head flit also has the No of Flits field
to represent the number of body flits followed by the head
flit.

4.3 Priority
For outgoing channel allocation, the router applies a fixed

priority scheme to the incoming packets that have reached
the corresponding node simultaneously. For each outgoing
channel, the possible incoming channels have a descending
order of priority in a clock-wise direction. Similarly, each
output port has a descending order of priority in clock-wise
direction from N1. The incoming packets and output port
of an internal router have the lowest priority.

4.4 Router Architect
The detail block diagram of the Right Router is shown in

Figure 5. The routers for each output port are placed ac-
cording to their priority level from the highest router (N1 ) to
the lowest router (S1 ). Each incoming packet is directed to
the Header Parsing Unit (HPU ) per each output port. The
HPU generates a set of possible incoming packets, which
could be routed to the corresponding output port, in or-
der of the input priority level by looking up the destination
address in the head flit.

When the output port is available(by referencing FULL
signal), the router chooses the input packet for the corre-
sponding output port among the set of routable incoming
entries provided by the HPU. If two or more packets arrive
simultaneously, the arbiter will choose a packet according to
their priority.

Fig. 1 Architecture of a router

3 Routing Algorithm

Every router performs a routing decision whenever a packet arrives. The routing
decision consists of two consecutive steps. First, a routing function creates a set of
possible output channels (next destinations) for a packet. Afterwards, the selection
function calculates quality values for all possible routes and selects the most appro-
priate one for the routing of the packet.

In the current setup, the routing function creates a set with all nodes that lead
to the desired direction of the packet. For packets going from west to east (right
direction) the set may contain the north, west, and south channels. For packets going
from east to west (left direction) possible output channels can be north, east, and
south, respectively. If a packet has to be routed in south or north direction only, this
desired direction is used for the routing.

The local load of a router is propagated to its neighbors so they can decide if
the router is a good choice to route packet. The local load is not used for the local
routing decisions but it is crucial for the routing decision of the neighboring routers.
The propagation of the load values is described in Section 3.2.
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3.1 Self-Optimization-Algorithm

3.1.1 Selection Function

The Self-Optimization-algorithm calculates the quality of a possible route based on
Equation 1. To yield a load value in the range of 0 to 100 all parameter values are
normalized.

quality = direction−%of remaining flits−4∗ pload (1)

The first value (direction) is a sort of bonus if the route leads to the destination
of the packet. A value of 200 is added for a route heading towards the destination
and 0 for a route which leads the packet farther from its target.

The value %of remaining flits expresses the percentage of a packet that must still
be sent on the selected output channel. If there is currently a route set for a packet,
the amount of the remaining flits of the packet is divided by the packet length. This
value is used to penalize a route, if there is already a packet on that route. The
amount of remaining flits is used to give an idea of how long the route will be
occupied.

The pload value is the load value of the neighboring router in the desired direc-
tion. The calculation of the pload value is described in Section 3.2. The propagated
load of the considered direction (pload) is multiplied by four and subtracted from
the other values. The higher the load of the neighboring routers, the less attractive
is the route in that direction.

3.1.2 Calculating the Load of a Router

The SO-algorithm tries to avoid hot-spots by spreading the offered load as good as
possible to the available routers as long as free capacity is available. The load value,
which is also in the range from 0 to 100, is used for the calculation of a channel’s
quality. The load calculation of the SO-algorithm uses the utilization of the buffers
as a degree for the load of a router. The more the buffers are filled with flits, the
higher is the load of a router. Therefore, the load can be calculated by the fraction
of currently available flits for the available buffer size.

load =
local

maxload
∗100 (2)

The value local is the sum of the flits in the input buffers of a router. The amount
of flits from injection buffers are limited by the capacity of an input buffer, because
the injection buffers are assumed to be unlimited for simulation purposes. The max-
imum utilization of a router, maxload, is reached if all input buffers are completely
filled with flits.



6 W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

South

North

West

pload

pload

pload

pload

Input
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3.2 Load propagation

To propagate the local load, a router sends the load value to its neighboring routers.
Therefore, the overall load of a router is calculated and then propagated to the neigh-
bors.

The propagated load value, pload, not only includes the local load, but also the
load values of the surrounding routers. The information of the surrounding routers
is used to increase or decrease the local load of a router. This guarantees that the
load information of a heavily loaded router is not only sent to its direct neighbors
but is spread from the center of a possible hot-spot to the surrounding parts of the
network. The closer a router is located to a hot-spot the higher is the propagated
load value, which is used to decide if a packet should be routed to this node or not.

The calculation of the value pload is shown in Equation 3. Two-thirds of pload
are taken from the local load value load. One third of the propagated load depends
on the load of the neighboring routers.

pload =
1
3

(
2∗ load + ∑ pload(dir)

|pload(dir)|

)
(3)

The load that is propagated into one direction depends on the load of the routers
from the possible direction that can be used to route a packet. For example, the load
of the left router (see Figure 2) , the router that can route either to the north, south,
or west, takes the load values from these three neighboring routers and sends this
information to the right (east) router. Depending on the direction, the pload value
incorporates the load value of up to three neighboring routers. For the pload value
propagated to the south of the right router only the load information from the north
and west router is taken into account, because the routers can not route a packet
back to the direction where it came from. Thus, the only possible routes are to the
north and west.
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4 Evaluations

We conducted extensive experiments with different network sizes ranging from 4x4
up to 16x16. Next, we will describe the traffic patterns used for the generation of
the network load and discuss the results for a 4x4 and 8x8 2D-mesh network in
comparison to the results of the design from the University of California in Irvine.
Afterwards, we compare the performance gain of the network in terms of increased
network throughput.

4.1 Traffic generation

We evaluated our algorithms with four different traffic patterns as proposed in [7]
(Chapter 9). We used the same four traffic patterns as they did at the UCI to have a
basis for a direct comparison of the results.

The traffic patterns used are matrix transpose, bit reverse, bit complement, and
uniform random. The target address of a packet is generated out of the source ad-
dress of a node by applying one of the aforementioned traffic patterns. For these
simulations, the width and height of the 2D-mesh network is assumed to be a power
of two. Without this assumption some of the traffic patterns might produce invalid
destination addresses.

For every simulation setup, we conducted multiple runs and calculated the aver-
age network latency to minimize the impact of possibly good circumstances in one
simulation run. The network had a warm-up phase of 1000 cycles at the beginning of
every simulation. The measurement was done during 100,000 cycles following the
warm-up phase. The simulation stopped if the average delay of the packets exceeded
a threshold of 200 cycles.

The injection of the flits was chosen to be the worst case, which means, that all
nodes inject their flits at the same time resulting in a high network load. Assuming
that the nodes would distribute the flit injection over time, the results are even better
than shown in the charts.

The packet injection rate can be calculated from the injection rate of the flits. In
our simulations, we used a fixed packet length of nine flits (one head flit and eight
body flits). Therefore, the packet injection rate can be calculated by dividing the flit
injection rate by nine.

4.2 4x4 NoC

The first simulations were done on a 4x4 2D-mesh with the aforementioned traffic
patterns. The results are shown in Figure 3. The charts show the generated traffic
on the x-axis and the measured average latency on the y-axis. The generated traffic
is given in flits per node per cycle which is a value ranging from 0.05 to 1. If the
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generated traffic is 1, a new flit is injected into the internal buffer of the routers
at every node in every cycle. If the traffic is below 1, there are a few cycles delay
between the injection of new flits, e.g. at 0.5 a new flit is injected every second cycle.

For a direct comparison of the results from Irvine and our results, we plotted
all the data into one chart. Every chart shows the results with 1x, 2x, and 4x clock
boosting for both.

Concerning the matrix transpose traffic pattern there is hardly any improvement
of the SO-algorithm compared with the original algorithm. Both can route all pack-
ets with a nearly constant delay up to the maximum load, if the clock boosting is
used. The saturation point of the network seems to be about the same for both algo-
rithms.

The bit reverse traffic pattern first shows considerable differences. The saturation
point for the SO-algorithm is about 0.65 and about 0.45 for the original algorithm
without clock boosting. The maximum throughput of the SO-algorithm is even bet-
ter for the 2x clock boosting. While the original algorithm begins to saturate at about
0.8, the SO-algorithm routes all packets with nearly the same delay up to the maxi-
mum injection rate. The results with 4x clock boosting are again the same for both
algorithms.

Bit complement traffic shows interesting results in terms of the algorithms sat-
uration points. The original algorithm has a saturation point of 0.35, 0.5, and 0.85,
respectively. The SO-algorithm first increases the latency, which creates a kind of
plateau phase. This plateau has a different length for different clock boosting values.
The plateau also appears at the 4x clock boosting, but the SO-algorithm can route
all the packets with only a slight latency increase up to the maximum injection rate
and does not reach the saturation point.

The uniform random traffic pattern seems to be the hardest of all four traffic
patterns, because the saturation point of the original algorithm is reached earliest.
The SO-algorithm shows very good behavior especially for the 2x and 4x clock
boosting. In both cases, the SO-algorithm does not reach the saturation point but
can route all packets up to the maximum injection rate. The uniform random traffic
pattern shows similar behavior for the SO-algorithm than in the previous traffic
pattern. There are two plateaus for the 1x and 2x clock boosting at different injection
rates. The first plateau is also visible for the 4x clock boosting but the second one
does not appear.

The explanation for the appearance of the plateaus can be derived from the way
the SO-algorithm selects the routes for the destination of a packet. As long as there
are enough good alternative routes to the destination, the SO-algorithm automati-
cally selects the next best (shortest) path. For example, a packet at the node (1,1)
should be routed to (3,2) and if the buffers of the router to the east (2,1) are filled,
the SO-algorithm routes the packet to (1,2) instead. If the injection rate increases,
more buffers are completely filled and more congestions arise in the network. At
the same time, since the quality of the alternative routers are also getting worse, the
SO-algorithm selects routes by avoiding both shortest but heavily loaded routes.

If the SO-algorithm starts routing packets not on one of the shortest paths, the
average latency increases due to the additional hops and the possible congestions.
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Fig. 3 Simulation results for a 4x4 2D-mesh

On the other hand, the alternative routes around heavily loaded nodes give the SO-
algorithm the ability to defer the ultimate saturation point to a much higher injection
rate and in most cases it can handle the maximum injection rate.

4.3 8x8 NoC

We also conducted experiments with 8x8 2D-mesh networks and the four traffic
patterns to see how the SO-algorithm performs in larger networks.

The amount of injected flits depends on the amount of nodes. Therefore, if the
number of nodes is doubled in each dimension, the amount of nodes in the network
increases exponentially and so does the amount of flits injected into the network.
On the other hand, the exponential growth in the network size might offer more
alternative routes for the SO-algorithm to be selected as routes for the packets.

The results of the simulations of an 8x8 2D-mesh are shown in Figure 4 for 1x,
2x, and 4x clock boosting. The original algorithm reaches its saturation point for all
traffic pattern at an injection rate considerably below the maximum injection rate.

With the matrix transpose traffic pattern, the SO-algorithm performs much better
than the original algorithm. Especially with 4x clock boosting, where the original
algorithm saturates at about 0.65, the SO-algorithm can route packets up to the
maximum injection rate with a low average latency. The same applies for the bit
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Fig. 4 Simulation results for an 8x8 2D-mesh

reverse traffic pattern where the original algorithm performs even worse while the
SO-algorithm performs slightly better than with the matrix transpose traffic pattern.

The bit complement seems to be challenging for both, the original and the SO-
algorithm. In this case the SO-algorithm does hardly outperform the original algo-
rithm, in contrast to the other three traffic patterns. We had similar results for the 4x4
network. One of the influencing factors seems to be the network architecture, which
is chosen to avoid dead-locks by design. Because of the two separated networks for
the horizontal directions, the SO-algorithm does not offer enough choices for alter-
native routes. A packet cannot be routed back in horizontal direction in contrast to
the vertical direction where a packet can go back and forth if the packet has been
routed horizontally, at least once after a vertical transfer.

In the lower right chart of Figure 4 the results of the uniform random traffic
pattern are depicted. In this case, the SO-algorithm can handle the double injection
rate than the original algorithm before it reaches the saturation point. The difference
with the bit complement traffic pattern is due to better distribution of the traffic
over the whole network, which seems to be the favored kind of traffic for the SO-
algorithm.

The plateaus known from the 4x4 network can be observed at all four charts of
8x8 network. As already mentioned, this behavior occurs when the SO-algorithm
starts to use alternative routes, which are not on the shortest path to the destination.
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4.4 Performance comparison

To compare the network throughput of the original and the SO-algorithm Tables
1 and 2 show the throughput gain in percentage for the 4x4 and 8x8 network, re-
spectively. The original algorithm’s results are taken as base for the calculation of
the throughput gain. Therefore, a value of 0% means that both algorithms perform
equally and a value of 100% means that the SO-algorithm performs twice as good
as the original algorithm.

For an algorithm that reaches its saturation point, an average injection rate la-
tency of 50 cycles was taken for the base calculation. When the original algorithm
saturates and the SO-algorithm does not, the throughput gain becomes much higher
than the calculated value shown in the tables. This is because in all these cases the
average latency of the SO-algorithm is much better than 50 cycles. These values are
marked with a * to denote that the original algorithm saturated in contrast to the
SO-algorithm.

Table 1 Throughput gain for a 4x4 NoC

Traffic Pattern 1x 2x 4x
Matrix Transpose 13% 0% 0%

Bit Reverse 41% * 23% 0%
Bit Complement 8% 75% * 20%
Unifrom Random 37% * 96% * 35%

The throughput gain for the 4x4 network ranges from 0% for the matrix transpose
to more than 96% for the uniform random traffic pattern. As mentioned before in
the case of the uniform random traffic pattern the throughput gain is even higher due
to the fact that the original algorithm has a 50 cycles delay for the chosen injection
rate while the SO-algorithm has an average delay of about 21 cycles. For the 8x8
2D-mesh network, the throughput gain ranges from 0% for the bit complement up
to 127% for the uniform random traffic pattern.

Table 2 Throughput gain for a 8x8 NoC

Traffic Pattern 1x 2x 4x
Matrix Transpose 37% 35% * 53%

Bit Reverse 73% 58% * 63%
Bit Complement 7% 0% 8%
Unifrom Random 127% 90% 103%

The tables confirm our initial assumption that the SO-algorithm will perform
better for larger networks due to the larger amount of possibles routes. The bit com-
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plement is the sole exception to this assumption. Further investigations are needed
to better understand the reasons for the poor throughput gain in this case.

5 Related Work

In designing Network-on-a-Chip (NoC) systems, there are several issues to be con-
sidered, such as topology, routing algorithm, performance, latency, and complexity.
Because of its flexibility, architectures based on NoC are getting more attention. As
a feasible topology in NoC systems, the mesh is getting popular for its modularity;
it can be easily expanded by adding new nodes and links without any modification
of the existing node structure.

Another issue in NoC environment is the routing algorithm. In terms of deliver-
ing mechanism, wormhole routing has increasingly been advocated as a method of
reducing message routing latency. In wormhole routing, a packet is decomposed into
flits or flow control units, and the packet follows through the network one flit after
another. On the other hand, in terms of the way of selecting a path among the sets
of possible paths from source to destination, the routing algorithms are classified as
deterministic/oblivious and adaptive ones [5]. The oblivious/deterministic routing
algorithms choose a route without considering any information about the network’s
present condition, resulting in relatively simple design complexity. Adaptive rout-
ing algorithms use the state of the network such as the status of a node or link,
the status of buffers for network resources, or history of channel load information.
Even though the adaptive routing algorithms utilize the flexibility in routing paths,
the hardware design complexity is usually increased. Depending on the degree of
adaptivity, minimal adaptive and fully adaptive routing algorithms are refined. DOR
(dimension-ordered routing) [19], ROMM [14], and O1TURN [18] are examples of
deterministic or oblivious algorithms. Some researchers have developed better per-
formance routing algorithms using adaptive routing algorithms [10, 4, 6, 2, 9, 8].
The SO-algorithm is an adaptive routing algorithm that does not use virtual chan-
nels.

The adoption of virtual channel (abbreviated to VC) has been prevailing because
of its versatility. By adding virtual channels and proper utilization of their chan-
nels, deadlock-freedom can be easily accomplished. Network throughput can be
increased by dividing the buffer storage associated with each network channel into
several virtual channels. By proper control of virtual channels, network flow control
can be easily implemented [3]. Also to increase the fault tolerance in a network, the
concept of virtual channel has been utilized [1, 12]. However, in order to maximize
its utilization, allocation of virtual channels is a critical issue in designing routing
algorithms [22, 16]. Furthermore, the buffers of the virtual channels are very ex-
pensive in terms of chip size. The extra chip size needed for the additional logic of
our SO-algorithm is negligible compared to the chip size needed for the buffers of
virtual channels and the logic for the channel allocation.
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A similar approach, using stress values, is described in [15]. The stress values
are exchanged between the direct neighbors in the network. With our calculations
the load value is not only exchanged with the direct neighbors, but diffuses to the
surrounding area of load value’s source. Furthermore, there are less choices for our
algorithm to chose the best routes due to the two separated networks, which guar-
antee deadlock free routing by design.

6 Conclusion and Future Work

In this paper we presented a routing algorithm for an Network-on-a-Chip that yields
a significant throughput gain for 2D-mesh networks. The SO-algorithm calculates
the load of a router based on the amount of flits in the buffers. With this approach
the network throughput can be significantly increased. The throughput gain is up
to 127% compared to the original algorithm. The throughput gain is highest for the
uniform random traffic pattern, which in our opinion is especially relevant for our
current research where we will investigate task allocation mechanisms on an NoC.
The expected traffic in such a dynamic and steadily changing environment will lead
to a traffic pattern comparable to the uniform random.

Based on our latest results, we have plenty of ideas to improve the SO-algorithm.
The first will be to combine the SO-algorithm with another approaches that is de-
scribed in [17]. The idea is to use the SO-algorithm as a base value for the local load
and to increase or decrease it by the amount of I/O operations a router can process
during a cycle. If the input channels of a router are filled with flits, the router is
loaded to a level of 100% (concerning the SO-algorithm) but the situation is aggra-
vated if the router is blocked and cannot perform any read or write operations. On
the other hand, if the router is full but can transfer a maximum number of flits, it
might be a better choice.
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