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Abstract. The ability to tell humans and computers apart is imperative to
protect many services from misuse and abuse. For this purpose, tests called
CAPTCHAs1 or HIPs2 have been designed and put into production. Recent
history shows that most (if not all) can be broken given enough time and
commercial interest: CAPTCHA design seems to be a much more difficult
problem than previously thought. The assumption that difficult-AI problems
can be easily converted into valid CAPTCHAs is misleading. There are also
some extrinsic problems that do not help, especially the big number of in-
house designs that are put into production without any prior public critique.
In this paper we present a state-of-the-art survey of current HIPs, including
proposals that are now into production. We classify them regarding their ba-
sic design ideas. We discuss current attacks as well as future attack paths,
and we also present common errors in design, and how many implementa-
tion flaws can transform a not necessarily bad idea into a weak CAPTCHA.
We present examples of these flaws, using specific well-known CAPTCHAs.
In a more theoretical way, we discuss the threat model: confronted risks and
countermeasures. Finally, we introduce and discuss some desirable properties
that new HIPs should have, concluding with some proposals for future work,
including methodologies for design, implementation and security assessment.
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1 Introduction

Herein we discuss some aspects of current CAPTCHA design and implementation. We
are interested in both CAPTCHAs in use at major web-sites, and other commercial
and/or academic proposals, some of which are still not broadly deployed, but present
interesting aspects. After that, we will show the publicly-known state-of-the-art in
attacks. We will introduce some examples to discuss common pitfalls in their design
and implementation. We will also discuss the different threat models they assume.
Then we will discuss CAPTCHAs in a theoretical way. We will try to address why
they have failed so frequently - put it other way, why they have remained unbroken
for so brief time. We will discuss the reasons that make their design a much harder
1 Completely Automated Public Turing test to tell Computers and Humans Apart
2 Human Interactive Proof



problem than previously thought. Also, there are more ambitious proposals that have
tried to cover different types of attacks, including human farming attacks. We will
conclude recommending some good properties that new designs should meet; prop-
erties that can be used as a starting point for a design methodology and for their
security assessment.

1.1 Motivation: why to study and break CAPTCHAs

Today we do not fully understand if the problems that form the basis of the current
CAPTCHAs designs are hard enough. Even worse, we do not have a way to tell
if the precise method employed by a particular design uses the full strength of the
underlying, supposedly hard, AI problem. We do not have a clear methodology to
check if a design and its implementation are flaw-free. It is then interesting to try to
break current CAPTCHAs and find pitfalls in their design to make the state-of-the-
art advance and get to a point where better known and tested assumptions give rise
to more secure CAPTCHAs.

1.2 CAPTCHAs’ Evolution

CAPTCHAs are somewhat recent. Moni Naor was the first to propose theoretical
methods of remotely telling apart computers from humans [19]. The first known use
of a CAPTCHA on-line is credited to the AltaVista web search-engine in 1997 [22].
Andrei Broder developed a filter, randomly generating an image of printed text, and
transforming it so that machine character recognition systems (OCRs) could not read
it, but humans still could. In 2000, Udi Manber of Yahoo! described their ”chat room
problem” to researchers at Carnegie-Mellon University: ’bots’ (automatic computer
scripts) were joining on-line chat rooms, and pointing their users to advertising sites.
Professors Manuel Blum, Luis A. von Ahn, and John Langford, from Carnegie-Mellon
University, described some desirable properties that a test to exclude bots should
have. These properties are mostly theoretical, and do not deal with specific design
or implementation issues (i.e., nothing is said about whether challenge generation is
better in the client or server side). The Carnegie-Mellon University team developed a
’hard’ GIMPY, which picked English words at random, and rendered them as images
of printed text, under a wide variety of shape deformations and image distortions[17],
with an easier version put to work at Yahoo!.

Text-based CAPTCHAs In the following years, OCR/text-based CAPTCHAs be-
came increasingly popular. For awhile, attackers preferred those sites not protected
by CAPTCHAs as still there were many services that did not use them, so adver-
tising/spam/phishing/voting abuse etc. were still possible by avoiding CAPTCHAs.
Even after graphic distortion and degradation, some approaches have been able to
”read” them automatically around 92% of the time [18], specially when it is possible to
divide the rendered text image into its constituent letters or characters, a procedure
called ”segmentation”. After some more attacks on OCR/text-based CAPTCHAs
were made public, the outcome was not the creation of new paradigms, but the re-
design of OCR/text-based proposals in a way to try to prevent those attacks [25].
Newer attacks appeared [32].



Fig. 1. Some current OCR/text based CAPTCHAs.

Although now the commercial and academic proposals offer a wide variety of types
to choose from, most deployed CAPTCHA belong to the OCR/text-based type of chal-
lenge. Among them, there are some interesting ones, as reCAPTCHA [13], which is
an interesting mix of a normal OCR/text and database based CAPTCHA: it is based
on extracts of texts that had not been correctly recognized by OCR software. That
reason is why the test presents two words: one comes from the failed-to-OCR set, the
other is one which reading is known: either an automatically generated and distorted
one, or a failed-to-OCR one already read by humans. In this sense, reCAPTCHA
is an incremental CAPTCHA. reCAPTCHA also includes an audio version, further
explained in the audio section of this paper. The current Megaupload 3 is interesting
because uses a strong overlapping model (trying to make segmentation much harder).
This approach is sound, as computers are even better than humans at recognizing
isolated characters [33], so the most difficult problem for a machine is segmentation.
BaffleText uses a somewhat related approach [28], using ”occlusion or interference by
random shapes”, against which, they state, ”image restoration cannot replace missing
parts without prior knowledge of the occluding shapes”, humans being ”remarkably
good at recognizing an entire shape or picture in spite of incomplete, sparse, or frag-
mentary information”. Another atypical text-based scheme is the one proposed to
protect the ”Quantum Random Bit Generator Service” 5. They ask to solve or com-
pute a not-so-simple math expression to prove that you are human (and good enough
in Math). To prevent automatic OCR reading, they do not rely on transformations,
but on the low quality of the depicted text, using small fonts and antialiasing.

Another interesting and atypical OCR/text CAPTCHA is Teabag 6, currently
in production, which depicts the text in 3D, also transforming in 3D space. Other
proposals based on the OCR/text reading challenge are the commercial Captcha27,
providing an interesting mix of an OCR/text-based and an image-based: the user

3 http://www.megaupload.com/. Their previous CAPTCHA has reportedly been broken
during January, 2009 4. http://userscripts.org/scripts/show/38736

5 http://random.irb.hr/, Center for Informatics and Computing of the Rud̄er Boškov́ıc In-
stitute (Zagreb, Croatia)

6 OCR Research Team, Kharkov (Ukraine), at http://ocr-research.org.ua/ and
http://barafranca.com/game-register.php

7 http://captcha2.com/



must read the character presented after the message ”click on the letter”, and select
the same letter by clicking close to it in the box displayed below the caption. There are
also some OCR/text CAPTCHAs that rely on a broad range of parameters for text
depicting, thus looking as if they were composite versions of simple ones, as JCaptcha8,
deployed in many sites9, Securimage10, an open-source free PHP CAPTCHA script,
or BotDetect11, a commercial proposal. There is also a proposal [23, 10] that tries to
mimic the human handwriting in a synthetic form for creating challenges that are
more difficult for OCRs.

Picture-based CAPTCHAs Many text-based CAPTCHAs were recently broken
[18, 30, 31, 35, 36, 32, 33], so there is increasing concern about their overall strength
and their accessibility for humans (as they became harder, for countering these at-
tacks). Possibly influenced by the idea that the general vision problem seems to be
a harder problem than character recognition, more designs lately focus on using pic-
tures instead. Those CAPTCHAs do not really rely on a ”general vision recognition
problem”, but in a downsized version of it, typically consisting in labeling images,
finding their center, etc. Chew and Tygar[20] were the first to use a set of labeled
images to produce CAPTCHA challenges, using Google Image Search. Google relates
a picture to its description, and to its surroundings in the document that contains
it. Ahn and Dabbish [21] proposed a new way to label images, embedding the task
as a game, thus creating the PIX CAPTCHA database. HotCaptcha.com proposed a
new way to use a large-scale human labeled database provided by the HotOrNot.com
web-site 12, a site that invites users to post photos of themselves and rate others’
in a sex appeal numerical scale. Oli Warner came with the idea of using photos of
kittens to tell computers and humans apart [41]. KittenAuth features nine pictures
of cute little animals, only three of which are feline. The database of pictures is small
enough (< 100) to manually classify them, and this limitation seems troublesome
even if we apply new methods involving image distortion. Another proposal, known
as the HumanAuth CAPTCHA (fig. 2(a)), asks the user to distinguish between pic-
tures depicting Nature or an artificial thing (like a clock, or a vase, for instance). In
addition, the CAPTCHA has also an alternative version for the visually challenged,
as they can switch to text-based descriptions of the pictures.

The main problem with HumanAuth is the picture database size, which is too
small, even though the authors include an algorithm to mix it with a logo for wa-
termarking and avoiding hash-function-based image classification (that will not af-
fect text descriptions). ASIRRA [16] (fig. 2(b)) uses a similar approach, but using a
database of more that 3 million photos from Petfinder.com. ASIRRA asks for identify-
ing images under two categories, cats and dogs. VidoopSECURE 13 is a company that
provides security solutions, and gives access free of charge to their VidoopCAPTCHA,
composed of 12 images, each one labeled with a letter, asking the user to enter the
8 http://jcaptcha.sourceforge.net/
9 Including a major airline web-site, (http://www.iberia.com

10 http://www.phpcaptcha.org/captcha-gallery/
11 http://captcha.biz/captcha.html
12 No longer active, as of January 2009.
13 http://drupal.org/project/vidoopcaptcha



(a) HumanAuth (b) ASIRRA (c) 3D CAPTCHA

Fig. 2. Some current picture based CAPTCHAs.

letters in those images that refer to three given categories. IMAGINATION [26] is
a CAPTCHA divided in two stages: the system shows the user an image composed
of 8 images tiled and asks the user to click ”near” the geometric center of one of
the images, then that image is transformed and presented again, and this time the
user has to choose the word (from a set) most related to the image being showed. 3D
CAPTCHA 14 does not exactly fall into the picture database-based category. Instead,
it uses pre-generated 3D models that are rendered in a randomized scene in 2D. For
each part of each model, there is a textual description. The computer selects random
objects from the set of available ones and sets them up in a scene, rendered also from
a random point of view and with random light sources, and finally attaches letters
to the different parts of the different models, asking the user to enter them in the
sequence specified by a list of given parts of models (figure 2(c)). The idea of gener-
ating 2D CAPTCHAs from 3D models is not new, as [27] proposes a simpler scheme
of 2D challenge generation from 3D object models.

Other visual types We propose in [2] some video CAPTCHAs schemes based in
real videos, analyzed and then transformed. The user has to answer whether them
had been transformed or not, and the way. The videos need to have a former analysis
to avoid easy-to-solve specimens. With some extra care, it is also possible to use
on-line video repositories as the input source for some of our CAPTCHA schemes.
Using animation, [3] proposes a general way of preventing relay and human-solving
farms attacks: they include a time component in their CAPTCHAs, so that the same
challenge has a time dependant answer, and could not be easily display exactly as-is in
a remote computer. A long chimera of many proposals is to be almost transparent, not
noticeable by the user. One surreptitious CAPTCHAs that does not alter navigation
is [29], which consists of replacing many of the links of the web-site for images with
captions to tell where to click. Metadata 15 is supposed to be another type of this
scheme, but no information is public to date.
14 http://spamfizzle.com/CAPTCHA.aspx
15 (http://www.forbes.com/2008/11/25/captcha-pramana-bots-tech-identity08-

cx ag 1125captcha.html)



Audio CAPTCHAs Visual CAPTCHAs put in production need a counterpart to
provide access to the visually impaired[15]. Audio CAPTCHAs can be hard to solve
for humans [4]. The GMail and Microsoft Live! audio CAPTCHAs are based on voice
samples of people reading decimal digits (0 to 9), with some background noise. They
have already been broken with simple algorithms [40, 39]. A different type of audio
CAPTCHA is the new16 one provided by reCAPTCHA. Using the same idea on
which their visual CAPTCHA is based, they provide sound recordings (from radio
broadcasts) that have been partially recognized by their software. The user has to
correctly recognize at least the part that the software audio recognizes. Note that this
scheme is weaker than the visual one, as here the test is either a previously human-
solved test, or one to be solved (and not a mix of both). If it is one to be solved, then
the current best software for audio recognition will be able to break the CAPTCHA.

2 Attacks

To date, publicly known attacks on CAPTCHAs are mostly the work of amateur
programmers or researchers. Some schemes have been known to change without a
public notice of its breakdown, so there is a chance that some attacks have been and
will remain unpublished.

2.1 Text recognition

OCR/text-based CAPTCHAs have been the first type to be deployed, and are still
the most widely used type. It is logical that they have attracted so far most of the
attention. The first published attack against an OCR/text CAPTCHA is devoted
to Mori and Malik [18]. They use shape-matching (in a two steps approach) to find
candidate letters, and then filter the candidate words. In another approach they try
to find the whole words directly. Another attack [30], based on distortion estimation,
succeeds 99% of the time. For simpler OCR/text CAPTCHAs, it is possible to use
simpler algorithms (as pixel counting [31], letter derotation [35], etc.). There are open
source algorithms able to decode the most simple OCR/text based [36]. More recent
attacks [32] allow to break most OCR/text based CAPTCHAS (including Yahoo,
GMail, etc.). It has been shown [33] that typical text transforms do not increase
security, as computers recognize isolated characters better than humans.

These examples are just current attack possibilities, but there are many others to
explore. During our preliminary research, we have found that an attack which focusses
on regular shape detection (using adapted Hough transforms for segments, ellipses,
etc.) is of use against Baffletext, and also Megaupload. Captcha2’s background is not
a major problem; it follows some clear color-shift patterns. Also, the transformations
used to depict the letters are fixed, and uses the same set of transformed letters for
depicting the character that has to be clicked on in the box. Thus, a simple pattern
matching algorithm would be able to solve it. Teabag has many possible analysis,
notably those based on the non-uniformity of the challenge (see later in 2.7).

16 Introduced in 2009 to replace their old, digit based, model.



2.2 Audio recognition

Typical audio CAPTCHAs are very basic, and excluding very few exceptions, most
current implementations can be considered defeated. Current proposals are so simple
than no complex analysis is required, just a slight filtering and pattern matching [40,
39]. More sophisticated attacks have been studied [12], rendering even better success
ratios. The new version (as of 2009) of the reCAPTCHA audio CAPTCHA is one of
the few that remains unsolved, but as we stated in the previous section, it is not as
strong as the visual one, and we are exploring the possibility that unsolved challenges
can be used to bypass it.

2.3 Side-channel attacks

These type of attacks are based on deviations from randomness that allow for a cor-
relation among the challenges and their answers. In this section we present a detailed
example (against HumanAuth), and we briefly describe other attack against ASIRRA
[5]. The ASIRRA Public Corpus, that the developers of ASIRRA have created to help
researchers, is composed of around 25.000 images classified as cats or dogs, a half in
each class. We analyzed all of the files using the ENT17 tool, producing a formatted
output (in ARFF format, so to be used with Weka [6]). These were later processed by
a classifier which was able to distinguish cats and dogs pictures with a nearly 60% ac-
curacy, without using any kind of image recognition technique. The simplest decision
tree [7], based on only the size of a jpeg file, is able of distinguishing between cats and
dogs with an accuracy over 58%, significantly better than random. Following an iden-
tical approach, we used the ENT tool with the images in the HumanAuth source code,
producing an ARFF file. The best classifier (in this case RandomForest) was able to
show an accuracy rate of 77.8761%, significantly better than the 68

68+45 = 60.177%
that a trivial classifier (that always predicts the larger class) will do. To prevent easy
image library indexing, the authors of HumanAuth decided to merge a PNG image
with the random JPG image taken from the library: they put the watermark PNG in
a random position into the JPG canvas and merge both using a level of transparency.
This suggests that the initial small set of images, when used with the scheme pro-
posed by the HumanAuth authors of merging with a watermark, may not be of use
against this type of attack, even though might be enough to prevent hash-function
indexing. Choosing a different watermark that alters more the original image could
be beneficial, but that would be also at the expense of human recognition.

2.4 Feature-based attacks

In Philippe Golle’s work [8], he presents the strongest attack against ASIRRA as of
April-2009. This attack is based in image processing, as it divides the photographs
into NxN cells of color and texture (gray-scale) information, and use that to feed two
support-vector machine (SVM) classifiers that, when used together, are capable of
classifying with around a 83% accuracy, thus allowing them to solve the 12-photos
challenge with a 10.3% probability. They found that color-presence features are more
17 http://www.fourmilab.ch/random/



accurate for classifying cats and dogs than color-histogram features. With this scheme,
the authors reach a 77.1% accurate classification rate. With texture processing, they
reach an 80.4% successful classification. Combining both methods, they reach an
82.7% accurate classification rate.

2.5 Attacks against database-based CAPTCHAs

When a CAPTCHA is based on a database of knowledge (i.e., labeled pictures),
and especially if that database is public, there are some possible attacks against its
database that could thwart its reliability. Basically, those are:

1. Database poisoning attacks: if the database is public, and not protected, we can
upload information in a way that assures that when later confronted with chal-
lenges created using that uploaded information we will solve those challenges.

2. Database indexing attacks: if the database is small enough and/or the bandwidth
is high enough, we can download (maybe partially) the database contents and get
enough information to solve or greatly simplify the CAPTCHA.

2.6 Implementation flaws

Some CAPTCHA protection systems can be bypassed without using OCR techniques
at all, simply by reusing the session ID of a known CAPTCHA image [44]. That is
the result of a very bad implementation, but it was not uncommon some years ago.
A common error, even today 18, is that some codify the answer to the challenges in
the URL address or in the value of a form field. Knowing this, we can request as
many challenges as we like with the same solution. We can calculate medium values
of those challenges, and thus launch a mean attack [45]. Other implementations use a
hash (such as an MD5 hash) of the solution as a key passed to the client. If the num-
ber of possible answers is finite, or their distribution is not uniform, solutions hashes
could be learned in a proportion enough to solve it. Another straightforward imple-
mentation flaw consists on using only a small fixed pool of challenges. For example,
HumanAuth uses less than one hundred images, and even masking them with logos,
we cannot prevent them from being indexed or characterized [5]. As another example,
QRBGS challenges are not created on-demand, but repeated [43]. If the answer to
the challenges could be any (i.e., floats, in a broad range) and it followed an uniform
distribution, repetition of challenges would not be so deleterious, but in nearly all
other cases is fatal. Some additional design flaws in HumanAuth (commented later)
imply there is a big chance than the challenge answer is 0, or, alternatively, a small
integer. This makes possible to use another, very successful, kind of attack: if answer-
ing 0 fails, then we will answer with a succession of integers that will run through N ,
starting with the smallest absolute values. As a last and typical implementation flaw,
we have to note that some algorithms use a quite unwise way of communicating with
the CAPTCHA server, that is easy to attack [14].

18 See, for example, the CAPTCHAS currently used by Fotolog, Uol, Conduit, MetroFlog
and others.



2.7 Design flaws

In this section we introduce some common design flaws that have rendered some
known CAPTCHAs much less secure than intended.

Biased answer distribution One obvious mistake, but quite common to find, is
selecting a clearly non-uniformly distributed subset of the possible answers as correct
answers. One example is QRBGS (MathCAPTCHA), whose designers use one-digit
figures in all their arithmetic operations. That makes it likely that the answers will
be small integers. Additionally, they use derivatives of trigonometric functions when
x has a typical value of π

2 or π and they do not expect floats as answers (possibly to
avoid precision problems), so low-integers and specially zero are very good candidates
for successful blind answers (up to 93% success rate, depending on problem subtype)
[11].

Another example is phase one of IMAGINATION, in which the user has to click
on the ”center” of any of the images. Clearly this center distribution is not a uniform
distribution. We find other examples in OCR/text CAPTCHAs that do not use the
full set of possible characters. For example, the Megaupload CAPTCHA avoids values
O, I, J, 0 to prevent user confusion. Worse, it always uses the scheme of three letters
followed by a digit. That makes it more user friendly, but also much weaker. Teabag
uses only three characters, and are strongly not uniformly distributed [34], possibly to
avoid characters that are difficult to distinguish in the 3D projections they use. In a
sample of 100 challenges, characters ’S’, ’Z’, ’3’, ’P’, ’b’, ’w’, ’M’, ’t’ and ’d’ appeared
more than 3% of the time (peak: 4.3%), while a large set of other 34 characters
appeared none, including ’1’, ’0’ (perhaps to avoid coincidence with ’I’ and ’O’), etc.
The chi-square value for this distribution with 61 degrees of freedom gives us 262.08,
corresponding to a two-tailed p value of less than 0.0001. As the challenge answer
does not differentiate among upper and lowercase 19, the situation is even worse. In
this case, the most common character is letter ’m’ (6%), and there are 4 characters
that appear more than a 3% of the times, while other 18 do not appear at all. That
means that just blindly answering the string ’mmm’ will be a good guess. Depending
on the scheme, uniformity in the answer distribution can be considered a theoretical
aim, but we should always know how far we are from it, as being too far can render
our CAPTCHA useless.

Biased challenge distribution Any bias from randomness in the characteristics
of the challenges can allow for challenge analysis, which may lead to side-channel at-
tacks (if they allow correlation with the answers), or simpler-than-intended challenge
categorization and/or analysis. One example is Teabag. In it, the frontal borders of
the characters can be selected by area size, because this distribution is far from uni-
form: so size has a meaning. Additionally, thanks to the non-uniformity of the image
(for example, the areas at the borders), it is easy to tell the angles of the image:
flood-filling the corners and studying the lines that they create, we can de-rotate and

19 Teabag page does not specify this detail, but the implementation at
http://barafranca.com/game-register.php does not make any difference.



de-shear the image to a normal 2D perspective. There is also a correlation among
pixels that allow for (probabilistic) back border detection, using very simple algo-
rithms, like growing the background areas by pixel continuity. In a fair percentage of
the challenges generated, the non-character part of the image can be completely or
almost completely removed [34].

(a) challenge (b) w/o background

Fig. 3. Teabag, original and first phase of process.

Another example is the Megaupload CAPTCHA: the letters and the digit are
always printed using the same font type, similar if not equal to Antique Olive (as
identified by Identifont 20). They are rotated, but at a precise angle, either clockwise
or counter-clockwise, being the first letter rotated clockwise, the second counter-
clockwise, etc. Additionally, it prevents more than two characters from overlapping
(this and the former allow for the creation of overlapping maps with all combinations,
although they are not necessary to break the CAPTCHA) [9].

Correlation between Challenge and Answer This is a worse scenario than the
ones presented before: here, the challenge somehow provides (non intending, that is
”leaked” or ”side-channel”) information on the answer. When the answer is binary,
then the problem is similar to the previous biased challenge distribution problem.
The already explained side-channel attack against HumanAuth and ASIRRA clearly
exemplifies the dangers of this scenario.

Limiting the size of the set of correct answers Is a straightforward weak point
that takes place much more commonly than what could be thought. Clear examples
are MegaUpload, asking always for 3 letters and a digit (in that order) and not
distinguishing case (also avoids some characters (I, J, L, O, 0), possibly to avoid
confusions), or Teabag, asking for only 3 characters (and not distinguishing case,
either). Also, many OCR/text base CAPTCHAs limit the number of characters of
the answer.

Categorization of the answer There is not always the need to make it easy for
a program to know if the guessed answer for the CAPTCHA was right or wrong.
20 http://www.identifont.com



Interaction with the remote system (typically, web-site) can go on as usual, being
the actual data results different, etc. If possible, it should be avoided the immediate
knowledge of whether an answer to the challenge is correct or wrong, or any other way
to know if it is close to being a correct answer. We can communicate this information
using some intermediary communication mechanism (like email accounts, which will
also need to be controlled not to use the same more than n times), or present that
information to the user in a way difficult to distinguish automatically.

User dependance Make the CAPTCHA, in any way, dependant on the challenger,
is in general a very bad idea, specially worse if this dependance is, or could be, known.
One example of this problem is ASIRRA that, to further increase the possibilities of
adoptions of the pets showed in the CAPTCHA, will show the pets in Petfinder that
are close to the challenger (using IP geolocation). This weakness is egregious, as it
renders easier to many types of attacks, including database poisoning (the number of
poisoned records to bypass the CAPTCHA is significatively lower), database indexing,
etc.

2.8 Human solving

CAPTCHAs are designed to be solved by humans, but there is an ongoing market
of CAPTCHA solving services [38] 21 (typically located in an area where relatively
cheap labor can be found) and relay attacks, that present the CAPTCHA challenge
to a human user that receives some benefit from solving it [37]. This is part of the
CAPTCHA economics. There is still place for larger abnormalities, i.e., one client
willing to break a CAPTCHA can actually sell a CAPTCHA service to other sites,
and use them as relay agents to solve it. We have already mentioned a CAPTCHA
that tries to prevent human relay attacks.

3 The general CAPTCHA design problem

In this section we try to build upon the previous sections that showed different kinds of
CAPTCHAs; the AI problems they try to be based on, some of their design problems
and implementation flaws; and the currently known attacks against them; to discuss
the general problem of CAPTCHA design, and finally, their current strength and
limits.

3.1 Threat model

The original purpose of a CAPTCHA was determining a human from a machine re-
motely. If that determination is possible, we can protect services from automatic/massive
requests. With the evolution of the attacks on some web services, it has been more
evident that the ability to tell a human from a machine may not be enough. Is a

21 Some examples of human-solving services are (http://captchaocr.com/ad.html) and
(http://decaptcher.com).



human in a CAPTCHA solving farm something we should avoid? Should a human
surfing through another web site, or presented with another program GUI, not be
eligible for solving our CAPTCHAs? Is a human assisted computer program still an
automatic attack? There are different types of cryptanalytic techniques depending on
the threat model we choose: chosen plaintext, known plaintext, known cyphertext, re-
lated key, side-channel, etc. Analogously, there are different threats that a CAPTCHA
can choose or not to prevent, from the most basic to the most comprehensive:

1. be able to distinguish humans from computers, by measuring an ”human” quality,
ability or behavior.

2. be able to prevent ’magnifying/human-assisted’ attacks: distinguish humans from
human-assisted algorithms, i.e., algorithms that with some human intervention
can solve the CAPTCHA many times. This assisted algorithms have a big ratio
of CAPTCHAs solved per human intervention 22.

3. be able to prevent relay attacks: distinguish humans presented with the CAPTCHA
in the original CAPTCHA site, to those presented with the CAPTCHA in another
site/interface 23 [3].

4. be able to prevent ’human farms’ attacks: including methods to inhibit or make
more difficult solving the CAPTCHA using ’farms’ of solvers 24.

3.2 AI hardness not transmitted

Most CAPTCHAs have been broken [18, 8, 5, 9, 11, 14, 42, 40, 39, 32, 31, 30, 34] due to
one of these problems:

1. The ”hard-AI” underlaying problem they are based on is not the original one
intended, but a much more specific and weaker one. For example, most OCR/text
CAPTCHAs require to solve a problem far easier than the ”general OCR” problem
[32, 9, 34]. In this aspect, reCAPTCHA tries to approach the real problem more
realistically.

2. Design and implementation flaws make them much more easy to bypass using a
procedure that, analyzing the challenges in a non detailed manner, permits to
guess an answer with a high percentage of success. Thus, these procedures can be
called side-channel attacks, as they do not try to solve the original problem that
the CAPTCHA designers intended attackers to solve, but one which is much easier
[11, 5]. That is the difference between the intended solving path and the actual
solving path. The intended path is the one based on a hard problem (purportedly
representing an AI-hard problem), the real one is the one based on any design
and/or implementation flaw that avoids the harder way.

The difficulty of an AI-unsolved problem is thus not easily transmitted to a
CAPTCHA design. One of the reasons is because we do not know how to catego-
rize AI-hardness, so we do not know how to tell if a particular subset (generated by
22 An example could be a variant of the Megaupload with multiple typefaces: solved with

lines and shapes analysis (using the Hough transform) and human intervention (classifying
the new schemes as corresponding letters).

23 Sites/programs that, upon solving the CAPTCHA, reward the user in some way.
24 One possible way of doing this is with in-site ”hidden” CAPTCHAs [29].



a CAPTCHA) is hard enough. Also, an AI-problem can be difficult to solve correctly
more than, i.e., 15%, but we typically need a much smaller figure to be able to attack
the CAPTCHA. Regarding the image recognition problem, used for many modern
CAPTCHA designs, we face the same obstacles. ”Image recognition/understanding”
is not typically the same problem that the CAPTCHA designers finally implement.
Human-solved database-based CAPTCHAs can approach the hardness of the original
AI problem if we filter out easy specimens (which is what reCAPTCHA does), al-
though they impose the limitations of a database-based CAPTCHA design, including
the need of a constant input stream of unsolved challenges.

4 Related problems

Designers face additional problems that have not to do with their resistance to at-
tack. As many CAPTCHAs protect free services, or commercial services with com-
petence, CAPTCHAs have to be easy to solve and appealing. Ideally, if the service
is worldwide, they have to be language-independent (i.e., reCAPTCHA is harder for
non-English speakers, with a 97% vs. 92% success ratio). The problem of accessibility
is also of greater concern, and few visual CAPTCHAs are fully already prepared for
it (i.e., HumanAuth). If possible, they have to be also possible to operate through
other channels (i.e., mobile phones). This requirements have made some researchers
invent new forms of reusing known CAPTCHA schemes, as for example, converting
text CAPTCHAs into clickable images [1]. An additional problem is the tendency to
overlook the difficulty of their design, specially when designing new in-house devel-
oped CAPTCHAs, typically by groups of programmers that are not specialists, which
designs are put right into production [11] 25.

5 Where to go

Recapitulating on the previous sections, we present a brief corpus of conclusions,
learned from the previously studied problems. We describe good properties that a
CAPTCHA design should have, ways to theoretically study the assurance level of a
design, and to empirically test for good properties regarding to randomness in different
aspects of the CAPTCHA.

5.1 Good properties CAPTCHAs should have

Here we present some good properties that new CAPTCHA designs should have:

1. Randomness, uniform distribution, in all parameters. For example, for a text
CAPTCHA: variable number of characters, uniform numbers of pixels/areas/lines/...
with certain properties (color, group, size of group, etc.), different type faces used,
size of images, etc.

25 As an example, CAPTCHAs offered for Wordpress at
(http://wordpress.org/extend/plugins/tags/captcha)



2. No easier challenges: subtypes or alternatives should have the same strength (au-
dio and visual CAPTCHAs).

3. Problem posed should be as broad, and as close as possible, to the AI problem
that inspires the test.

4. Design should incorporate features to prevent relay attacks, and to detect auto-
matic bypass easier.

5. Challenges should be independent and uniformly distributed (this excludes depen-
dance from the user). Also the answers should be random, uniformly distributed.
There should not be any statistical correlation among challenges and answers.

6. Make it difficult for a program to tell if its answer was or not correct.

As a good practice, we recommend, for any new CAPTCHA design, to be put into
production in a test web-page, without other protections (to focus on the hardness of
the CAPTCHA), for a period long enough to allow study.

5.2 Assurance level of CAPTCHAs

In this section we propose some basic methodologies to analyze the security offered
by a CAPTCHA design. This analysis is theoretical, and studies the behavior of the
CAPTCHA design under unfavorable assumptions. For knowing better the security
offered by a CAPTCHA design, we propose to theoretically analyze the CAPTCHA
under the following assumptions:

1. Answer repetition: if an attacker is able to collect a finite sample of challenges
with the same answers, in any quantity, for any number of different answers she
wants, confirm that she will not able to create a better answer, for a challenge
that pertains to one of those answers, than a random one (that is, that there is
no better attack than trial and error).

2. Challenge repetition: if our CAPTCHA has only n different challenges, and we
do not know their answer, there should be no better strategy to solve them than
trial and error, which success ratio should be low. This should apply also when
n = 1.

3. Non categorization: if our CAPTCHA is composed of different types of challenges,
there should be no way to automatically distinguish them. There should also be
no way of categorizing the difficulty of different challenges.

5.3 Security assessment

In this section we propose a practical test that can be done over any CAPTCHA
design and implementation, and that should be added to the ones aforementioned.
This test measures the random distribution of answers to the challenges.

For this test, we create a large enough set of elements (T = test, A = answer)
of tests with their correct answers. For the designers, creating this set should be
straightforward. Then, using general randomness and statistical analysis tools[5], we
search for non-uniformities in this distribution, that is:

1. Non-uniformities in the distribution of A (that would allow for a blind attack)



2. Correlations among T and A (that would allow for a side-channel attack)
3. Non-uniformities in the distribution of T (that could allow for type-of-challenge

categorization, and challenge analysis)

These test can be done for T as is (as a bit stream) or for some simple properties
of T, which, depending on the type of challenge, can be color histogram, areas’ sizes
histogram, distances between similar areas, bit correlation with given vectors (i.e.,
trained by GA), maximum and minimum for a block of bytes, etc. This can be used
as a very general analysis tool to realistically estimate the security parameters of
any CAPTCHA proposal, and we believe it will be advisable to use it in the future
before any similar systems are launched to have adequate, well-reasoned, and founded
security parameters and realistic estimations. One of their main advantages is that
it does not depend on the underlying format (image, sound, video, etc.) or problem,
and that it could be useful for avoiding pitfalls such as the existence of some trivial
and irrelevant parameter values leaking too much information [5, 11]. For the study of
correlations and other predictive possibilities we, apart from the classical statistical
tools, strongly recommend the use of Machine Learning algorithms such as those
found on the free Weka [6] tool.

6 Conclusions and further work

It is possible to assume broader threat models and design CAPTCHAs that also
prevent human farming, human relay attacks, and are able to detect when they are
under computer attack, and when they have been bypassed. Hardness assumptions
relying on the base AI problem underlying a particular CAPTCHA are often used as
arguments, and given as facts. In reality, the AI problem proposed by the CAPTCHA
is always a small subset, typically much easier to solve than the original. Worse,
typically CAPTCHA designs have pitfalls that make them even easier to pass. We
expect this work to be a good starting point: both for designers of new CAPTCHAs,
to avoid some common design flaws that could render their ideas useless, and for the
creation of additional methodologies for security assessment, and evaluations of the
assurance level they provide.
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