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DETECTING FRAUD USING
MODIFIED BENFORD ANALYSIS

Christian Winter, Markus Schneider and York Yannikos

Abstract Large enterprises frequently enforce accounting limits to reduce the im-
pact of fraud. As a complement to accounting limits, auditors use Ben-
ford analysis to detect traces of undesirable or illegal activities in ac-
counting data. Unfortunately, the two fraud fighting measures often do
not work well together. Accounting limits may significantly disturb the
digit distribution examined by Benford analysis, leading to high false
alarm rates, additional investigations and, ultimately, higher costs. To
better handle accounting limits, this paper describes a modified Ben-
ford analysis technique where a cut-off log-normal distribution derived
from the accounting limits and other properties of the data replaces the
distribution used in Benford analysis. Experiments with simulated and
real-world data demonstrate that the modified Benford analysis tech-
nique significantly reduces false positive errors.
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1. Introduction

Financial fraud is a major risk for enterprises. Proactive access restric-
tions and post facto forensic accounting procedures are widely employed
to protect enterprises from losses. Many practitioners assume that access
restrictions do not impact the effectiveness of forensic methods – if they
consider the interdependencies at all. However, this is not necessarily
true.

Auditors often use Benford analysis [5] to identify irregularities in
large data collections. Benford analysis is frequently applied to account-
ing and tax data to find traces of fraudulent activity [10]. Benford anal-
ysis is based on Benford’s law [11], which states that the frequencies of
leading digits in numbers follow a non-uniform distribution. This Ben-
ford distribution is a logarithmic distribution that decays as the digits
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increase. When using Benford analysis to check financial data for irreg-
ularities, auditors test the data for conformance with Benford’s law.

If an enterprise enforces accounting limits for certain employees, for
example, a limit of $5,000, the frequencies of leading digits in the data
created by these employees deviate from the Benford distribution. Since
this deviation is much larger than that produced by pure chance, Benford
analysis of the data would generate more false positive alerts.

This paper respects the implications of access restrictions (e.g., pay-
ment and order limits) by using a log-normal reference distribution de-
rived from the data. The resulting modified Benford analysis compares
the frequencies of leading digits in the data to the reference distribution.
Applying the modified Benford analysis to simulated and real-world data
gives rise to lower false positive rates, which, in turn, reduces auditing
costs.

2. Benford Analysis

Benford’s law states that numbers in real-world data sets are more
likely to start with small digits than large digits [1, 9]. Specifically,
the Benford distribution determines the probability of encountering a
number in which the n most significant digits represent the integer d(n).
The probability of the associated random variable D(n) is given by:

Pr(D(n) = d(n)) = log(d(n) + 1) − log(d(n)) = log
(
1 + 1

d(n)

)
(1)

Benford’s law has been shown to hold for data in a variety of do-
mains. Nigrini [10] was the first to apply Benford’s law to detect tax
and accounting fraud.

The Benford analysis methodology compares the distribution of first
digits in data to a Benford distribution. Alerts are raised when there is
a large deviation from the Benford distribution.

Benford analysis is typically an early step in a forensic audit as it
helps locate starting points for deeper analysis and evidentiary search.
In order to identify nonconforming data items (i.e., those needing further
investigation), it is necessary to quantify the deviation of the data from
the reference Benford distribution. This is accomplished using statistical
tests or heuristic methods.

A statistical test quantifies the deviation between the data and the
reference distribution using a test statistic. The p-value and significance
level α are crucial quantities for assessing the selected test statistic. The
p-value is the probability that the test statistic is at least as large as
currently observed under the assumption that the data is generated ac-
cording to the reference distribution. A statistical test yields a rejection
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if the p-value is small (i.e., the test statistic is large). The threshold for
rejection is specified by the significance level α.

An example is the chi-square test, which uses the chi-square statistic
to calculate the p-value. Comparison of the p-value with α may result
in rejection. A rejection is either a true positive (i.e., fraud is indicated
and fraud actually exists) or a false positive (i.e., fraud is indicated, but
no fraud actually exists).

Other measures for determining the deviation include the “mean ab-
solute deviation” and the “distortion factor” [10]. The thresholds for
rejection are typically chosen in a heuristic manner for Benford analyses
that use these measures.

A limitation of Benford analysis is that non-fraudulent data must
be sufficiently close to the Benford distribution. Two techniques are
available for determining if the data meets this condition: mathematical
approaches [2, 4, 13, 14] and rules of thumb [5, 6, 8, 10, 11, 16, 18].

One rule of thumb is that data is likely close to the Benford distribu-
tion if it has a wide spread, i.e., it has relevant mass in multiple orders
of magnitude. Because accounting data and other financial data usually
have a wide spread, we can assume that this rule does not limit the
application of Benford analysis in the accounting and financial domains.

Another rule of thumb is that non-fraudulent data must not artificially
prefer specific digits in any position. This automatically holds for natural
data with a wide spread. However, human-produced numbers (artificial
data) such as prices can be based on psychologically-chosen patterns
(e.g., prices ending with 99 cents). But such patterns are more common
in consumer pricing than in business and accounting environments.

Another rule of thumb is that Benford analysis should not be per-
formed when the data has an enforced maximum and/or minimum [5,
11]. This is problematic because limits are imposed in many account-
ing environments. When accounting limits exist, it is only possible to
apply Benford analysis to the global data, not to data pertaining to sin-
gle individuals. This is because the global data does not have enforced
limits.

3. Handling Accounting Limits

In order to determine how an accounting limit affects the distribution
of leading digits, it is necessary to make an assumption about the overall
distribution of data. The cut-off point at an accounting limit is just one
property of the overall distribution and is, therefore, not sufficient to
derive a reference digit distribution.
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The first step in handling an accounting limit is to identify a rea-
sonable distribution model for the accounting data without the cut-off.
Unfortunately, a normal distribution does not match the Benford dis-
tribution. However, the logarithms of the data values can be assumed
to have a normal distribution, i.e., the data has a log-normal distribu-
tion. A log-normal distribution is specified by the mean µ and standard
deviation σ of the associated normal distribution.

Several researchers [6, 13, 16] have considered log-normal distributions
in the context of Benford’s law. In general, they agree that conformance
with the Benford distribution increases as σ increases. The multiplica-
tive central-limit-theorem argument, which is used to explain the validity
of Benford’s law, also justifies the use of a log-normal data distribution.
Bredl, et al. [3] have confirmed that financial data can be assumed to
have a log-normal distribution.

The next step in handling an accounting limit is to introduce a cut-off
to the log-normal distribution corresponding to the limit. The resulting
cut-off log-normal distribution may be used in the analysis.

Thus, the “modified Benford analysis” technique involves:

Identifying a suitable log-normal distribution.

Cutting-off the log-normal distribution at the accounting limit.

Deriving a reference digit distribution from the cut-off log-normal
distribution.

Statistically testing the data against the derived distribution.

A suitable log-normal distribution can be identified by estimating the
mean and standard deviation parameters from the data. Unfortunately,
it is not known a priori if the data contains traces of fraud and where
these traces are located. Consequently, the identified distribution is af-
fected by fraudulent and non-fraudulent postings. In general, the influ-
ence of fraudulent postings on the estimated parameters is marginal and
the distortion in the distribution due to these postings is large enough
to be detected during testing.

4. Modified Benford Analysis

Two assumptions are made to simplify the determination of the cut-
off log-normal distribution. First, the global data is assumed to have no
enforced limits. Second, the distribution of data generated by a single
employee is assumed to conform to the global distribution except for cut-
offs. This may not be true if the employees have different accounting
tasks that do not differ only in the accounting limits.
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Based on the assumptions, the mean and standard deviation of the
global log-normal distribution are estimated as the empirical mean and
standard deviation of the logarithms of the global data values. These
values are used to create the reference distribution for the overall data
and to calculate a cut-off distribution for individual employees with ac-
counting limits.

4.1 Log-Normal Distribution

The desired log-normal distribution is most conveniently obtained by
starting with the normal distribution of logarithms, which has the prob-
ability density function g̃ and cumulative distribution function G̃:

g̃(y) =
1√
2πσ

exp

(
− 1

2

(y − µ

σ

)2
)

(2)

G̃(y) =

∫ y

−∞

g̃(t)dt (3)

Note that the functions associated with the uncut distribution have a
tilde (∼) above them to distinguish them from the functions associated
with the cut-off log-normal distribution.

The distribution is then transformed to the log-normal distribution
by calculating the cumulative distribution function F̃ , followed by the
probability density function f̃ , which is the derivative of F̃ :

F̃ (x) = G̃
(
log(x)

)
for x > 0 (4)

f̃(x) =
g̃(log(x))

ln(10) · x for x > 0 (5)

4.2 Cut-Off Limits

Introducing a cut-off requires a rescaling of the distribution to obtain
a probability mass of 1.0 over the desired range. Given an upper limit
M ≤ ∞ and a lower limit m ≥ 0, the updated probability density
function and cumulative distribution function are given by:

f(x) =

{
f̃(x)

eF (M)− eF (m)
for m ≤ x ≤ M

0 otherwise
(6)

F (x) =

⎧
⎨

⎩

eF (x)− eF (m)
eF (M)− eF (m)

for m ≤ x ≤ M

0 otherwise
(7)
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Figure 1. Comparison of cut-off log-normal and Benford distributions.

Similarly, the probability density function g and cumulative distribu-
tion function G of the cut-off logarithms are computed using the bounds
m′ = log(m) and M ′ = log(M).

4.3 Leading Digit Distribution

Computing the distribution of leading digits requires the collection of
all numbers x > 0 with the same significand s ∈ [1; 10). These numbers
are used to construct the set {s · 10n : n ∈ Z}. The probability density
function θ and cumulative distribution function Θ of the distribution of
significands are given by:

θ(s) =
∑

n∈Z

f(s · 10n) for s ∈ [1; 10) (8)

Θ(s) =
∑

n∈Z

F (s · 10n) − F (10n) for s ∈ [1; 10) (9)

The computation of the distribution of D(n) uses the distribution of
significands. In particular, for d ∈ {1, . . . , 9}, Pr(D(1) = d) = Θ(d+1)−
Θ(d).

Our modified Benford analysis technique uses this distribution as the
reference distribution in the chi-square test on the leading digits to test
for fraud. Figure 1 shows an example with typical accounting param-
eters specified in U.S. dollars. A cut-off log-normal distribution with
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µ = log(350), σ = 0.6 and M = 5, 000 is compared with the Ben-
ford distribution. Although the distribution of first digits differs only
slightly from the Benford distribution, the difference could be relevant
when analyzing large data samples. Table 1 in the next section shows
that Benford analysis yields results of moderate quality for this cut-off
log-normal configuration.

4.4 Alternative Setup

If the data only has enforced limits or if the globally-estimated param-
eters are not suitable for the data generated by an individual employee,
then the mean and standard deviation of the global set of logarithms are
not suitable parameters. The maximum likelihood method must then be
used to obtain suitable parameters. In our case, the maximum likelihood
method uses the logarithms of the data values and the density of the cut-
off normal distribution to define a likelihood function. An optimization
algorithm is employed to determine a local optimum of the likelihood
function that yields the parameters of the desired log-normal distribu-
tion. Note that this step must deal with cut-offs during the parameter
identification step.

5. Results with Synthetic Data

Synthetic accounting data is used to compare the effectiveness of mod-
ified Benford analysis versus conventional Benford analysis for two rea-
sons. First, it is difficult to obtain real-world accounting data. Second,
it is not possible to control the type and amount of fraud present in real
data.

The synthetic data used in the experiments was created by the 3LSPG
framework [19]. The simulations produced data corresponding to non-
fraudulent and fraudulent employees; the fraudulent employees occa-
sionally made unjustified transactions to accomplices. The fraudsters
attempted to conceal their activities by choosing amounts that would
be checked less carefully. We assumed that amounts of $100 or more
required secondary approval and, therefore, the fraudsters paid a lit-
tle less than $100 (i.e., an amount with 9 as the leading digit) to their
accomplices. The frequency of occurrence of fraud was set to 0.01.

Table 1 compares the results obtained using modified Benford anal-
ysis (MBA) and conventional Benford analysis (BA) for various distri-
butions. Each analysis used the chi-square test on the first digits with
significance α = 0.05. The table reports the number of times the tests
made rejections over 100 simulations. The rejections correspond to true
positive (TP) alerts for fraudsters and false positive (FP) alerts for non-
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Table 1. Comparison of modified and conventional Benford analysis.

Distribution Parameters Sample BA MBA
Limit µ σ Size TP FP TP FP

∞ log(1, 800) 0.6
1,000 11 8 11 8
3,000 25 1 25 1
9,000 84 5 84 5

5,000 log(1, 800) 0.6
1,000 100 99 13 4
3,000 100 100 26 4
9,000 100 100 91 4

5,000 log(350) 0.6
1,000 14 6 9 5
3,000 46 15 33 1
9,000 93 34 80 1

fraudulent employees. The quality of an analysis technique depends on
the disparity between the corresponding true and false positive counts.

The conventional Benford analysis results vary according to the limits
imposed. The two analysis techniques produce comparable results when
an accounting limit is not imposed (limit = ∞) because the underlying
distribution of data is sufficiently close to the Benford distribution. How-
ever, the effectiveness of conventional Benford analysis diminishes when
the accounting limit increases the deviation from the Benford distribu-
tion. The results show that conventional Benford analysis completely
fails for an accounting limit of $5,000 and µ = log(1, 800). In the case
where µ = log(350), conventional Benford analysis distinguishes between
fraudulent and non-fraudulent employees. But if one considers the fact
that most employees are not fraudsters, the rate of false positives is too
high.

The results show that modified Benford analysis performs as well or
better than conventional Benford analysis in every instance. The false
positive rate from modified Benford analysis is always low, and the rate
of detected cases of fraud grows with the sample size because the discrim-
inatory power of statistical tests increases as the sample size increases.

6. Results with U.S. Census Data

The results of the previous section demonstrated that modified Ben-
ford analysis is effective regardless of the cut-off log-normal setting.
However, while simulated data is guaranteed to match the chosen dis-
tribution, real-world data may not fit the log-normal assumption.

This section presents the results obtained with a real-world data set
obtained from the U.S. Census Bureau [17]. The data set provides the
numbers of inhabitants in U.S. counties according to the 1990 census.
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Table 2. U.S. counties with inhabitants within upper and lower limits.

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 28
5K 299 271

10K 756 728 457
20K 1,463 1,435 1,164 707
50K 2,299 2,271 2,000 1,543 836

200K 2,897 2,869 2,598 2,141 1,434 598
1M 3,111 3,083 2,812 2,355 1,648 812 214
∞ 3,141 3,113 2,842 2,385 1,678 842 244 30

The advantage of using census data over real-world accounting data is
that it can be safely assumed that no fraud exists in the data. Therefore,
a Benford analysis technique should result in acceptance; any rejection
is a false alert. Indeed, the chi-square test on the first digits yielded
p = 0.063 – and, thus, no rejection – when using the Benford distribution
as reference.

As described earlier, modified Benford analysis requires the computa-
tion of the log-normal distribution parameters. The empirical mean and
standard deviation of the logarithms of the census data were µ = 4.398
and σ = 0.598. Using these parameters, the chi-square test in a modi-
fied Benford analysis yielded p = 0.064. Note that both techniques are
applicable to data without cut-offs.

The cut-offs in Table 2 were applied to test the ability of the modified
Benford analysis technique to handle cut-offs. The upper and lower
cut-off points were used to generate sufficient test cases to compare the
accuracy of conventional and modified Benford analysis. The results are
presented in Tables 3, 4 and 5. Note that p-values smaller than 2−52 ≈
2E-16 are set to zero in the tables.

As expected, conventional Benford analysis (Table 3) yields poor re-
sults, except for a few cases where the cut-off points introduce minor
changes in the distribution. For α = 0.05, acceptance occurs in only
three cases (bold values).

A quick fix to conventional Benford analysis that respects the limits
is implemented by changing the Benford distribution of the first digits
to only include the possible digits. The digits that were not possible
were assigned probabilities of zero while the probabilities for the possible
digits were scaled to sum to one. Table 4 shows that this technique yields
a marginal improvement over conventional Benford analysis with four (as
opposed to three) acceptance cases.
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Table 3. Benford analysis (p-values).

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 3E-06
5K 0 0

10K 0 0 0
20K 0 0 0 0
50K 0 0 2E-15 0 0

200K 1E-04 9E-05 5E-15 0 0 0
1M 0.097 0.072 1E-07 0 0 0 0
∞ 0.063 0.041 3E-08 0 0 0 9E-16 1E-04

Table 4. Benford analysis with digit cut-off rule (p-values).

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 3E-06
5K 0 0

10K 0 0 0.019
20K 0 0 1E-11 1.000
50K 0 0 2E-15 0.008 0.032

200K 1E-04 9E-05 5E-15 0 0 3E-09
1M 0.097 0.072 1E-07 0 0 0 0.003
∞ 0.063 0.041 3E-08 0 0 0 9E-16 1E-04

Table 5. Modified Benford analysis (p-values).

Lower 0K 1K 5K 10K 20K 50K 200K 1M
Upper

1K 0.575
5K 0.691 0.549

10K 6E-04 3E-04 0.510
20K 7E-04 9E-04 0.275 1.000
50K 8E-04 7E-04 0.001 4E-04 0.037

200K 0.032 0.025 0.005 2E-05 1E-06 0.711
1M 0.081 0.068 0.044 0.007 1E-04 0.302 7E-06
∞ 0.064 0.054 0.033 0.005 0.001 0.588 1E-07 9E-05

The results in Table 5 show that modified Benford analysis yields
much better results – the number of acceptances is thirteen. This result
has to be qualified, however, because acceptance occurs in the cases
where the cut-offs do not introduce much distortion and where there are
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relatively few samples left after the cut-offs are performed. The results
show that the log-normal distribution is not ideally suited to the census
data. Nevertheless, modified Benford analysis yields significantly better
results than conventional Benford analysis for data with cut-offs.

7. Related Work

Several researchers have defined adaptive alternatives to the Benford
distribution. One approach [8] addresses the issue of cut-offs by adjust-
ing the digit probabilities in a manner similar to our quick fix. Other
approaches [7, 15] employ parametric distributions of digits that are
fitted to observed digit distributions by various methods. The latter
approaches, however, are not designed to discover irregularities.

Other researchers, e.g., Pietronero, et al. [12], start with a suitable
distribution model for the data, which they use to derive a reference
distribution of digits. They use power laws that are relevant to their
domains of application. Note however, that while the approach is similar
to the modified Benford analysis technique presented in this paper, it
does not address the issue of cut-off points.

8. Conclusions

The modified Benford analysis technique overcomes the limitation of
conventional Benford analysis with regard to handling access restric-
tions. The technique reduces false positive alerts and, thereby, lowers
the costs incurred in forensic accounting investigations. The false pos-
itive rate is independent of the accounting limits because the modified
Benford analysis technique adapts to the limits.

The results obtained with synthetic and real-world data demonstrate
that modified Benford analysis yields significant improvements over con-
ventional Benford analysis. Our future research will conduct further as-
sessments of the effectiveness of the modified Benford analysis technique
using real-world accounting data and fraud cases. Additionally, it will
compare the modified Benford analysis technique with other Benford
analysis formulations, and identify improved distribution models that
would replace the log-normal model.
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