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Abstract. Today the Chaumian Mix idea is not only an academic approach f
anonymous communication, it is also a practical system midhy variants used
in real-world scenarios. It is therefore important to findegapropriate measure
for the anonymity provided by these approaches. Many measemt approaches
have been proposed that consider only the static state afydtem without ac-
counting for past and future information. Still other maasnents evaluate only
statistics. These measurements have in common that thegtdoeasure when
the anonymity function of the system is broken. Inspired liy idea of unicity
distance in cryptography, and the mean time to failure inedepble systems,
we believe that measuring the point at which the systemtiaitéde the relation
between a sender and a receiver is a more appropriate medstsranonymity.
In this paper, we discuss our arguments with respect toiegisheasurement
approaches.

1 Introduction

Confidentiality of communication relations is a core regment for many interactions
in the Internet, for example in healthcare systems, elatnoting and commerce. The
most widely used and practically applicable system for a®mftial communication is
the Mix, introduced by Chaum in 1981[1]. These systems allectively referred to
asanonymity systems. In practice they can be standalone, or can appear as thernetw
anonymisation layer of other privacy-preserving systenth @s ldemix[2].

The existing Mix approaches, including the pool mix, thi@dimix and stop-and-
go Mix, have their origins in the basic concept proposed bgu®h The underlying
idea of these systems is to embed a single user within a seeof such that the actions
of that user is not identifiable within the set. This set idezhtheanonymity set, and
the embedding function is provided by the Mix.

Inspired by this approach, many variants of Mix systems Hmeaen proposed that
overcome limitations in the original design. Other systesugh as well know onion-
routing approach[3] can also be considered to arise fronb#éisé idea of Chaum, but
relax the embedding by removing some security functionsigeal by the Chaumian
Mix.

A natural interest of users and designers of a system is te ke strength of the
system in anonymising users. We suggest that a measurefféra strength should
refer to the following questions:



— How long does it take on average to reveal a communicatiaiioal?
— How hard it is to break the anonymity function?

The first question can be considered as taking an informé#tieoretic view, while the
second is complexity theoretic. In the first case we are iegpby the mean time to
failure in dependable systems, and by Shannon’s unicitaig[4] in cryptography.
In the second model the unicity distance measures the ayaagber of bits that an
attacker must learn to uniquely identify a message by by @aiion of the cipher
text. This number represents how many cipher text chasacterst be collected by
the attacker in order to identify the message unambiguolisly unicity distance is
an information theoretic measurement of the strength ofyptography system with
respect to:

— the structure of the system, including the domain of thenpéait, ciphertext and
the key.
— the redundancy of the source language.

Applying this concept to anonymity we wish to find the mean benof observa-
tions that must be made by an attacker in order to uniquelgtiiyea communication
relationship between two parties. This measurement is@ipect to:

— the structure of the system, including the domain of sendedsreceivers, and the
size of the anonymity set generated by the system.
— the redundancy of communication by the user.

The second complexity theoretic question results fromdkea bf security measure-
ment in public key encryption systems. A system is considlezde practically secure
if it is computationally hard to break. In the case of an anonymity system we are in-
terested in how much computational effort is required tajuely link a sender to its
recipient, given that it is possible in an information thetar sense.

Our idea is supported by the existing research based ontthrgkset attack[5, 6, 7],
an algorithm that can be applied against Mixes under thengsson of a passive at-
tacker that only observes the input and output of the sysidma. hitting-set attack
enables us to see how the set of possible communicatiorgpaxha user decreases in-
formation is gained from observing the sets of possible camipations relationships.
We suggest to model this process of information gain to abdai appropriate infor-
mation theoretic measurement for the strength of the systéeoomplexity theoretic
measurement then naturally results from analysing the txitp of the hitting-set at-
tack.

Since all other Mix based approaches are variants of the@izawMix, we believe
that our measurement idea can be further adapted to thevahants. In contrast, we
argue that approaches that do not incorporate the knowlefde attacker like [8, 9],
or that rely only on statistical evaluations, such as thassieal disclosure attack[10]
are less appropriate as an anonymity measurement.

We will now define the basic concepts on which later work iis fhaper relies.



2 The Mix Model

We introduce here a formal definition of the Mix model as dibsat in [6], based on
the original design introduced in [1].

Fig. 1. Formal model

Figure 1 shows the basic components of this technique,stimgbf a set of senders,
S; a set of recipientsR; and a Mix node. All senders ii communicate with the Mix,
and the Mix itself communicates with all recipientsihvia a network of secure and
reliable channels. A secure reliable channel ensuresstgass or duplication of trans-
mitted messages and guarantees authenticity, integdtg@mfidentiality of transmitted
messages. The users and the Mix transmit messages usirajltieérig protocols:

User Protocol Users prepare messages by padding them to constant lerithtionger
messages split over multiple chunks. Each message is tlwyptéed twice with
one time pads. The first layer of encryption uses a sharedtdaetween the sender
and the intended recipient, the second layer employs adlsa@ret between the
sender and the Mix. The doubly-encrypted messages are ¢netothe Mix.

Mix Protocol A Mix collects abatch of b messages from distinct users and then de-

crypts these messages. The decrypted messages are thenfautpthe mix ac-
cording to a non-order preserving function such as randdayae lexicographical
sorting. The output is broadcast to all recipients. Incappackets are also com-
pared against formerly received messages in order to @gatiuplicates.
The Mix technique described above can perfectly hide thenconication rela-
tionships between senders and recipients of messages ¥ermybedy but the Mix
and message senders. If the protocol is applied in fixed tlote, sith each user
required to supply a fixed number of messages per batch, tlef sending or re-
ceiving can itself be hidden[11, 1, 12]. Pfitzmann[12] Katet this Mix technique
provides information-theoretic anonymity and unobseilitgtbased on complex-
ity theoretic secure cryptography.

2.1 The Pure Mix Technique

The “perfect” anonymity solution discussed above makesfisemmy messages and
a broadcast function. Even though this solution can prop@&téect anonymity it is not
practical in large networks such as the Internet, as judtifig6]. As a consequence,
most current implementations and solutions use a variattieoperfect Mix solution



by omitting either dummy messages or the broadcast fundfienrefer to these more
practical approaches asre Mix techniques.

Since the pure Mix is not information theoretically secthe, question arises: how
much information is leaked by such a technique? Equivalehtw much information
must be obtained to break the anonymity provided by thedenigues? In order to
measure the non-protocol specific anonymity provided by tthnique we assume a
passive attacker. This attacker gains knowledge only by observing sets odlsenand
receivers at each round of communication. To give the agtattie ability to observe
the entire set of senders and receivers we additionallyngssoat he iglobal. We thus
assume a common attacker model for analysis of anonymitgsgs theglobal passive
attacker.

We consider all approaches in this paper in the context ofptire Mix, which
is the basic model underlying the threshold Mix. Our modeajéseral as other Mix
techniques, such as the pool Mix, can easily be modelled hyesltiold Mix as shown
in [13].

We will use the following formal model of a pure Mix and infoation leakage for
our analysis:

Formal Model of the Pure Mix Technique

— A communication system consists of a sesafders, S; a set ofrecipients, R; and
a Mix node as shown in Figure 1. If a sendeg S, communicates with a recipient,
r € R, then we say thatandr arepeer partners. If the roles of sender and receiver
need to be distinguished then we say that apeer sending partner of », andr is
a peer recipient partner of s.

— In eachcommunication round, consisting of the collection of messages by the Mix
and the forwarding of messages to their recipients via the pvotocol, a subset
S’ C S of all sendersS send a message to their peer partners.®’e€ R be the
set of intended recipients. In this model we do not considenmy messages to
hide sending and receiving actions.

— The size of thesender anonymity set is |.S’| = b, wherel < b < |S| = n.

— The size of therecipient anonymity set is |R’| < b since each sender sends exactly
one message and several senders may communicate with teerseipient. The
size of the recipient set {f?| = .

— The information leakag&™ available to an attacker in a communication round con-
sists of the pai(S’, R’) of peer senders and receivers.

3 Unicity Distance

3.1 Unicity Distance and Secrecy

In 1949, in order to measure the theoretical secrecy of ogypphic algorithms, Shan-
non introduced the conceptuaricity distance[4, 14]. In the work, a cipher is considered
abstractly as a set of mappings from a plain text donmRif.:,, to a cipher text do-
main, D.;pner. Each individual mapping is determined by a cryptograpkig knd the



set of possible mappings betwe®h;q;, andD iy iS determined by the key space
Diey-

In this measurement, Shannon considers the possible@taimessages that could
be mapped to a given ciphertext. It is assumed that the &ttaslkpassive and can ob-
serve the cipher text, and that he has knowledge about thaide®, 4., Dcipher @and
Drey- A system is defined gserfectly secret if each cipher text can equally result from
any possible plain text i,;4:,. In such a case, the ciphertext provides the attacker
with no information concerning the plain text and he is thoahle to identify unam-
biguously the plaintext. The canonical example of such &p#y secret system is the
One-Time-Pad.

Since the overhead for perfect secrecy is very high, pralcsigstems rarely pro-
vide this property. Practical ciphers therefore typicddlgk some information about
the plaintext in the ciphertext. As the size of the ciphdriegreases, the uncertainty
about the original plain text correspondingly decreashss fiesults from the redundant
information in human languages, and the restricted keyesfizat is a concession to
performance over security in practical systems.

A language such as English has a particular syntactic streicand particular fre-
guencies of distinct letters in a sentence such that worddedters are repeated in a
specific order. This characteristic of the plaintext is i&#d by the ciphertext if the set
of possible mappings from plaintext to ciphertext is too kneemask the characteris-
tics by randomness. In particular, if the set of mapping fioms is small and the cipher
textis large, it is unlikely that there are mappings that miafinct meaningful plaintext
messages to the same cipher text. In such a case the origgsahge of the cipher text
can theoretically be revealed unambiguously.

The unicity distanceyd, measures the amount of information in bits that an attacker

must collect in order to identify unambiguously the oridiplaintext. This corresponds

to the length of ciphertext that an attacker has to obsertieréfore, if an attacker
observes less thamd bits of ciphertext then the cryptographic algorithm pr@ddn-
formation theoretic secrecy: it is not possible unambiglpto identify the original
plaintext message. If the attacker observes more thiabits, the system is not infor-
mation theoretically secret and it therefore theoretycatissible to reveal the original
message from the ciphertext. This can be achieved, for eleaimpa brute force attack
that tries all inverse mappings from the ciphertext to tfzméxt.

3.2 Secrecy by Computational Complexity

A system that is not information theoretically secret is netessary insecure. Public
key systems do not typically provide information theoret@crecy, but they can be
considered secure with respect to the amount of computdtpmwer to break them. A
second way to measure the strength of a cryptographic systérarefore to measure
the complexity of breaking the system given that it is nobinfation theoretically
secret. In order to achieve this, an attacker must know aorighgns that is capable of
breaking the cipher under consideration.



3.3 Unicity Distance and Anonymity

We identify parallels between the anonymity measuremeMigfbased systems and
the secrecy measurement in cryptography. Without relsmicif generality we can as-
sume that messages and ciphertexts consist of lettersfiakarthe latin alphabet. The
domain of the plaintext alphabet corresponds to the peaivers in an anonymity
system. Hence the message dom&j,;, corresponds to the subset of peers that are
communication partners of distinct senders in the anorysyistem. Letters in the ci-
phertext can similarly be associated with the pair of seaddireceiver anonymity sets
X = (9, R’) that the attacker can observe from the Mix network at eachdotlihe

set of possible sequences of pdifs, R’) therefore represents the ciphertext domain
Deipher iIN €NCIyption systems.

If the Mix system broadcasts the messages of the selsd&vsall possible receivers
R of the network instead of only to the real receiv&’sthen the Mix approach provides
perfect relationship anonymity as outlined in [12]. Thituation is similar to perfect
secrecy; since all possible receivers receive all messatgeach round, the attacker
gains no knowledge about the relationship between senddneaeivers by observing
sequences dfs’, R').

Nevertheless the overhead of broadcasting is very high paactical systems do
not use this function. Without broadcast it can be shown #imaattacker observing
sufficiently long sequences of paif§’, R') can eventually gain enough information
to reveal the relationship anonymity of a user. In partigutehas been shown by the
disclosure attack[15] that if the attacker observes thesgaf, R’) in which a desig-
nated user, whom we call Alice, sends messages then he carbigwously identify
Alice’s peer receivers. This assumes that Alice repeateattymunicates with her peer
receivers. This feature of anonymity systems is analogotiset ciphertext in encryp-
tion systems, which reflects the redundancy of the languBge.sequencet&S’, R’)
reflect the “redundancy” of Alice’s peers. The analogy bemvthe key spaces for the
cipher and the Mix system is not obvious at the moment andiregjmore research,
but we can observe that the sequences of the p&lird?’) are restricted by the number
of users in the system, the user’s communication partnersharbatch size of the Mix.

A further refinement of the disclosure attack is the the rigtset attack[5]. This
attack was proven in [6] to require the least possible nurnbebservations(S’, R’),
to unambiguously disclose Alice’s peers. Thus, by compyitie average length of the
sequencegS’, R') required to disclose Alice’s peers we obtain a measurerhahtor-
responds to Shannon’s unicity distance in encryption systéf the attacker observes
less than this number of pairs then the relationship anotyyisiinformation theoreti-
cally secure, as Alice’s peers cannot be unambiguouslyiftesh Otherwise, informa-
tion theoretic security cannot be assured. The hittingagatk assumes the role of a
practical brute force attack on the relationship anonypnaity thus as a measurement
function for the information theoretic anonymity. This fiege enables us to model and
analyse anonymity through the hitting-set attack.



4 Related Work

We classify anonymity metrics applicable to the Mix by twoimeategorieshistory-
less measurements and historied measurements. These categories are shown in Figure
2. Historyless measurements are characterised by megsaniyp the anonymity set,
without considering information from past anonymity setsthe potential for those in
the future. Examples of these approaches are shown in [8]13,

Anonymity measurement

History less Historied

Anonymity set [ Statistic based] [Hypotheses bas}c
Entropy
SD-Attack Disclosure attack
Perfect Matching HS-Attack
SD-Attack

Fig. 2. Categorisation of different anonymity measurement apgres

In contrast are historied measurements that reveal theorethip anonymity be-
tween senders and recipients by relating past and futuneyamty set relations. The
first practical attack to do so was the disclosure attackfhsl showed that measuring
the anonymity set alone does not adequately represent tmgym@uity provided by the
system. Following this, the hitting-set attack[5] wasautnced, which was proved to re-
quire the least number of observations to reveal the relsiipp anonymity by a passive
global attacker[6]. By providing a lower bound for the numbgobservations required
to unambiguously reveal all communication partners of a,ube hitting-set attack
provides the basis for an information theoretic measur¢wfeelationship anonymity.

An important strength of this approach is that it is logicatigprovides provable
derivations of possible solutions from the information\pded by the anonymity sets.
We can therefore logically trace the state of anonymity ftbeninitial state to the state
in which all communication partners are revealed. This mdy @llows us to under-
stand when particular states are reached, but further sillsato model the evolution
of anonymity as information is gained. We discuss in thisgugqossible expansions of
analyses and metrics based on this approach.

Other historied measurements rely on analysing the frexyuleyn which a receiver
obtains messages[10, 16, 17]. In this approach, the attabkerves the communication
round of the network under two different conditions: thetfisshe observation of those
peers that receive a message whenever a particular user aenelssage. The second



condition is the observation of the receivers when Alicagshot participate. From
the observations under these two conditions the attacki#redetwo communication
distributions over the receivers, one with Alice’s commaation contribution and one
without. This second distribution is thmckground distribution. By assuming that the
background distribution remains constant over time onereamve the background
distribution from the former distribution to produce a sebotstanding peers that may
be the sender’s peer partners. This approach circumventsffitulty of analysing the
possible solutions, however this simplification is not foref as the approach cannot
itself prove that a set of receivers with outstanding distiibns is a unique possible
solution, nor if it is Alice’s peers. This approach theref@annot answer information
theoretic questions.

We now examine in greater detail the development of the ticandil metrics for
anonymity systems.

4.1  Anonymity Set

One of the first proposed, and simplest, measures for theyaritynafforded to a user in
a Mix-style system is the size of the set of users that may kamea message through
the system. As this set becomes larger, the anonymity of thies increases. This
technique, thanonymity set, was introduced by Chaum in 1988 to analyse his Dining
Cryptographer Networks [18] and was used in a number of sulesd analyses of
anonymous systems.

The most serious limitation of the anonymity set metric sfailure to express
non-uniform probabilities across members of the set of send-or systems such as
the Dining Cryptographer Network, and for cascades of id@@sumian Mixes, this
limitation is not apparent as sender probabilities arearmifto an observer. Intuitively,
a system in which a given user is overwhelmingly likely to é@g@voduced a message
should be considered less anonymous than one in which afl haee equal probability.

Despite its simplicity and lack of applicability in more cpiex systems, the ano-
nymity set has the advantage of being relatively simple toutate and can, in general,
provide a useful first abstraction of a system’s anonymity.stich, it remained the
major metric for analyses of anonymity systems for many sear

4.2 Information Theoretic Entropy Metrics

In 2002, as a response to the limitations mentioned abovaefia and Serjantov
[19] and Diaz [20] independently proposed an extensiorhefanonymity set met-
ric that considered the possibility that members of the gnoty set may have non-
uniform possibilities of having sent a particular mess&yh approaches measure the
information-theoretic entropy of the anonymity set, anastexpress the extra informa-
tion required by an attacker to uniquely identify a givenruBéaz, however, chooses to
normalise the entropy with respect to the number of usefwigystem. In both systems,
the anonymity set is thus replace by @mnymity probability distribution that allows
for a more powerful expression of a system’s charactesigti@nonymising users.

The core idea behind these information theoretic entragsetd metrics is that the
anonymity of a system depends both on the size of the set sftpesenderand the



uniformity of the probabilities for that set. The more homogenous the set of probabil-
ities, the more information is required on average to dbsdtie system. An attacker
must consequently gather a greater number of observatanmgduely identify users.

The approach taken in these two papers has some limitatiomsreetric for anony-
mity systems. The foremost of these is that the quantifinatfanonymity is provided
for a particular user, or a particular message, at a givent poithe system execution.
Whilst this allows for the direct quantification of the anomyy provided by a Mix at
a given moment in time, it proves less effective for analgsinsystem in the abstract
case.

More seriously, the reliance on the observations taken atemgoint in a given
system makes it extremely difficult to compare objectivétiedent anonymity systems.
The analysis provided by these methods can only revealkbEhdod of relationships
between specific users and messages, and is not immedisitalyls for a more general
quantification.

These limitations can be overcome, to a certain extent, batéstical approach.
Diaz and Sassaman [21] used a large volume of gathered dlatéidrom two different
Mix-based systems and calculate the maximum and minimurareed entropies over
a long time period. This approach overcomes, to some exteatlimitation of the
information theoretic entropy-based metrics at the expefis much greater reliance
on simulation.

4.3 Extensions of Information Theoretic Metrics

There have been a number of attempts to extend the appiigatfithe basic informa-
tion theoretic entropy-based metrics of anonymity.

As mentioned above, Diaz and Sassaman applied a stdtsgipeoach towards
the comparison of two implemented Mix systems. This congoarimade use of a
simulation-based approach, based on large volume of trddfia collected from the
existing MixMaster [22] and Reliable anonymous remailetwogks. An information
theoretic entropy-based measure, broadly similar to tipecgeh of Danezis and Ser-
jantov, was employed to examine the maximum and minimum @rpeanonymity
provided to users under a variety of system settings anfictcafiditions.

Wright[23] applied an information theoretic quantificaticombined with simula-
tions, to measure the amount of confusion introduce intcsages ordering by a variety
of anonymity mechanisms that included Mixes. In this apphopairs of messages were
injected together into the input message stream of diftexgstems. The distance intro-
duced between these originally adjacent messages in dastf output messages was
then used to calculate a probability distribution for thetsyn over a large number of
iterations. By calculating the distribution of the intrashd distances, the effectiveness
of the systems in “unordering” messages could be calculatedexpressed in terms
of information theoretic entropy. By considering only tim@ut and output streams of
messages, this approach allowed for an the comparison ahaenof highly different
abstract anonymity systems.

Chatzikokolakis [24] extended the use of entropy for mdaguanonymity sys-
tems by considering channel capacity, a later developnmeShannon’s information
theory that measures the information that can be trangmigiably over a channel.



Chatzikokolakis modelled the entire anonymity systemsrasiastract channel that
transmits identifying information about users encodedme®ovations of message flow.
The more effective this channel is at transmitting inforimatthe less effective it is as
an anonymity system. This approach was applied both to siivples and to Chaum’s

Dining Cryptographer Networks. A further advantage of tapproach is that, from

the consideration of channel capacity, the error proligtofian attacker in calculating

identifying information may easily be expressed accordmthe number of observa-
tions at a given point.

4.4 Conclusion

The development of anonymity metrics has progressed frghhhisimple quantifi-
cations through increasingly complex analyses of the médion required to identify
users. Later quantifications have sought to express anoyyma variety of different
systems, and to provide more fine-grained quantificatiorta@finonymity provided.
Increasingly, these metrics have attempted to quantifyptieeall anonymity provided
by a system rather than that that may be expected by a giverunder given condi-
tions.

There are still limitations, however, in the metrics thatdhbeen shown here. Most
notably, the traditional anonymity metrics have expreseecdamount of extra informa-
tion required by an attacker to uniquely identify a user,dmhot consider the ease with
which that information may be obtained. We will now procee@xamine other forms
of anonymity metric that seek to resolve the limitationg #tél exist in these metrics,
by considering more directly attacks that result in the uriglentification of users.

5 Statistics-Based Measurements

The original statistic based approach was the statistiselasure attack[10]. Although
the name suggests a relationship, this attack only shaeeatticker and Mix model
with the original disclosure attack. The fundamental idé¢he statistical disclosure
attack is to count the cumulative messages that each peeréceives over several
rounds. This counting is done for those rounds where Alic¢igipates and those in
which Alice does not participate, in order to obtain the lgaokind frequency distribu-
tion. This results in two probability distribution vectoFs with Alice’s participation
and P, without Alice’s participation. Each entry in a vector repeats the probability
that the corresponding receiver is contacted. The differdretween these two vectors
result in a new probability distribution vectoﬁ“}mCe where peers with the most out-
standing distributions are considered to be Alice’s pd@estails about the computation
of B,, P, and P4y;.. can be found in [10, 16]. The mean number of observations re-
quired such that Alice’s peers are outstanding is given byfidhmula [10]:

2
tSD><lm< mm—21+ NN_Ql(bl)>>, 1)




wherel is factor that determines the confidence of Alice’s peersdeutstanding. The
valuel = 1 corresponds to an 84% confidente; 2 to a 97% confidence arid= 3 to
a 99% confidence.

This approach is applicable only if:

— Alice’s peers are significantly more frequently contacteghtnon-peers,

— the pre-knowledge of the frequency distribution of nontpéggiven,

— the frequency distributions of the non-peers do not chamgieeably during the
attack.

These requirements represent additional restrictiortgihvaot exist in the disclo-
sure attack or the hitting-set attack. In particular, trst fint is somewhat unrealistic
since it assumes that all senders in the network constaiilytain their communication
behaviour. There is also no analysis of what is required fdrange in communication
frequency to be noticeable. Existing simulations in theréiture do not address this
problem, and simulate a constant sender behaviour.

This attack does not determine whether the set of most mualistg peers unam-
biguously represents Alice’s peers or what the other smistmay be, as produced by
the disclosure attack and hitting-set attack. The resdlsmulations based on this
approach must therefore be considered carefully. Althaaghe work based on this
attack does consider the amount of observations for a ssfct@stack, this represents
the time taken for the attack to confiranpriori knowledge of Alice’s peer partners.
This is not necessarily related to the genuine identificatibAlice’s peers, since the
criteria for the applicability and the termination of thésak is neither a necessary nor
a sufficient condition for the identification of Alice’s pesst.

The advantage of the statistical approach is that it is easyotint the required
frequencies. Thus, given that all requirements are fulfjlEpplying this approach is
relatively straight forward.

5.1 Analysis

Figure 3 compares the mean number of observatitns, by Equation (1) forl =
1,2, 3 represented by the linésD,, SD», SD3 with the mean number of observations
required to disclose all of Alice’s peers obtained by sirtiales using the hitting-set
attack, represented by the lidg5. In this simulation a set df senders send messages
to distinct receivers at each round. Among théseenders is Alice, who has. peer
partners. Each of this peers is uniformly contacted by Alidh a probability of L.
The other(b — 1) senders choose their receivers uniformly from the set giadkible
receiversk with probability%. This simulation functions under the the assumptions
for which Equation (1) is valid. The x-axis shows variationdne of the parameters
N, b, m, while the y-axis shows the number of observations.

We can see in these graphs that if Alice’s peers are statliigticutstanding with at
least 97% confidence&(3) then, in many cases, Alice’s peers can be unambiguously
identified before this happens. In contrast to this, if ABqeeers are outstanding with
a confidence of 85%9D;) then Alice’s peers can generally not be identified unam-
biguously. The relation between the statistical disclesattack and the identification



of Alice’s peer is unclear. Nevertheless, many papers ahbes 2 when measuring
the mean time to identify Alice’s peers because the graplthisrvalue,SD, in Fig-
ure 3, is close to the mean number of observations requirétetdify Alice’s peers
unambiguously.

This result, however, is only a coincidence that holds fonsparameters. A coun-
terexample can be seen in Figure 4. We can see that, althdiags/peers are statis-
tically significant with a confidence of 97% afte§p, observations, it is not possible
to unambiguously identify Alice’s peers at that time. ThugdA can still deny that the
most significant peers are her peers, as many other possgilemain. This exam-
ple underpins that the measurement by the statisticalkadiaes not provide assertions
about the necessary or sufficient condition for the idetiiion of Alice’s peers.
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Fig. 3. Comparison ofSD+, SD», SD5 with mean time to disclose all of Alice’s peers by HS-
attack

Based on the statistical disclosure attack, and underigg tinain requirements, fur-
ther statistics-based approaches have been suggestde thiérstatistical disclosure at-
tack requires a uniform distribution of communication fueqcies to peers, this require-
ment has been relaxed in [16]. A further refinement, the perfeatching disclosure
attack, combines the statistical approach with an anoryseitbased approach[17]. In
this work, the statistical disclosure attack is first apgtie obtain the distribution vector
Psice. This vector is then used to weight the sender-receivetioalship probability
of the anonymity sets collected in additional rounds. Theelback ofP;.., combined
with the distribution ofﬁAlice, can be corrected by new observations. This approach can
gain more precise results fdtasice, and is applicable for more varying user behaviour
models, and thus relaxes the requirements of the statidtszdosure attack to a certain
extent. The drawback of this approach is that it requiresiiGantly more observations
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Fig. 4. Comparison of5D> with mean time to disclose all of Alice’s peers by HS-attack

than the statistical disclosure attack and does not foclechieving the least number
of observations required to identify Alice’s peers.

5.2 Information Theoretic Consideration

By focusing on communication frequencies and not on anadysiovable interrelations
of the considered anonymity sets, statistical approad®&lthe answer to the infor-
mation theoretic question of possible solutions open.Heunore, these approaches
cannot easily measure real-world systems due to theiictgtr pre-conditions. Thus,
any relation between the statistical significance and tfamlniguous identification of
Alice’s peers would only hold for those communication se@®in which the pre-
conditions are met. An anonymity metric derived from statéd approaches would
therefore be of limited validity. Additionally, the amouot information measured by
the statistical approaches to reach particular statesafyamity are still not designed
to measure precisely the time of disclosing particularrimfation. The number of ob-
servations required by the statistical approach may berlowbigher than the amount
of observations required to reveal particular informatimambiguously.

5.3 Complexity Theoretic Consideration

Complexity theory asks the question: how hard will it be tedk a system under the
condition that it is information theoretically breakabl&ce there is no proven rela-
tion between the statistical approaches and the inform#tieoretic consideration, we
must consider this aspect under the assumption that aorldties exist. Under this
assumption, statistic based approaches will in generadl@irmine how hard it is to
disclose a particular anonymity state due to their lack etjgion. What we can expect



is that it these approaches may tell us when the disclosupartitular information is
easy, by using more information than really necessary.

6 Hypothesis-Based Measures

In our Mix model, it is assumed that Alice keeps communiaatiith a constant set of
communication partners{ 4, during a time period, where|H 4| = m it the amount of
Alice’s peers. Under this condition, the hitting-set alttacovides confident and com-
plete knowledge about all reasonable peer sets of Alieée will call each reason-
able peer set{, where|H| = m represents &ypothesis and the set of all reasonable
peer sets, thbypothesis set. Since the attacker only observes those receiver anonymity
setsR’ where Alice participates, only those sets which intersett @il the receiver
anonymity sets], ..., R, observed by the attacker ameasonable. We will call each
R’ of the pair(S’, R") anobservationif Alice € S’. Thus, each hypothesis is the result
of the cumulative acquisition of information from all catted observations.

Within the periodt, each observation can only give the attacker additionariné-
tion about Alice’s peers, and the hypothesis sets decre@gethe increasing number
of observations collected by the attacker.

The hypothesis set represents confident knowledge as eadthiegis is a proven
hitting set with respect to the attacker’s observationis.domplete because it covers all
hitting sets. This complete knowledge allows us to measufi@mation theoretically
the length of the period until some particular unambiguous information is revealed
We obtain a measure similar to the unicity distance in ent@ypsystems that shows
how long a user can maintain redundant communication bebawithout revealing
particular information about his peers. The kind of infotima that could be revealed
is discussed in the following sections.

Note that the mostimportant difference between the hysitheased approach and
the statistics-based approach is that we deal with configiethtcomplete knowledge
rather that statistics. All conclusions derived in thisaggeh are logically verifiable. If
we deduce that Alice’s peer set can be identified, then thistttates a proof that no
other hypotheses are possible. In contrast to this, thistitat attacks provide only a
set of significant frequencies for likely peer partners. Yhkethese peers are Alice’s
peers or not, or if there are other consistent hypothesaapt@asily be determined.

6.1 Information Theoretic Consideration

Figure 5 shows the mean time to disclose all of Alice’s peealsimulated HS-attack,
shown on theH S line, together with the mathematically derived time to reglthe
hypothesis set to a size below 2, shown ontthkne, and the mean time to disclose at
least one of Alice’s peers, shown on thg,:. The model to derive these functions is
discussed in the sequel.

! Note that statistical approaches are based on the same tsunwe clarify this here to
illustrate the similarity to unicity distance.
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Fig. 5. Comparison: HS-attack simulation, time to reduce hypashest below 2 and mean time
to disclose at least one Alice’s peers

Full Disclosure We definefull disclosure to be the anonymity state in which Alice’s
peer set can be unambiguously identified. This state is tefldn the hypothesis set,
and is the point at which the hypothesis set consists of Bxane hypothesis. If we
measure the mean number of observationg, such that the hypothesis set computed
by the hitting-set attack contains exactly one hypothésé) we obtain an analogue to
unicity distance for full disclosure. If the attacker obses less thany,;; observations,
or if the periodt is less tharnty,;, then Alice’s peer set is information theoretically
secure. This means that there is at least one other hypstidsch could also be Al-
ice’s peer set. The mean time to disclose Alice’s peers is/shio the Figures 3 and 4,
labelled HS.

A mathematical lower and an upper bound fey; was first introduced in [6].
Closed formulae for the approximation tf,;; were provided in [25, 26]. [26] intro-
duced the first mathematic model to describe the contenteohtipothesis set with
respect to the number of observations collected by thekatathis enables the study
of the evolution of the hypothesis set to different anonyrstates. In particular, all
anonymity measurements presented in Section 6 can be raddslithe approach of
[26]. Nevertheless, this model was developed only for aarnifuser communication,
and more research is required to extend the model to moiistiedistributions.

Hypothesis Set Characteristics The key to analysing the anonymity state of the Mix
system is the content of the hypothesis set. Finding cheniatits of the hypotheses
is therefore crucial to understanding how the hypothedigssaffected if the attack
obtains new observations. Apart from increasing our urideding of the change of
the hypothesis set over time, these characteristics carbalsised to mathematically
model the hypothesis set and thus the evolution to distimmhgmity states as shown in



[26]. Under the assumption that Alice haspeer partners, the following characteristics
of the hypotheses within a hypothesis set was proven in [26]:

— Each hypotheses is a superset of a minimal hitting sétttiag set, H’, is a set that
intersects with all observations of the attacker. Itnisimal if no proper subset of
H' is a hitting set.

— With increasing observations, all hypotheses become naittiitting sets.

— The number of hypotheses is strictly bounded By

— Each hypothesigy, belongs to exactly one of the structuses . . ., H.,. H € 9;
if and only if H contains(m — i) Alice’s peers, i.e/H N Ha|l = (m —4). In
particular$i, = {Ha}.

— The number of hypotheses of the structgyrds:

19| = <m”1 2) (b—1)' = (”Z) (b— 1),

— If Alice chooses her peers uniformly with probabiligll from H 4, and the other
(b—1) senders choose their peers with probabiﬁtyrom R ateachround, then the
probability that a hypotheses of the structgi;ds excluded by the next observation
is

) m
invNab7 7.:_1__b71-
P (N.bym, i) = — (1= )

With the main information determined the number of obséowatt,, the average
size of the hypothesis setis< a < b™, starting with an initial hypothesis set of size
b™. Fora = 2, the value of,, is the number of observations such that the mean number
of hypotheses in the hypothesis set is at most two. This fmmét shown in Figure 5

m(ln (b —1) —In (a'/™ — 1))
ta < (1 my-1

Note that the function, is not equal ta ;. The focus ot is the mean size of the
hypothesis set, therefore it is used to compute the numbelbbsérvations required to
reach this mean. In contrast, the focus gf;; is the mean number of observations such
that the hypothesis set contains exactly one hypotheséshve#{ 4. Thus, both, and
. @re reasonable means to measure the anonymity of the Migrsysiut a closed
formula forts,; has not yet been discovered. Nevertheless, a proven loverdoor

t o Was introduced in [6].

Partial Disclosure A new direction for measuring the anonymity of a Mix system
is the consideration of the point at which at least one of &¢igpeer can be unam-
biguously identified. We call this anonymity stagartial disclosure. This measurement
determines the first unambiguous information revealed byMIx system. we can also
visualise represent this anonymity state with the hypashest, it being the point at
which all hypotheses have a particular peer in common. Aga#can obtain a unicitiy
distance-like anonymity measurement by computing theameenumber of observa-
tions, t,.,¢, such that all hypotheses determined by the hitting-satlattontain at least
one common peer of Alice.



If less thant,,,» observations are considered by the attack, ar 4 ¢,,,, then
each of Alice’s peers is information theoretically anonyrsmone of Alice’s peers can
be unambiguously identified. This is a stricter anonymiiecia than full disclosure.
Furthermore, the point at which at least one peer of Aliceissldsed is noticeably
earlier than the point at which all of Alice’s peers can becltised. The anonymity
provided by Mix systems therefore has to be reconsideredisncontext. We further
conjecture that measuring anonymity by partial disclossimmore solid than by full
disclosure in the sense that dummy traffic, or the change Al communication
behaviour, may strongly affect the point of full disclosuvkile leaving the point of
partial disclosure relatively untouched.

The first mathematical model for partial disclosure can bmébin [26]. This model
uses the hypothesis set characteristics and the uniforrmearcation distribution of
Alice and the remaining users described in the last secTibat work gives the follow-
ing formula for the probability of identifying at least onéAlice’s peers after at most
t observations:

fidany (Na b7 m, t) =

E( ) T - (= iy (e
sz:; <( E (5) [ a-0-+01- %)bl)t)(mis)(bl)i)

This combines with the mean time,,,+, to disclose at least one of Alice’s peers.
This function is shown in relation with the simulated meamnetifor full disclosure and
the time to reduce the hypotheses below a size of 2 in Figure 5.

tpart (N; bv m, t) = Z t (fidany (N; bv m, t) - fidany (N; bv m, t— 1))

t=1

A closed formula fot,,,,+ has not yet been presented, and there is no study showing
how partial disclosure is affected by different user comioation behaviours. Despite
this, the results discussed in this paper show prototylgiediat can be achieved with
the hypothesis set and the identified structures with theentistate of research.

Beyond Unambiguity The full disclosure and partial disclosure metrics measuig

the amount of observations required to reach full or padistiosure. We could ob-
tain a more refined anonymity measurement if we considengdduproperties of the
hypothesis set. Assume thabbservations remain to reach full or partial disclosure; a
more refined information theoretic measurement could, fan®le, take into account
that a hypothesis set in which each hypothesis containsstirte— 1 of Alice’s peers,

is less anonymous than a hypothesis set in which each hygisttentains only one of
Alice’s peers. In [26] the point at which each hypothesistaored a particular number
of observations was measure, but this measurement hasewirttegrated into the full

or partial disclosure measurement.



6.2 Complexity Theoretic Consideration

As of yet, it has not been analysed if there are instances iohwthe hitting-set attack
requires less than exponential run time. Thus, the contplésised anonymity of the
Mix system remains open research.

7 Conclusion

We outline in this paper the historical development of amoity measurement strate-
gies from historyless to historied metrics. Since the anutyof a system depends
on the knowledge of the attacker, which grows over time, &gpropriate to measure
the anonymity of a system by considering these historiedagmies. We identify two
families in the literature that we refer to as statisticsdzhand hypothesis-based. The
main advantage of the statistics-based approaches issihgiticity through reliance
on statistics. At the same time this presents a disadvabeggise these approaches do
not identify unambiguous communication relationships.

As a mathematical consequence, the measurements proyigeatistical approaches
are inappropriate for measuring the precise point at whichraunication relationships
may be identified. As a practical consequence, a user canldriing contacted the
statistically significant peers because the statisticat@gch cannot provide a logical
proof of the relationship between a sender and the statilsticlentified peers.

In contrast to the statistics-based approaches, hypathesed measurements re-
lying on the hitting-set attack are precise and completd,raathematical models and
approximations built on this foundation are logically sdue can consequently gain
reasonable and precise understanding of the evolutiorafribnymity of a Mix system
over time.

The most important information used to analyse and meakerarionymity of a
system is the hypothesis set. We outline that structuredbandds of the hypothesis
set could be identified, which enables the description o&tredution of the hypothesis
set. There are still, however, many open questions regatgipothesis sets. Analysing
hypotheses under the assumption of a uniformly distribatedmunication can be con-
sidered as a proof of concept, but we believe that the moddlles more realistic anal-
ysis as the identified bounds and structures, apart fromritgapility P;,,, to exclude
hypotheses, are invariant with the communication distidims of the sender.

Another open question is the detection and classificationsténces that may be
brokeninless than exponential time. Finally, it would btefesting to investigate strate-
gies to increase a user’s possible anonymous communidatienwith as little over-
head as possible, and thus to discover strategies to efgctind efficiently “attack the
attacker”.
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