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Abstract. Today the Chaumian Mix idea is not only an academic approach for
anonymous communication, it is also a practical system withmany variants used
in real-world scenarios. It is therefore important to find anappropriate measure
for the anonymity provided by these approaches. Many measurement approaches
have been proposed that consider only the static state of thesystem without ac-
counting for past and future information. Still other measurements evaluate only
statistics. These measurements have in common that they do not measure when
the anonymity function of the system is broken. Inspired by the idea of unicity
distance in cryptography, and the mean time to failure in dependable systems,
we believe that measuring the point at which the system failsto hide the relation
between a sender and a receiver is a more appropriate measureof its anonymity.
In this paper, we discuss our arguments with respect to existing measurement
approaches.

1 Introduction

Confidentiality of communication relations is a core requirement for many interactions
in the Internet, for example in healthcare systems, electronic voting and commerce. The
most widely used and practically applicable system for confidential communication is
the Mix, introduced by Chaum in 1981[1]. These systems are collectively referred to
asanonymity systems. In practice they can be standalone, or can appear as the network
anonymisation layer of other privacy-preserving systems such as Idemix[2].

The existing Mix approaches, including the pool mix, threshold mix and stop-and-
go Mix, have their origins in the basic concept proposed by Chaum. The underlying
idea of these systems is to embed a single user within a set of users such that the actions
of that user is not identifiable within the set. This set is called theanonymity set, and
the embedding function is provided by the Mix.

Inspired by this approach, many variants of Mix systems havebeen proposed that
overcome limitations in the original design. Other systems, such as well know onion-
routing approach[3] can also be considered to arise from thebasic idea of Chaum, but
relax the embedding by removing some security functions provided by the Chaumian
Mix.

A natural interest of users and designers of a system is to know the strength of the
system in anonymising users. We suggest that a measurement of the strength should
refer to the following questions:



– How long does it take on average to reveal a communication relation?
– How hard it is to break the anonymity function?

The first question can be considered as taking an informationtheoretic view, while the
second is complexity theoretic. In the first case we are inspired by the mean time to
failure in dependable systems, and by Shannon’s unicity distance[4] in cryptography.
In the second model the unicity distance measures the average number of bits that an
attacker must learn to uniquely identify a message by by examination of the cipher
text. This number represents how many cipher text characters must be collected by
the attacker in order to identify the message unambiguously. The unicity distance is
an information theoretic measurement of the strength of a cryptography system with
respect to:

– the structure of the system, including the domain of the plaintext, ciphertext and
the key.

– the redundancy of the source language.

Applying this concept to anonymity we wish to find the mean number of observa-
tions that must be made by an attacker in order to uniquely identify a communication
relationship between two parties. This measurement is withrespect to:

– the structure of the system, including the domain of sendersand receivers, and the
size of the anonymity set generated by the system.

– the redundancy of communication by the user.

The second complexity theoretic question results from the idea of security measure-
ment in public key encryption systems. A system is considered to be practically secure
if it is computationally hard to break. In the case of an anonymity system we are in-
terested in how much computational effort is required to uniquely link a sender to its
recipient, given that it is possible in an information theoretic sense.

Our idea is supported by the existing research based on the hitting-set attack[5, 6, 7],
an algorithm that can be applied against Mixes under the assumption of a passive at-
tacker that only observes the input and output of the system.The hitting-set attack
enables us to see how the set of possible communication partners of a user decreases in-
formation is gained from observing the sets of possible communications relationships.
We suggest to model this process of information gain to obtain an appropriate infor-
mation theoretic measurement for the strength of the system. A complexity theoretic
measurement then naturally results from analysing the complexity of the hitting-set at-
tack.

Since all other Mix based approaches are variants of the Chaumian Mix, we believe
that our measurement idea can be further adapted to the othervariants. In contrast, we
argue that approaches that do not incorporate the knowledgeof the attacker like [8, 9],
or that rely only on statistical evaluations, such as the statistical disclosure attack[10]
are less appropriate as an anonymity measurement.

We will now define the basic concepts on which later work in this paper relies.



2 The Mix Model

We introduce here a formal definition of the Mix model as described in [6], based on
the original design introduced in [1].
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Fig. 1. Formal model

Figure 1 shows the basic components of this technique, consisting of a set of senders,
S; a set of recipients,R; and a Mix node. All senders inS communicate with the Mix,
and the Mix itself communicates with all recipients inR via a network of secure and
reliable channels. A secure reliable channel ensures against loss or duplication of trans-
mitted messages and guarantees authenticity, integrity and confidentiality of transmitted
messages. The users and the Mix transmit messages using the following protocols:

User Protocol Users prepare messages by padding them to constant length, with longer
messages split over multiple chunks. Each message is then encrypted twice with
one time pads. The first layer of encryption uses a shared secret between the sender
and the intended recipient, the second layer employs a shared secret between the
sender and the Mix. The doubly-encrypted messages are then sent to the Mix.

Mix Protocol A Mix collects abatch of b messages from distinct users and then de-
crypts these messages. The decrypted messages are then output from the mix ac-
cording to a non-order preserving function such as random delay or lexicographical
sorting. The output is broadcast to all recipients. Incoming packets are also com-
pared against formerly received messages in order to rejectany duplicates.
The Mix technique described above can perfectly hide the communication rela-
tionships between senders and recipients of messages from everybody but the Mix
and message senders. If the protocol is applied in fixed time slots, with each user
required to supply a fixed number of messages per batch, the act of sending or re-
ceiving can itself be hidden[11, 1, 12]. Pfitzmann[12] states that this Mix technique
provides information-theoretic anonymity and unobservability based on complex-
ity theoretic secure cryptography.

2.1 The Pure Mix Technique

The “perfect” anonymity solution discussed above makes useof dummy messages and
a broadcast function. Even though this solution can provideperfect anonymity it is not
practical in large networks such as the Internet, as justified in [6]. As a consequence,
most current implementations and solutions use a variant ofthe perfect Mix solution



by omitting either dummy messages or the broadcast function. We refer to these more
practical approaches aspure Mix techniques.

Since the pure Mix is not information theoretically secure,the question arises: how
much information is leaked by such a technique? Equivalently: how much information
must be obtained to break the anonymity provided by these techniques? In order to
measure the non-protocol specific anonymity provided by this technique we assume a
passive attacker. This attacker gains knowledge only by observing sets of senders and
receivers at each round of communication. To give the attacker the ability to observe
the entire set of senders and receivers we additionally assume that he isglobal. We thus
assume a common attacker model for analysis of anonymity systems: theglobal passive
attacker.

We consider all approaches in this paper in the context of thepure Mix, which
is the basic model underlying the threshold Mix. Our model isgeneral as other Mix
techniques, such as the pool Mix, can easily be modelled by a threshold Mix as shown
in [13].

We will use the following formal model of a pure Mix and information leakage for
our analysis:

Formal Model of the Pure Mix Technique

– A communication system consists of a set ofsenders, S; a set ofrecipients, R; and
a Mix node as shown in Figure 1. If a sender,s ∈ S, communicates with a recipient,
r ∈ R, then we say thats andr arepeer partners. If the roles of sender and receiver
need to be distinguished then we say thats is apeer sending partner of r, andr is
a peer recipient partner of s.

– In eachcommunication round, consisting of the collection of messages by the Mix
and the forwarding of messages to their recipients via the Mix protocol, a subset
S′ ⊆ S of all sendersS send a message to their peer partners. LetR′ ⊆ R be the
set of intended recipients. In this model we do not consider dummy messages to
hide sending and receiving actions.

– The size of thesender anonymity set is |S′| = b, where1 < b 6 |S| = n.
– The size of therecipient anonymity set is |R′| 6 b since each sender sends exactly

one message and several senders may communicate with the same recipient. The
size of the recipient set is|R| = N .

– The information leakageX available to an attacker in a communication round con-
sists of the pair(S′, R′) of peer senders and receivers.

3 Unicity Distance

3.1 Unicity Distance and Secrecy

In 1949, in order to measure the theoretical secrecy of cryptographic algorithms, Shan-
non introduced the concept ofunicity distance[4, 14]. In the work, a cipher is considered
abstractly as a set of mappings from a plain text domain,Dplain , to a cipher text do-
main,Dcipher . Each individual mapping is determined by a cryptographic key, and the



set of possible mappings betweenDplain andDcipher is determined by the key space
Dkey .

In this measurement, Shannon considers the possible plaintext messages that could
be mapped to a given ciphertext. It is assumed that the attacker is passive and can ob-
serve the cipher text, and that he has knowledge about the domainsDplain , Dcipher and
Dkey . A system is defined asperfectly secret if each cipher text can equally result from
any possible plain text inDplain . In such a case, the ciphertext provides the attacker
with no information concerning the plain text and he is thus unable to identify unam-
biguously the plaintext. The canonical example of such a perfectly secret system is the
One-Time-Pad.

Since the overhead for perfect secrecy is very high, practical systems rarely pro-
vide this property. Practical ciphers therefore typicallyleak some information about
the plaintext in the ciphertext. As the size of the ciphertext increases, the uncertainty
about the original plain text correspondingly decreases. This results from the redundant
information in human languages, and the restricted key space that is a concession to
performance over security in practical systems.

A language such as English has a particular syntactic structure, and particular fre-
quencies of distinct letters in a sentence such that words and letters are repeated in a
specific order. This characteristic of the plaintext is reflected by the ciphertext if the set
of possible mappings from plaintext to ciphertext is too small to mask the characteris-
tics by randomness. In particular, if the set of mapping functions is small and the cipher
text is large, it is unlikely that there are mappings that mapdistinct meaningful plaintext
messages to the same cipher text. In such a case the original message of the cipher text
can theoretically be revealed unambiguously.

The unicity distance,ud , measures the amount of information in bits that an attacker
must collect in order to identify unambiguously the original plaintext. This corresponds
to the length of ciphertext that an attacker has to observe. Therefore, if an attacker
observes less thanud bits of ciphertext then the cryptographic algorithm provides in-
formation theoretic secrecy: it is not possible unambiguously to identify the original
plaintext message. If the attacker observes more thanud bits, the system is not infor-
mation theoretically secret and it therefore theoretically possible to reveal the original
message from the ciphertext. This can be achieved, for example, by a brute force attack
that tries all inverse mappings from the ciphertext to the plaintext.

3.2 Secrecy by Computational Complexity

A system that is not information theoretically secret is notnecessary insecure. Public
key systems do not typically provide information theoreticsecrecy, but they can be
considered secure with respect to the amount of computational power to break them. A
second way to measure the strength of a cryptographic systemis therefore to measure
the complexity of breaking the system given that it is not information theoretically
secret. In order to achieve this, an attacker must know an algorithms that is capable of
breaking the cipher under consideration.



3.3 Unicity Distance and Anonymity

We identify parallels between the anonymity measurement ofMix based systems and
the secrecy measurement in cryptography. Without restriction of generality we can as-
sume that messages and ciphertexts consist of letters takenfrom the latin alphabet. The
domain of the plaintext alphabet corresponds to the peer receivers in an anonymity
system. Hence the message domainDplain corresponds to the subset of peers that are
communication partners of distinct senders in the anonymity system. Letters in the ci-
phertext can similarly be associated with the pair of senderand receiver anonymity sets
X = (S′, R′) that the attacker can observe from the Mix network at each round. The
set of possible sequences of pairs(S′, R′) therefore represents the ciphertext domain
Dcipher in encryption systems.

If the Mix system broadcasts the messages of the sendersS′ to all possible receivers
R of the network instead of only to the real receiversR′, then the Mix approach provides
perfect relationship anonymity as outlined in [12]. This situation is similar to perfect
secrecy; since all possible receivers receive all messagesat each round, the attacker
gains no knowledge about the relationship between senders and receivers by observing
sequences of(S′, R′).

Nevertheless the overhead of broadcasting is very high, andpractical systems do
not use this function. Without broadcast it can be shown thatan attacker observing
sufficiently long sequences of pairs(S′, R′) can eventually gain enough information
to reveal the relationship anonymity of a user. In particular, it has been shown by the
disclosure attack[15] that if the attacker observes the pairs (S′, R′) in which a desig-
nated user, whom we call Alice, sends messages then he can unambiguously identify
Alice’s peer receivers. This assumes that Alice repeatedlycommunicates with her peer
receivers. This feature of anonymity systems is analogous to the ciphertext in encryp-
tion systems, which reflects the redundancy of the language.The sequences(S′, R′)
reflect the “redundancy” of Alice’s peers. The analogy between the key spaces for the
cipher and the Mix system is not obvious at the moment and requires more research,
but we can observe that the sequences of the pairs(S′, R′) are restricted by the number
of users in the system, the user’s communication partners and the batch size of the Mix.

A further refinement of the disclosure attack is the the hitting-set attack[5]. This
attack was proven in [6] to require the least possible numberof observations,(S′, R′),
to unambiguously disclose Alice’s peers. Thus, by computing the average length of the
sequences(S′, R′) required to disclose Alice’s peers we obtain a measurement that cor-
responds to Shannon’s unicity distance in encryption systems. If the attacker observes
less than this number of pairs then the relationship anonymity is information theoreti-
cally secure, as Alice’s peers cannot be unambiguously identified. Otherwise, informa-
tion theoretic security cannot be assured. The hitting-setattack assumes the role of a
practical brute force attack on the relationship anonymity, and thus as a measurement
function for the information theoretic anonymity. This feature enables us to model and
analyse anonymity through the hitting-set attack.



4 Related Work

We classify anonymity metrics applicable to the Mix by two main categories:history-
less measurements andhistoried measurements. These categories are shown in Figure
2. Historyless measurements are characterised by measuring only the anonymity set,
without considering information from past anonymity sets,or the potential for those in
the future. Examples of these approaches are shown in [8, 13,9].

Anonymity set

Entropy

Anonymity measurement

History less Historied

Hypotheses basedStatistic based

Perfect Matching

SD−Attack

SD−Attack
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Fig. 2. Categorisation of different anonymity measurement approaches

In contrast are historied measurements that reveal the relationship anonymity be-
tween senders and recipients by relating past and future anonymity set relations. The
first practical attack to do so was the disclosure attack[15], that showed that measuring
the anonymity set alone does not adequately represent the anonymity provided by the
system. Following this, the hitting-set attack[5] was introduced, which was proved to re-
quire the least number of observations to reveal the relationship anonymity by a passive
global attacker[6]. By providing a lower bound for the number of observations required
to unambiguously reveal all communication partners of a user, the hitting-set attack
provides the basis for an information theoretic measurement of relationship anonymity.

An important strength of this approach is that it is logical and provides provable
derivations of possible solutions from the information provided by the anonymity sets.
We can therefore logically trace the state of anonymity fromthe initial state to the state
in which all communication partners are revealed. This not only allows us to under-
stand when particular states are reached, but further allows us to model the evolution
of anonymity as information is gained. We discuss in this paper possible expansions of
analyses and metrics based on this approach.

Other historied measurements rely on analysing the frequency by which a receiver
obtains messages[10, 16, 17]. In this approach, the attacker observes the communication
round of the network under two different conditions: the first is the observation of those
peers that receive a message whenever a particular user sends a message. The second



condition is the observation of the receivers when Alice’s doesnot participate. From
the observations under these two conditions the attacker derives two communication
distributions over the receivers, one with Alice’s communication contribution and one
without. This second distribution is thebackground distribution. By assuming that the
background distribution remains constant over time one canremove the background
distribution from the former distribution to produce a set of outstanding peers that may
be the sender’s peer partners. This approach circumvents the difficulty of analysing the
possible solutions, however this simplification is not for free as the approach cannot
itself prove that a set of receivers with outstanding distributions is a unique possible
solution, nor if it is Alice’s peers. This approach therefore cannot answer information
theoretic questions.

We now examine in greater detail the development of the traditional metrics for
anonymity systems.

4.1 Anonymity Set

One of the first proposed, and simplest, measures for the anonymity afforded to a user in
a Mix-style system is the size of the set of users that may havesent a message through
the system. As this set becomes larger, the anonymity of the system increases. This
technique, theanonymity set, was introduced by Chaum in 1988 to analyse his Dining
Cryptographer Networks [18] and was used in a number of subsequent analyses of
anonymous systems.

The most serious limitation of the anonymity set metric is its failure to express
non-uniform probabilities across members of the set of senders. For systems such as
the Dining Cryptographer Network, and for cascades of idealChaumian Mixes, this
limitation is not apparent as sender probabilities are uniform to an observer. Intuitively,
a system in which a given user is overwhelmingly likely to have produced a message
should be considered less anonymous than one in which all users have equal probability.

Despite its simplicity and lack of applicability in more complex systems, the ano-
nymity set has the advantage of being relatively simple to calculate and can, in general,
provide a useful first abstraction of a system’s anonymity. As such, it remained the
major metric for analyses of anonymity systems for many years.

4.2 Information Theoretic Entropy Metrics

In 2002, as a response to the limitations mentioned above, Danezis and Serjantov
[19] and Dı́az [20] independently proposed an extension of the anonymity set met-
ric that considered the possibility that members of the anonymity set may have non-
uniform possibilities of having sent a particular message.Both approaches measure the
information-theoretic entropy of the anonymity set, and thus express the extra informa-
tion required by an attacker to uniquely identify a given user. Dı́az, however, chooses to
normalise the entropy with respect to the number of users in the system. In both systems,
the anonymity set is thus replace by ananonymity probability distribution that allows
for a more powerful expression of a system’s characteristics in anonymising users.

The core idea behind these information theoretic entropy-based metrics is that the
anonymity of a system depends both on the size of the set of possible sendersand the



uniformity of the probabilities for that set. The more homogenous the set of probabil-
ities, the more information is required on average to describe the system. An attacker
must consequently gather a greater number of observations to uniquely identify users.

The approach taken in these two papers has some limitations as a metric for anony-
mity systems. The foremost of these is that the quantification of anonymity is provided
for a particular user, or a particular message, at a given point in the system execution.
Whilst this allows for the direct quantification of the anonymity provided by a Mix at
a given moment in time, it proves less effective for analysing a system in the abstract
case.

More seriously, the reliance on the observations taken at a given point in a given
system makes it extremely difficult to compare objectively different anonymity systems.
The analysis provided by these methods can only reveal the likelihood of relationships
between specific users and messages, and is not immediately suitable for a more general
quantification.

These limitations can be overcome, to a certain extent, by a statistical approach.
Diaz and Sassaman [21] used a large volume of gathered trafficdata from two different
Mix-based systems and calculate the maximum and minimum observed entropies over
a long time period. This approach overcomes, to some extent,the limitation of the
information theoretic entropy-based metrics at the expense of a much greater reliance
on simulation.

4.3 Extensions of Information Theoretic Metrics

There have been a number of attempts to extend the applicability of the basic informa-
tion theoretic entropy-based metrics of anonymity.

As mentioned above, Dı́az and Sassaman applied a statistical approach towards
the comparison of two implemented Mix systems. This comparison made use of a
simulation-based approach, based on large volume of trafficdata collected from the
existing MixMaster [22] and Reliable anonymous remailer networks. An information
theoretic entropy-based measure, broadly similar to the approach of Danezis and Ser-
jantov, was employed to examine the maximum and minimum expected anonymity
provided to users under a variety of system settings and traffic conditions.

Wright[23] applied an information theoretic quantification, combined with simula-
tions, to measure the amount of confusion introduce into message ordering by a variety
of anonymity mechanisms that included Mixes. In this approach, pairs of messages were
injected together into the input message stream of different systems. The distance intro-
duced between these originally adjacent messages in the stream of output messages was
then used to calculate a probability distribution for the system over a large number of
iterations. By calculating the distribution of the introduced distances, the effectiveness
of the systems in “unordering” messages could be calculatedand expressed in terms
of information theoretic entropy. By considering only the input and output streams of
messages, this approach allowed for an the comparison of a number of highly different
abstract anonymity systems.

Chatzikokolakis [24] extended the use of entropy for measuring anonymity sys-
tems by considering channel capacity, a later development in Shannon’s information
theory that measures the information that can be transmitted reliably over a channel.



Chatzikokolakis modelled the entire anonymity systems as an abstract channel that
transmits identifying information about users encoded as observations of message flow.
The more effective this channel is at transmitting information, the less effective it is as
an anonymity system. This approach was applied both to simple Mixes and to Chaum’s
Dining Cryptographer Networks. A further advantage of thisapproach is that, from
the consideration of channel capacity, the error probability of an attacker in calculating
identifying information may easily be expressed accordingto the number of observa-
tions at a given point.

4.4 Conclusion

The development of anonymity metrics has progressed from highly simple quantifi-
cations through increasingly complex analyses of the information required to identify
users. Later quantifications have sought to express anonymity in a variety of different
systems, and to provide more fine-grained quantifications ofthe anonymity provided.
Increasingly, these metrics have attempted to quantify theoverall anonymity provided
by a system rather than that that may be expected by a given user under given condi-
tions.

There are still limitations, however, in the metrics that have been shown here. Most
notably, the traditional anonymity metrics have expressedthe amount of extra informa-
tion required by an attacker to uniquely identify a user, butdo not consider the ease with
which that information may be obtained. We will now proceed to examine other forms
of anonymity metric that seek to resolve the limitations that still exist in these metrics,
by considering more directly attacks that result in the unique identification of users.

5 Statistics-Based Measurements

The original statistic based approach was the statistical disclosure attack[10]. Although
the name suggests a relationship, this attack only shares the attacker and Mix model
with the original disclosure attack. The fundamental idea of the statistical disclosure
attack is to count the cumulative messages that each peer inS receives over several
rounds. This counting is done for those rounds where Alice participates and those in
which Alice does not participate, in order to obtain the background frequency distribu-
tion. This results in two probability distribution vectors:~Po with Alice’s participation
and ~Pu without Alice’s participation. Each entry in a vector represents the probability
that the corresponding receiver is contacted. The difference between these two vectors
result in a new probability distribution vector~PAlice where peers with the most out-
standing distributions are considered to be Alice’s peers.Details about the computation
of ~Po, ~Pu and ~PAlice can be found in [10, 16]. The mean number of observations re-
quired such that Alice’s peers are outstanding is given by the formula [10]:

tSD >
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m2
+
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N2
(b − 1)

))2

, (1)



wherel is factor that determines the confidence of Alice’s peers being outstanding. The
valuel = 1 corresponds to an 84% confidence,l = 2 to a 97% confidence andl = 3 to
a 99% confidence.

This approach is applicable only if:

– Alice’s peers are significantly more frequently contacted than non-peers,
– the pre-knowledge of the frequency distribution of non-peers is given,
– the frequency distributions of the non-peers do not change noticeably during the

attack.

These requirements represent additional restrictions that do not exist in the disclo-
sure attack or the hitting-set attack. In particular, the last point is somewhat unrealistic
since it assumes that all senders in the network constantly maintain their communication
behaviour. There is also no analysis of what is required for achange in communication
frequency to be noticeable. Existing simulations in the literature do not address this
problem, and simulate a constant sender behaviour.

This attack does not determine whether the set of most outstanding peers unam-
biguously represents Alice’s peers or what the other solutions may be, as produced by
the disclosure attack and hitting-set attack. The results of simulations based on this
approach must therefore be considered carefully. Althoughsome work based on this
attack does consider the amount of observations for a successful attack, this represents
the time taken for the attack to confirma priori knowledge of Alice’s peer partners.
This is not necessarily related to the genuine identification of Alice’s peers, since the
criteria for the applicability and the termination of the attack is neither a necessary nor
a sufficient condition for the identification of Alice’s peerset.

The advantage of the statistical approach is that it is easy to count the required
frequencies. Thus, given that all requirements are fulfilled, applying this approach is
relatively straight forward.

5.1 Analysis

Figure 3 compares the mean number of observations,tSD , by Equation (1) forl =
1, 2, 3 represented by the linesSD1, SD2, SD3 with the mean number of observations
required to disclose all of Alice’s peers obtained by simulations using the hitting-set
attack, represented by the lineHS . In this simulation a set ofb senders send messages
to distinct receivers at each round. Among theseb senders is Alice, who hasm peer
partners. Each of this peers is uniformly contacted by Alicewith a probability of 1

m .
The other(b − 1) senders choose their receivers uniformly from the set of allpossible
receiversR with probability 1

N . This simulation functions under the the assumptions
for which Equation (1) is valid. The x-axis shows variation in one of the parameters
N, b, m, while the y-axis shows the number of observations.

We can see in these graphs that if Alice’s peers are statistically outstanding with at
least 97% confidence (SD3) then, in many cases, Alice’s peers can be unambiguously
identified before this happens. In contrast to this, if Alice’s peers are outstanding with
a confidence of 85% (SD1) then Alice’s peers can generally not be identified unam-
biguously. The relation between the statistical disclosure attack and the identification



of Alice’s peer is unclear. Nevertheless, many papers choose l = 2 when measuring
the mean time to identify Alice’s peers because the graph forthis value,SD2 in Fig-
ure 3, is close to the mean number of observations required toidentify Alice’s peers
unambiguously.

This result, however, is only a coincidence that holds for some parameters. A coun-
terexample can be seen in Figure 4. We can see that, although Alice’s peers are statis-
tically significant with a confidence of 97% aftertSD2

observations, it is not possible
to unambiguously identify Alice’s peers at that time. Thus Alice can still deny that the
most significant peers are her peers, as many other possibilities remain. This exam-
ple underpins that the measurement by the statistical attack does not provide assertions
about the necessary or sufficient condition for the identification of Alice’s peers.
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Fig. 3. Comparison ofSD1,SD2,SD3 with mean time to disclose all of Alice’s peers by HS-
attack

Based on the statistical disclosure attack, and under its three main requirements, fur-
ther statistics-based approaches have been suggested. While the statistical disclosure at-
tack requires a uniform distribution of communication frequencies to peers, this require-
ment has been relaxed in [16]. A further refinement, the perfect-matching disclosure
attack, combines the statistical approach with an anonymity set-based approach[17]. In
this work, the statistical disclosure attack is first applied to obtain the distribution vector
~PAlice . This vector is then used to weight the sender-receiver relationship probability
of the anonymity sets collected in additional rounds. The feedback of~PAlice , combined
with the distribution of~PAlice , can be corrected by new observations. This approach can
gain more precise results for~PAlice , and is applicable for more varying user behaviour
models, and thus relaxes the requirements of the statistical disclosure attack to a certain
extent. The drawback of this approach is that it requires significantly more observations
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than the statistical disclosure attack and does not focus onachieving the least number
of observations required to identify Alice’s peers.

5.2 Information Theoretic Consideration

By focusing on communication frequencies and not on analysing provable interrelations
of the considered anonymity sets, statistical approaches leave the answer to the infor-
mation theoretic question of possible solutions open. Furthermore, these approaches
cannot easily measure real-world systems due to their restrictive pre-conditions. Thus,
any relation between the statistical significance and the unambiguous identification of
Alice’s peers would only hold for those communication scenarios in which the pre-
conditions are met. An anonymity metric derived from statistical approaches would
therefore be of limited validity. Additionally, the amountof information measured by
the statistical approaches to reach particular states of anonymity are still not designed
to measure precisely the time of disclosing particular information. The number of ob-
servations required by the statistical approach may be lower or higher than the amount
of observations required to reveal particular informationunambiguously.

5.3 Complexity Theoretic Consideration

Complexity theory asks the question: how hard will it be to break a system under the
condition that it is information theoretically breakable?Since there is no proven rela-
tion between the statistical approaches and the information theoretic consideration, we
must consider this aspect under the assumption that a relation does exist. Under this
assumption, statistic based approaches will in general notdetermine how hard it is to
disclose a particular anonymity state due to their lack of precision. What we can expect



is that it these approaches may tell us when the disclosure ofparticular information is
easy, by using more information than really necessary.

6 Hypothesis-Based Measures

In our Mix model, it is assumed that Alice keeps communicating with a constant set of
communication partners,HA, during a time periodt, where|HA| = m it the amount of
Alice’s peers. Under this condition, the hitting-set attack provides confident and com-
plete knowledge about all reasonable peer sets of Alice1. We will call each reason-
able peer setH, where|H| = m represents ahypothesis and the set of all reasonable
peer sets, thehypothesis set. Since the attacker only observes those receiver anonymity
setsR′ where Alice participates, only those sets which intersect with all the receiver
anonymity setsR′

1, . . . , R
′

t observed by the attacker arereasonable. We will call each
R′ of the pair(S′, R′) anobservation if Alice ∈ S′. Thus, each hypothesis is the result
of the cumulative acquisition of information from all collected observations.

Within the periodt, each observation can only give the attacker additional informa-
tion about Alice’s peers, and the hypothesis sets decreaseswith the increasing number
of observations collected by the attacker.

The hypothesis set represents confident knowledge as each hypothesis is a proven
hitting set with respect to the attacker’s observations. Itis complete because it covers all
hitting sets. This complete knowledge allows us to measure information theoretically
the length of the periodt until some particular unambiguous information is revealed.
We obtain a measure similar to the unicity distance in encryption systems that shows
how long a user can maintain redundant communication behaviour without revealing
particular information about his peers. The kind of information that could be revealed
is discussed in the following sections.

Note that the most important difference between the hypothesis-based approach and
the statistics-based approach is that we deal with confidentand complete knowledge
rather that statistics. All conclusions derived in this approach are logically verifiable. If
we deduce that Alice’s peer set can be identified, then this constitutes a proof that no
other hypotheses are possible. In contrast to this, the statistical attacks provide only a
set of significant frequencies for likely peer partners. Whether these peers are Alice’s
peers or not, or if there are other consistent hypotheses, cannot easily be determined.

6.1 Information Theoretic Consideration

Figure 5 shows the mean time to disclose all of Alice’s peer bya simulated HS-attack,
shown on theHS line, together with the mathematically derived time to reduce the
hypothesis set to a size below 2, shown on thet2 line, and the mean time to disclose at
least one of Alice’s peers, shown on thetpart . The model to derive these functions is
discussed in the sequel.

1 Note that statistical approaches are based on the same assumption; we clarify this here to
illustrate the similarity to unicity distance.
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Fig. 5. Comparison: HS-attack simulation, time to reduce hypothesis set below 2 and mean time
to disclose at least one Alice’s peers

Full Disclosure We definefull disclosure to be the anonymity state in which Alice’s
peer set can be unambiguously identified. This state is reflected in the hypothesis set,
and is the point at which the hypothesis set consists of exactly one hypothesis. If we
measure the mean number of observations,tfull , such that the hypothesis set computed
by the hitting-set attack contains exactly one hypothesis,then we obtain an analogue to
unicity distance for full disclosure. If the attacker observes less thantfull observations,
or if the periodt is less thantfull , then Alice’s peer set is information theoretically
secure. This means that there is at least one other hypothesis, which could also be Al-
ice’s peer set. The mean time to disclose Alice’s peers is shown in the Figures 3 and 4,
labelledHS .

A mathematical lower and an upper bound fortfull was first introduced in [6].
Closed formulae for the approximation oftfull were provided in [25, 26]. [26] intro-
duced the first mathematic model to describe the content of the hypothesis set with
respect to the number of observations collected by the attacker. This enables the study
of the evolution of the hypothesis set to different anonymity states. In particular, all
anonymity measurements presented in Section 6 can be modelled by the approach of
[26]. Nevertheless, this model was developed only for a uniform user communication,
and more research is required to extend the model to more realistic distributions.

Hypothesis Set Characteristics The key to analysing the anonymity state of the Mix
system is the content of the hypothesis set. Finding characteristics of the hypotheses
is therefore crucial to understanding how the hypothesis set is affected if the attack
obtains new observations. Apart from increasing our understanding of the change of
the hypothesis set over time, these characteristics can also be used to mathematically
model the hypothesis set and thus the evolution to distinct anonymity states as shown in



[26]. Under the assumption that Alice hasm peer partners, the following characteristics
of the hypotheses within a hypothesis set was proven in [26]:

– Each hypotheses is a superset of a minimal hitting set. Ahitting set, H′, is a set that
intersects with all observations of the attacker. It isminimal if no proper subset of
H′ is a hitting set.

– With increasing observations, all hypotheses become minimal hitting sets.
– The number of hypotheses is strictly bounded bybm.
– Each hypothesis,H, belongs to exactly one of the structuresH0, . . . , Hm. H ∈ Hi

if and only if H contains(m − i) Alice’s peers, i.e.|H ∩ HA| = (m − i). In
particularH0 = {HA}.

– The number of hypotheses of the structureHi is:

|Hi| =

(

m

m − i

)

(b − 1)i =

(

m

i

)

(b − 1)i.

– If Alice chooses her peers uniformly with probability1m from HA, and the other
(b−1) senders choose their peers with probability1

N fromR at each round, then the
probability that a hypotheses of the structureHi is excluded by the next observation
is

pinv (N, b, m, i) =
i

m
(1 −

m

N
)b−1.

With the main information determined the number of observationsta, the average
size of the hypothesis set is1 < a < bm, starting with an initial hypothesis set of size
bm. Fora = 2, the value ofta is the number of observations such that the mean number
of hypotheses in the hypothesis set is at most two. This function is shown in Figure 5

ta ≤
m(ln (b − 1) − ln (a1/m − 1))

(1 − m
N )b−1

Note that the functionta is not equal totfull . The focus ofta is the mean sizea of the
hypothesis set, therefore it is used to compute the number ofobservations required to
reach this mean. In contrast, the focus oftfull is the mean number of observations such
that the hypothesis set contains exactly one hypotheses, which isHA. Thus, bothta and
tfull are reasonable means to measure the anonymity of the Mix system, but a closed
formula for tfull has not yet been discovered. Nevertheless, a proven lower bound for
tfull was introduced in [6].

Partial Disclosure A new direction for measuring the anonymity of a Mix system
is the consideration of the point at which at least one of Alice’s peer can be unam-
biguously identified. We call this anonymity statepartial disclosure. This measurement
determines the first unambiguous information revealed by the Mix system. we can also
visualise represent this anonymity state with the hypothesis set, it being the point at
which all hypotheses have a particular peer in common. Again, we can obtain a unicitiy
distance-like anonymity measurement by computing the average number of observa-
tions,tpart , such that all hypotheses determined by the hitting-set attack contain at least
one common peer of Alice.



If less thantpart observations are considered by the attack, or ift < tpart , then
each of Alice’s peers is information theoretically anonymous; none of Alice’s peers can
be unambiguously identified. This is a stricter anonymity criteria than full disclosure.
Furthermore, the point at which at least one peer of Alice is disclosed is noticeably
earlier than the point at which all of Alice’s peers can be disclosed. The anonymity
provided by Mix systems therefore has to be reconsidered in this context. We further
conjecture that measuring anonymity by partial disclosureis more solid than by full
disclosure in the sense that dummy traffic, or the change of Alice’s communication
behaviour, may strongly affect the point of full disclosurewhile leaving the point of
partial disclosure relatively untouched.

The first mathematical model for partial disclosure can be found in [26]. This model
uses the hypothesis set characteristics and the uniform communication distribution of
Alice and the remaining users described in the last section.That work gives the follow-
ing formula for the probability of identifying at least one of Alice’s peers after at most
t observations:

fidany
(N, b, m, t) =

m
∑

s=1

(

(−1)s−1

(

m

s

)
∏m

i=1(1 − (1 − i
m (1 − m

N )b−1)t)(
m

i )(b−1)i

∏m−s
i=1 (1 − (1 − i

m (1 − m
N )b−1)t)(

m−s

i )(b−1)i

)

This combines with the mean time,tpart , to disclose at least one of Alice’s peers.
This function is shown in relation with the simulated mean time for full disclosure and
the time to reduce the hypotheses below a size of 2 in Figure 5.

tpart(N, b, m, t) =

∞
∑

t=1

t
(

fidany
(N, b, m, t) − fidany

(N, b, m, t − 1)
)

A closed formula fortpart has not yet been presented, and there is no study showing
how partial disclosure is affected by different user communication behaviours. Despite
this, the results discussed in this paper show prototypically what can be achieved with
the hypothesis set and the identified structures with the current state of research.

Beyond Unambiguity The full disclosure and partial disclosure metrics measureonly
the amount of observations required to reach full or partialdisclosure. We could ob-
tain a more refined anonymity measurement if we considered further properties of the
hypothesis set. Assume thatt observations remain to reach full or partial disclosure; a
more refined information theoretic measurement could, for example, take into account
that a hypothesis set in which each hypothesis contains at leastm − 1 of Alice’s peers,
is less anonymous than a hypothesis set in which each hypothesis contains only one of
Alice’s peers. In [26] the point at which each hypothesis contained a particular number
of observations was measure, but this measurement has not been integrated into the full
or partial disclosure measurement.



6.2 Complexity Theoretic Consideration

As of yet, it has not been analysed if there are instances in which the hitting-set attack
requires less than exponential run time. Thus, the complexity based anonymity of the
Mix system remains open research.

7 Conclusion

We outline in this paper the historical development of anonymity measurement strate-
gies from historyless to historied metrics. Since the anonymity of a system depends
on the knowledge of the attacker, which grows over time, it isappropriate to measure
the anonymity of a system by considering these historied approaches. We identify two
families in the literature that we refer to as statistics-based and hypothesis-based. The
main advantage of the statistics-based approaches is theirsimplicity through reliance
on statistics. At the same time this presents a disadvantagebecause these approaches do
not identify unambiguous communication relationships.

As a mathematical consequence, the measurements provided by statistical approaches
are inappropriate for measuring the precise point at which communication relationships
may be identified. As a practical consequence, a user can denyhaving contacted the
statistically significant peers because the statistical approach cannot provide a logical
proof of the relationship between a sender and the statistically identified peers.

In contrast to the statistics-based approaches, hypotheses based measurements re-
lying on the hitting-set attack are precise and complete, and mathematical models and
approximations built on this foundation are logically sound. We can consequently gain
reasonable and precise understanding of the evolution of the anonymity of a Mix system
over time.

The most important information used to analyse and measure the anonymity of a
system is the hypothesis set. We outline that structures andbounds of the hypothesis
set could be identified, which enables the description of theevolution of the hypothesis
set. There are still, however, many open questions regarding hypothesis sets. Analysing
hypotheses under the assumption of a uniformly distributedcommunication can be con-
sidered as a proof of concept, but we believe that the model enables more realistic anal-
ysis as the identified bounds and structures, apart from the probabilityPinv to exclude
hypotheses, are invariant with the communication distributions of the sender.

Another open question is the detection and classification ofinstances that may be
broken in less than exponential time. Finally, it would be interesting to investigate strate-
gies to increase a user’s possible anonymous communicationtime with as little over-
head as possible, and thus to discover strategies to effectively and efficiently “attack the
attacker”.
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