
Efficient and stealthy instruction tracing and its
applications in automated malware analysis:

Open problems and challenges

Endre Bangerter1, Stefan Bühlmann2, and Engin Kirda3

1 Bern University of Applied Sciences, Switzerland
endre.bangerter@jdiv.org

2 Bern University of Applied Sciences and
Joe Security, Switzerland
stefan.buehlmann@bfh.ch

3 Northeastern University, USA
ek@ccs.neu.edu

Abstract. Malware is substantial security threat today and most likely
in the foreseeable future. The analysis of malware is a key activity in the
fight against the threat. Since manual analysis is time consuming and
given the extent of the malware threat, malware analysis needs to be
automated. Malware analysis sandboxes offer such automation and play
already an important role in practice. Yet, they only uncover certain
aspects of malware behavior, and still require manual analysis in many
cases. This is not a viable way to go, and thus the automation and
quality of automated analysis needs to be pushed further. A promising
technique towards this goal is instruction tracing combined with analyzes
algorithms that uncover malware behavior from an instruction trace.

In this position paper, we shall argue that instruction tracing is still in
its infancy and point out challenges and open problems of instruction
tracing in general. In particular, we shall describe Helios, which is our
new instruction tracer that offers a better balance of tracing speed and
transparency than existing techniques.

1 Introduction

Malware is one of the major security issues threatening current networked devices
and IT infrastructures. The root causes of the malware problem (i.e., software
vulnerabilities, insufficiently secure operating systems, and human failures) are
not likely to be solved anytime soon. Moreover, the proliferation of networked
devices (e.g., smart phones, tablets, appliances, smart grids etc.) is ongoing. It is
thus likely that the malware threat is going to increase further and stay with us
for a long time to come. It thus seems that we need to learn to live with malware
in the foreseeable future.

Currently, there are two main scenarios of how malware is deployed by mis-
creants. One are large scale attacks where the goal is to maximize the number



of infections of a more or less arbitrary user base. The other are targeted at-
tacks, where the goal is to compromise a small set of specific users within an
organization. The first type of attack is used to commit fraud, steal money from
e-banking systems, etc. The latter is used for intelligence gathering and espi-
onage (industrial, and governmental) or selective attacks on the reputation of
an institution.

The analysis of (potential) malware is a key activity in dealing with the threat.
Analysis is required to update protection mechanisms (e.g., AV, IDS signatures,
domain blacklists, etc.), to assess the effects and damages of an attack, to initiate
recovery measures, etc. Important aspects of malware analysis are quality (i.e.,
to maximize the understanding of a piece of malware) and speed (i.e., to obtain
the information as quickly as possible). These are clearly competing goals and
we are thus in a trade-off situation.

While manual analysis delivers quality (if carried out by a qualified engineer),
it lacks speed. Manual analysis does not scale, and given the shortage of qualified
experts it is not a feasible way to handle the malware threat. Today, it is common
for anti-malware organizations to receive thousands of new, unknown samples
every day. As a result, automated analysis techniques are indispensable tools in
the fight against malware.

Static analysis techniques potentially deliver the best analysis quality, and
in particular, good code coverage. Unfortunately, static analysis techniques are
easily defeated. In fact, it is often trivial for malware authors to automatically
generate different versions of a specific malware component by using techniques
such as encryption, code obfuscation, instruction substitution, self modifying
code, etc. Thus a purely static analysis of modern malware is currently out of
reach [MKK07].

Because of the limitations of static techniques, various dynamic techniques
have been proposed that aim to automatically analyze a malware sample by
executing it and by logging the behavior that it exhibits. Dynamic analysis
is much harder to evade than static analysis, and it thus currently plays an
important role in practical malware analysis.

So called malware analysis sandboxes, such as, Anubis [BKK06], Joebox [BK08],
and CWSandbox [WHF07], have received considerable interest in the research
community as well as by malware analysts in practice. Analysis sandboxes are
one of the principal automated analysis technologies being used in practice. They
are widely deployed and used by various CERTs, anti-virus companies, and gov-
ernmental organizations. Technically, sandboxes mainly track the execution flow
of a malware by instrumenting and recording API calls (user-space, and system
calls), their arguments and related state information. Based on this information,
the malware behavior is analyzed. Sandboxes are adequate for identifying the
installation behavior of malware, infection strategies (e.g., code injections) and
network communications. Some sandboxes track malware in nearly real-time,
and there are systems in use that can process tens of thousands of samples per
day.



Yet, since the tracking granularity of sandboxes is coarse grained (i.e., only
API calls are recorded), sandboxes miss valuable information, which inherently
limits their analysis quality. For instance, they are not adequate for detection
of code similarity and vulnerabilities, data flow and execution flow - analysis.
More generally, they give little information about purely algorithmic aspects of
malware, like triggering logics, domain name generation, etc.

In summary, sandboxes excel through high analysis speed, but feature only
a moderate analysis quality. They are thus appropriate for first cut and mass
analysis. Yet, when it comes to understanding the details of a malware, which
is typically required in targeted attacks, then sandboxes are of limited value
only. In these cases one still needs to resort to manual analysis. This is a major
bottleneck and challenge in current malware analysis. To be able to handle the
malware threat, we need to push the boundary of automation further and develop
novel techniques that improve the analysis quality.

2 Instruction traces – challenges and open problems

Instruction tracers (tracers, for short) record every single instruction and re-
lated state during execution of a piece of code. The resulting traces are then
processed by a trace analyzer that extracts information on the behavior of the
process being analyzed. By providing instruction level granularity, tracers clearly
have the potential to offer better analysis quality than sandboxes. The major
inherent short coming of instruction tracers, is that they only observe one code
path at a time and thus lack code coverage. However, in practice, this is often
not an issue since malware does show relevant behavior shortly after execution.
It is thus not astonishing that instruction tracers and their applications have
received considerable interest in the malware research community recently. Var-
ious tracers specifically geared towards malware analysis have been proposed.
These are Ether [DRSL08], Cobra [VY06], TEMU [SBY+08], Pin [SDC+10] and
MmmBop [Ban09]. Additionally, there are also hardware based tracers, such as
ICE debuggers. Examples of applications of tracers are: Identification of key-
loggers (by taint tracking keyboard inputs to a network interface) [EKK+07],
detection of exploits [NS05] and self-modifying code [DRSL08], and automated
protocol reverse engineering [LJXZ08,KKCW08,CYLS07].

Despite these promising results, tracers are still in their infancy and play
little role in practice. In fact, there are substantial challenges that remain to be
resolved:

– Current tracers are not ready for practical use, since they are either too
inefficient or easy to detect and evade. Also, there are no viable solutions to
improve the code coverage of tracers.

– The degree of automated analysis needs to be pushed further. To this end
more advanced trace analyzers need to be explored, which can automati-
cally uncover algorithmic aspects of malware, and “not just” interactions of
malware with its run-time environment.



The first of the above challenges is more an engineering type of challenge,
while the latter is a probably hard research challenge. In the following we describe
these challenges, the underlying state of the art, and potential solutions in more
detail (§3 discusses tracing technologies and §4 trace analysis).

3 Tracing

We believe that a practically viable tracer for malware analysis should be efficient
(to facilitate live and ideally large scale analysis), transparent (to avoid detection
and evasion by malware), and complete (i.e., record the instructions being traced,
but also additional state information like register and memory values).

None of the current tracers achieves these goals simultaneously. In fact we
have roughly the following situation: Emulation based tracers are detectable
and rather slow. Those using dynamic binary instrumentation are fast but eas-
ily detectable. In fact, system emulation and dynamic binary instrumentation,
are both easily detectable by malware [MPRB09]. Techniques using trap flags
are transparent but rather slow. Finally, hardware based techniques, like branch
tracing featured by certain Intel CPUs, are very promising, since they are fast
and transparent. Yet, these techniques are not yet supported by virtual ma-
chines, which play an important role in malware analysis. Also, they do not
feature completeness, since tracing is performed at basic block granularity. The
completeness of such tracers operating at basic block granularity could be im-
proved by reconstructing the state within the basic block in some cases. To our
knowledge, this question has not yet been considered.

Let us briefly consider existing technologies. Ether[DRSL08] is highly trans-
parent due to the fact that it is running in the hypervisor, it is quite slow since
tracing is realized using single stepping. PIN[LCM+05] and the tracer proposed
by Bania [Ban09]is fast, but both are detectable; PIN seems to have issues with
self modifying code. On the other hand, TEMU [SBY+08,YS10] is very powerful
but rather slow and detectable. Given these limitation, it is thus not astonishing
that currently tracers play a little role in practical malware analysis.

3.1 Helios - novel techniques

To remedy the situation, we have developed a novel tracer termed Helios, which
reaches the desirable properties mentioned above to a better overall level than ex-
isting ones. Helios essentially is a collection of optimization techniques designed
to speed up malware tracing, e.g., by automatically skipping computationally
costly, but non-relevant code parts like unpacking loops. While Helios improves
over the state of the art, many challenges, like further improving performance
and code coverage, remain.

The basic techniques underlying Helios are relatively straightforward: We in-
terrupt the execution flow whenever a control transfer instruction (CTI) occurs,
record the instructions between two such CTIs, and then continue to follow the
execution from the destination address of the CTI. We implement this approach



by using solely hardware breakpoints and the trap flag. Helios is currently im-
plemented as kernel driver for the Windows OS, but it is likely to be portable
to other operating systems running on Intel CPUs.

While the approach is simple on a high-level, there are series of challenges
that need to be resolved. In fact, Helios combines novel and existing techniques
to optimize performance and to achieve transparency. For instance, Helios is
using a heuristic, that temporarily disables tracing in small code parts that
make excessive use of loops, which are often found in packers; this technique
alone yields a speed up of a factor of 40 when analyzing packed code. We also
use techniques to be able to handle self-modifying code, which is quite common
in malware. Finally, for achieving transparency, we use techniques to virtualize
hardware debug registers.

Different experiments confirms the viability of Helios in practice. In fact, we
were able to successfully trace code that was packed with a large number of
commonly used packers used by malware. Since packer code typically contains
detection and evasion techniques, these results hint that Helios is indeed reaches
a high degree of transparency. In summary, Helios reaches transparency and
efficiency in a more balanced way than existing tracers, and is thus a further
step towards bringing tracing to practice. In the following we give an overview
of the Helios design.

Helios design overview To control the execution of a program our tracing
algorithm uses hardware breakpoints and the trap flag (both debugging facilities
of the CPU). Hardware breakpoints are controlled by the debug register on the
x86 architecture. Four debug registers (Dr0-Dr3) and one control register (Dr7)
exist. The four debug registers contain the breakpoint memory address and the
control register defines the functionally of the breakpoints. Hardware breakpoints
can be used for many different applications. Their main usage is detecting the
execution at a memory address.

Figure 1 shows how Windows handles hardware breakpoints. If execution
reaches a previously set breakpoint address (14B5A3) a debug interrupt (int1)
is thrown by the CPU. If an interrupt is thrown, the CPU calls the appropriate
interrupt service routine (ISR, TrapHandler) in kernelmode. It finds the correct
trap handler by using the interrupt descriptor table (IDT). The Windows trap
handler for interrupt 1 then calls KiDispatchException which is used to launch
the exception handler in usermode (KiUserExceptionDispatcher) of the applica-
tion which has caused the interrupt (program.exe).

The trap flag works in a similar way: if it is set the processor will execute
only one instruction at time and then throw a debug interrupt.

Helios is implemented as a Windows kernel mode driver which intercepts the
int1 trap handler and the thread creation system call. Figure 2 shows how the
trap flag and hardware breakpoints are used to trace (control the execution flow)
an application.



Fig. 1. Windows exception handling

Fig. 2. Basic block tracing by using hardware breakpoints and the trap flag

The tracing algorithm is now explained in detail. If a new thread is detected
by Helios ((1) in Figure 2) it will scan (disassemble) the binary code from the
beginning of the thread start address until it finds a control transfer instruction
(CTI) [Int10]. Then it finishes its first task by setting a hardware breakpoint
(Dr0) at the address of the CTI (2). Next the applications thread begins its
execution and reaches the address of the CTI where an interrupt is thrown (due
to the hardware breakpoint). Helios will catch and handle this interrupt (3).
Inside the interrupt handling routine of Helios the hardware breakpoint (Dr0) is
cleared and the trap flag (single-stepping) is set. The interrupt handling routine
finishes and finally calls the instruction IRETD. The IRETD instruction re-
turns program control from the ISR to the program that was interrupted. Thus
the Windows trap handler, KiDispatchException and KiUserException are not
called, instead the application thread continues its execution where it has been
interrupted before. The CTI is executed and right after the execution a next



interrupt (due to the trap flag) is thrown. Again Helios catches and handles it
(4). The trap flag is cleared and the next CTI is searched from the beginning of
the current instruction pointer, which points to the address of the CTI target
(where execution has been transferred to). Finally the algorithm jumps to its
start and continues as described (1).

The algorithm described interrupts a program in a basic block granularity.
A basic block is a sequence of instructions with a CTI at the end. Within the
basic block, except at the end, no CTI is located. The start of a basic block
begins with a target address of a CTI. Thus a basic block has exactly one entry
and one exit point. Basic block tracing is much faster than single step tracing
because the program is less frequently interrupted and thus the overhead intro-
duced with the interruption and resumption process is smaller. However basic
block tracing is not as precise as single step tracing. The CPU state can only be
extracted when the program is interrupted and not for every instruction. How-
ever the granularity of basic block tracing is good enough for the application of
instruction scanning, which is needed to find instructions which read sensitive
memory locations.

The algorithm proposed above is portable because it uses hardware break-
points and the trap flag which are available on all CPUs based on the x86
architecture. Furthermore, it is minimally invasive, meaning that beside debug
registers no other register or memory contents are changed in the context of the
application being traced. In addition our tests have shown that both mechanisms
work inside virtual machines based on VMware and VirtualBox. These systems
are mainly used in large scale malware analysis systems and thus it is necessary
that the tracer works on them.

4 Advancing trace analysis

Current malware reverse engineering is performed essentially manually. That is,
often a pseudo-code or C representation of relevant code parts is reconstructed
from assembly. This decompilation step can also be automated by using tools
such as Hex-Rays [HR]. From the resulting code the reverse engineer then re-
covers the semantic of the code under consideration. While this approach will
certainly remain adequate and valuable for many years to come, we believe that
research should focus on recovering code semantics directly and (semi-) auto-
matically rather than “just” decompiling the code.

As mentioned above, so called sandboxes are a first step towards automating
malware analysis and they are able to recover many aspects of the interaction
of a malware with the operating system. While these are important malware
features, there are many properties of malware which cannot yet be recovered
automatically, and thus require manual analysis. These are typically purely algo-
rithmic properties, running in user mode. On important example of such prop-
erties are domain name generation algorithms, which compute domain names



for rendez-vous points of malware and command control servers [LW09,PSY09].
Another example is the use of cryptographic techniques used by malware, e.g.,
for authenticating and hiding the communication of malware with a command
and control server.

Recovering algorithmic aspects is clearly a challenging goal, and hard in gen-
eral. However, it might be somewhat easier in the malware domain, because
many possible malware behaviors and techniques are known in advance, and
can be specifically sought after. Ideally, these techniques would be realized using
static analysis. Yet, static analysis is easily defeated by obfuscation, which is
thus another formidable challenge to be overcome. Trace based analysis is con-
siderably more resilient to obfuscation and also features state information, which
makes analysis much easier. In fact, there has been some interesting initial work
on automated analysis using traces.

One direction of research is concerned with recovering protocol specifications
from code [Lut08,ZWCW08,CYLS07,CPSK09]. Other research has considered
the identification of crypto code in malware using traces [GWH11]. These tools
are for instance able to identify reliably certain crypto primitives like AES and
RSA. Yet, they cannot handle the composition and higher-level use of cryptog-
raphy. Recovering crypto code from traces is an example of the case mentioned
above, i.e., of recovering a priori known constructs from code. Finally, VERA is
an interesting piece of work on trace visualization [QL09,QLN09]. The goal of
VERA is to visualize malware behavior, allowing the reverse engineer to identify
malware features without resorting to code analysis.

Yet, we believe that the potential of traced based analysis is currently far
form being fully utilized, and that there is substantial potential to push automa-
tion further. Additionally, there are further little explored related fields like the
combination of dynamic analysis with static techniques.

References

[Ban09] Piotr Bania. Generic unpacking of self-modifying, aggressive, packed binary
programs. 2009.

[BK08] Stefan Buehlmann and Martin Kropp. Extending joebox - a scriptable
malware analysis system. In University of Applied Science Northwestern
of Switzerland, Bachelor Thesis, 2008.

[BKK06] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Ttanalyze: A tool
for analyzing malware. In 15th European Institute for Computer Antivirus
Research (EICAR 2006), 2006.

[CPSK09] Juan Caballero, Pongsin Poosankam, Dawn Song, and Christian Kreibich.
Dispatcher: Enabling active botnet infiltration using automatic protocol
reverse-engineering. In In CCS09: of the 16th ACM conference on Com-
puter and communications security, pages 621–634. ACM, 2009.

[CYLS07] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Au-
tomatic extraction of protocol message format using dynamic binary anal-
ysis. In Proceedings of ACM Conference on Computer and Communication
Security, 2007.



[DRSL08] Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In ACM Confer-
ence on Computer and Communications Security, 2008.

[EKK+07] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn
Song. Dynamic spyware analysis. In Proceedings of USENIX Annual Tech-
nical Conference, 2007.

[GWH11] Felix Groebert, Carsten Willems, and Thorsten Holz. Automated identifi-
cation of cryptographic primitives in binary programs. In The 14th Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID),
2011.

[HR] Hex-Rays. Hex-rays decompiler. http://www.hex-
rays.com/decompiler.shtml.

[Int10] Intel. Intel 64 and ia-32 architectures software developer’s manual, volume
1: Basic architecture. pages 142 – 143, Chapter 5, 5.1.7, 2010.

[KKCW08] Christopher Kruegel, Engin Kirda, Paolo Milani Comparetti, and Gilbert
Wondracek. Automatic network protocol analysis. In 15th Annual Network
and Distributed System Security Symposium (NDSS 2008), 2008.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and implementa-
tion, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.
http://doi.acm.org/10.1145/1065010.1065034.

[LJXZ08] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse
engineering through conectect-aware monitored execution. In In 15th Sym-
posium on Network and Distributed System Security (NDSS), 2008.

[Lut08] N. Lutz. Towards revealing attackers intent by automatically decrypting
network traffic. In Masters thesis, ETH Zuerich, 2008.

[LW09] F. Leder and T. Werner. Know your enemy: Containing conficker - to tame
a malware. In Know Your Enemy Series of the Honeynet Project, 2009.

[MKK07] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static
analysis for malware detection. In 23rd Annual Computer Security Appli-
cations Conference (ACSAC), 2007.

[MPRB09] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo
Bruschi. Testing cpu emulators. In ISSTA, 2009.

[NS05] James Newsome and Dawn Song. Dynamic taint analysis: Automatic de-
tection, analysis, and signature generation of exploit attacks on commodity
software. In Proceedings of the Network and Distributed Systems Security
Symposium, 2005.

[PSY09] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A foray into con-
fickers logic and rendezvous points. In LEET’09 Proceedings of the 2nd
USENIX conference on Large-scale exploits and emergent threats, 2009.

[QL09] D.A. Quist and L.M. Liebrock. Visualizing compiled executables for mal-
ware analysis. In 6th International Workshop on Visualization for Cyber
Security (VizSec 2009), 2009.

[QLN09] Daniel Quist, Lorie Liebrock, and Joshua Neil. Visualizing compiled exe-
cutables for malware analysis. In Journal in Computer Virology, 2009.

[SBY+08] Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin



Poosankam, and Prateek Saxena. Bitblaze: A new approach to computer
security via binary analysis. In ICISS, 2008.

[SDC+10] Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert S. Cohn, Kim M.
Hazelwood, Vladimir Vladimirov, and Moshe Bach. Dynamic program
analysis of microsoft windows applications. In ISPASS, 2010.

[VY06] Amit Vasudevan and Ramesh Yerraballi. Cobra: Fine-grained malware
analysis using stealth localized-executions. In IEEE Symposium on Security
and Privacy, 2006.

[WHF07] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. 2007.

[YS10] Heng Yin and Dawn Song. Temu: Binary code analysis via whole-system
layered annotative execution. 2010.

[ZWCW08] X. Jiang Z. Wang, W. Cui, and X. Wang. Reformat: Automatic reverse en-
gineering of encrypted messages. In Technical report, NC State University,
2008.


