
Chapter 19

RECONSTRUCTION IN
DATABASE FORENSICS

Oluwasola Mary Fasan and Martin Olivier

Abstract Despite the ubiquity of databases and their importance in digital foren-
sic investigations, the area of database forensics has received very little
research attention. This paper presents an algorithm for reconstruct-
ing a database for forensic purposes. Given the current instance of a
database and the log of modifying queries executed on the database over
time, the database reconstruction algorithm determines the data that
was present in the database at an earlier time. The algorithm employs
inverse relational algebra operators along with a relational algebra log
and value blocks of relations to perform database reconstruction. Il-
lustrative examples are provided to demonstrate the application of the
algorithm and its utility in forensic investigations.

Keywords: Database forensics, database reconstruction, inverse relational algebra

1. Introduction

Databases often contain information vital to forensic investigations.
A typical example is a database that has been manipulated to facilitate a
criminal act. Consider a case where a retail business discovers a huge loss
because a large volume of a certain item was sold at a highly discounted
price. The salesperson under suspicion claims that the items were sold at
the official price listed in the database on the date in question. Verifying
the salesperson’s claim requires that the sales price of the item at that
particular date be determined. However, since numerous updates of
the database may have occurred since that date, it is necessary for the
investigator to somehow reverse all the database transactions (queries)
that affected the sales price of the item.

A promising approach to reverse queries executed on a database is
to compute the inverses of the queries and proceed to systematically



274 ADVANCES IN DIGITAL FORENSICS VIII

reconstruct the database. However, despite extensive research on query
processing, little research has focused on reverse query processing or
computing query inverses. In fact, the work in this area focuses on test
database generation, performance evaluation, and debugging of database
applications and SQL queries [1–3, 17]. While these approaches generate
good test databases, they cannot be used for forensic purposes because
the databases they produce are non-deterministic in nature.

This paper defines the inverse operators of the relational algebra [4]
and investigates how they can be used for the purpose of database re-
construction during forensic investigations [5]. The paper also explores
the division of a query log into a set of “value blocks” – groups of queries
whose evaluation does not change the information in a particular rela-
tion. The results are formalized as an algorithm that traverses the query
log and value blocks, and applies inverse relational algebra operators to
reconstruct database relations. Illustrative examples are provided to
demonstrate the application of the database reconstruction algorithm
and its utility in forensic investigations.

2. Background

This section briefly describes the relational database model and its
basic operators. Also, it discusses related research in database forensics.

2.1 Relational Database Model

The relational database model developed by Codd [4] describes how
data items stored in a database relate with each other. The model stores
and manipulates data based on set theory and relations.

Relations. The relational model engages only one type of compound
data called a relation. Given a set of domains {D1,D2, . . . ,Dn} associ-
ated with the set of attributes A = {A1, A2, . . . , An}, a relation R (also
called an R-table or R(A)) is defined as a subset of the Cartesian prod-
uct of the domains [4]. A relation may be conceived as a table whose
columns are the attributes. The rows of the table are referred to as
tuples, and the domains define the data types of the attributes.

Basic Operators. The relational algebra consists of basic operators
used to manipulate relations and a relational assignment operator (←).
The basic operators transform either one or two relations into a new
relation. These transformations are referred to as relation-valued ex-
pressions (rve). A query is defined as T ← rve where T is the relation
obtained when the rve is evaluated. The basic relational operators [4]



Fasan & Olivier 275

Table 1. Basic relational algebra operators.

Operators Notation

Cartesian Product (×) T ← R× S
Union (∪) T ← R ∪ S
Intersection (∩) T ← R ∩ S
Difference (−) T ← R− S
Division (/) T ← R[A,B/C]S
Join (!") T ← R[p(A,B)]S

T ← R !"p(A,B) S
Projection (π) T ← R[A1, A2, A3]

T ← πA1,A2,A3(R)
Selection (σ) T ← R[p(A)]

T ← σp(A)(R)

are listed in Table 1, where R, S and T denote relations and A, B and C
are attributes of relations. The notation p(attributes) is a logical pred-
icate on one or more attributes representing a condition that must be
satisfied by a row before the specified operation can be performed on it.

SQL queries can be expressed in relational algebra because relational
databases use the algebra for the internal representation of queries for
query optimization and execution [6, 7]. The relational algebra op-
erators can also be used independently, i.e., one or more operators
can be used to express another operation. For example, R ∩ S =
R − (R − S) and R !"p(A,B) S = σp(A,B)(R × S). This paper exploits
these characteristics of the relational algebra by expressing the query log
on a database as a sequence of relational operations, which we refer to
as a relational algebra log (RA log).

2.2 Relational Algebra Log and Value Blocks

The relational algebra log (RA log) is a log of queries expressed as
operations involving relational algebra operators instead of the tradi-
tional SQL notation. The RA log helps determine when a relation has
changed. Based on the relational algebra, a relation is changed only
when a new assignment operation is made into the relation. This knowl-
edge enables the RA log to be grouped into a set of overlapping value
blocks. Another motivation for the use of the RA log instead of the usual
SQL log file is that relational algebra allows queries to be represented as
a sequence of unary and binary operations involving relational algebra
operators; this makes the log file more readable. In addition, since a
typical select statement in an SQL log file can take several forms, the
use of the RA log eliminates ambiguities that may arise in defining an



276 ADVANCES IN DIGITAL FORENSICS VIII

inverse for select statements; the ambiguity is eliminated because any
select statement can be expressed using relational algebra operators.

A value block is defined as a set of queries within which a particular
relation remains the same. Value blocks are named based on the relation
that remains the same in the blocks and subscripts are used to signify
the chronological sequence of blocks. A value block starts with an as-
signment or a rename operation and ends just before another assignment
or rename is performed on the relation. For example, the value block of
a relation R is denoted as VRi (i = 1, 2, . . . ). The relation R remains the
same throughout the execution of block VR1 until it is updated by the
execution of the first query of block VR2 . The value block of a relation
can be contained in or overlap that of another relation, so that VR1 and
VS2 can have a number of queries in common. However, two value blocks
of the same relation, VR1 and VR2 , cannot overlap or be a subset of the
other. The time stamps associated with each query are preserved in the
RA log to ensure the appropriate order of the value blocks. Figure 1 in
Section 4.2 shows an example of an RA log divided into value blocks.

2.3 Database Forensics

Despite the interest in digital forensics and database theory, little re-
search has been conducted in the area of database forensics. One of
the principal goals of database forensics is to revert data manipulation
operations and determine the values contained in a database at an ear-
lier time [14]. Litchfield [8–13] has published several papers on Oracle
database forensics. Wright [15, 16] has also conducted research on Oracle
database forensics, including the possibility of using Oracle LogMiner as
a database forensic tool. However, none of these research efforts specifi-
cally address the underlying theory of database forensics or the reverting
of data manipulation operations for forensic purposes.

3. Inverse Relational Algebra

The inverse operators of the relational algebra can be used to obtain
the value of an attribute A of a tuple in relation R at time t. This is
accomplished by computing the inverse of the most recent query per-
formed on the current relation Rt sequentially until the desired time t
is reached. The operators work on the assumption that the database
schema is known and generate a result that is a partial or complete in-
verse of the query. Formally, we define the inverse a query Q as Q−1

such that:

Q−1(Q(Rt)) = R∗t (1)



Fasan & Olivier 277

where R∗t ⊆ Rt, i.e., R∗t is contained in Rt. In other words, R∗t may
contain some missing tuples or missing values in some columns. A com-
plete inverse has the property R∗t = Rt; otherwise, the inverse is partial.
A partial inverse is either a partial tuples inverse or a partial columns
inverse depending on whether it has missing tuples or missing values
in some columns, respectively. There are also cases where an inverse is
both a partial tuples inverse and a partial columns inverse.

3.1 Complete Inverse Operators

Only two inverse operators of the relational algebra generate an out-
put that is always a complete inverse. The first is the inverse rename
(ρ−1) operator, which only changes the name of a relation, not the data
in the relation. The inverse is computed by changing the name of the re-
named relation back to its previous name. If the query A← ρA1=B2(A)
is issued to change the name of column A1 in relation A to B2, then the
inverse of the operation is ρ−1(A) = ρB2=A1(A).

The other operator that generates a complete inverse is the inverse
Cartesian product (×−1). Given a relation T representing the Cartesian
product of two relations R(A) and S(B), the result of ×−1(T ) (i.e.,
R and S) can be completely determined by performing a projection
on their respective attributes and removing redundant tuples. That is,
×−1(T ) = (R,S) where R = πA(T ) and S = πB(T ). The trivial case is
when one of the operands of the Cartesian product is the empty relation.
In this case, the second operand cannot be determined from the inverse
operation, but this rarely occurs in practice.

3.2 Partial Inverse Operators

Most of the inverse operators are classified as partial inverses. How-
ever, regardless of this classification, there are often instances when a
complete inverse can be found. The remaining inverse operators are de-
fined below and the situations in which they yield a complete inverse are
highlighted.

Inverse Projection. Given the result R of a projection operation, the
inverse projection (π−1) generates a partial columns inverse. The result
is a relation with the expected columns (determined from the schema),
but with null values in the columns not included in the projection. The
columns included in the projection contain the corresponding data in
R. That is, if R ← πA1,A2(S), then π−1(R) = S∗ where S and S∗ have
exactly the same columns, the values of the attributes A1 and A2 of S
and S∗ are the same, and the values of the other attributes in S∗ are null.



278 ADVANCES IN DIGITAL FORENSICS VIII

A complete inverse projection is obtained when the original projection
was performed on all the columns of a relation.

Inverse Selection. The inverse selection (σ−1) generates a partial tu-
ples inverse. It is similar to the inverse projection except that it contains
missing tuples instead of columns with missing data. For the result R
of a selection operation R ← σp(A)(S), the inverse selection is given by

σ−1
p(A)(R) = S∗ where S∗ = R. The inverse selection yields a complete in-

verse when all the tuples in the operand of the original selection operator
satisfied the selection condition.

Inverse Join. The inverse join (!"−1) is similar to the inverse Carte-
sian product except that the output generated may contain missing tu-
ples depending on which tuples in the operands satisfied the condition
specified in the original join operator. The output of the inverse join
operator is computed by performing a projection on the columns of the
expected outputs. In general, a complete inverse join is obtained if all
the tuples in the original join operands satisfied the join condition, or if
the join type is a full outer join. If the join type is a left outer join, then
the right operand of the join operation can be completely determined
and vice versa. Otherwise, a partial tuples inverse is generated.

Inverse Intersection. Given a query T ← R ∩ S, the inverse inter-
section (∩−1) generates a partial tuples inverse containing all the tuples
in T . A complete inverse is obtained when R and S are known to be the
same, in which case the three relations R, S and T are equal.

Inverse Divide. Given the quotient Q and the remainder RM of a
divide operation (Q ← R/S), the inverse divide (/−1) generates two
relations R∗ and S∗. The relation R∗ is readily known because all the
tuples in RM are also in R∗ (RM ⊆ R∗). A complete inverse divide
is obtained only when one of the outputs is known. If R is previously
known, then S = R/T ; if S is previously known, then R = (S×T )∪RM .

Inverse Union. The inverse (∪−1) of a union operation T ← R ∪ S
can only be determined if one of the outputs is known. Even so, the
output generated may be a partial inverse. If relation S is known, then
R∗ = T − S; if R is known, then S∗ = T −R. A complete inverse union
is obtained only when R and S have no tuples in common. The trivial
case of the inverse union is when T contains no tuples, which implies
that R and S also contain no tuples.



Fasan & Olivier 279

Inverse Difference. Given a difference operation T ← R−S, the left
operand of the operation is readily determined by the inverse difference
operator (−−1) as R∗ = T since T ⊆ R. A complete relation R can be
determined only if relation S is known and all the tuples in S are also
known to be in R (i.e., S ⊆ R) so that R = T ∪ S. The relation S∗

with partial tuples can also be determined if R is known, in which case
S∗ = R − T . If S ⊆ R, then a complete relation S is found from the
inverse as S = R− T .

4. Database Reconstruction

This section describes the steps involved in reconstructing the infor-
mation in a database at an earlier time using the inverse operators and
RA logs divided into value blocks. Although the focus is on determining
specific values in a relation at some earlier time, the approach can be
applied to generate relations in a database.

4.1 Motivation

Forensic investigations often require the discovery or inference of the
data contained in a database at an earlier time. Although the data
currently in a database can be determined by querying the database,
answers to queries posed during a forensic investigation require more
than just the current instance of a database. This is because the current
database content may be different from what it was at the time of interest
due to modifications and updates that have occurred since the time of
interest.

Earlier, we discussed the issue of proving a shop attendant’s claim
about the sales price of an item in a fraud investigation. Many other
types of questions may be posed in forensic investigations. For example:
If a relation in an organization’s database was deleted by a criminal, can
it be proven that a customer’s record was in the deleted relation based
on previously executed queries? Another example question is: Can it
be proven that a patient died because the Prescribed Drugs column
of the patient’s record some weeks before his death was not what it
was supposed to be? These questions and others call for the ability to
reconstruct values in a database at an earlier time.

The next two sections provide examples of how a database can be
reconstructed and present a database reconstruction algorithm.

4.2 Reconstruction

Figure 1 shows an RA log generated from the complete query log
of a database by transforming queries into operations involving rela-



280 ADVANCES IN DIGITAL FORENSICS VIII

t1 : A← ∅
t2 : B ← ∅
t3 : C ← ∅
t4 : A← {At1, At2, At3, . . . }
t5 : B ← {Bt1, Bt2, Bt3, . . . }
t6 : C ← {Ct1, Ct2, Ct3, . . . }
t7 : D ← σindex=1(πA1,A3,A4,A6(ForderDesc(σA5>10000(A))))
t8 : D ← σindex=1(πA1,A3,A4,A6(ForderAsce(σA5>100(A))))
t9 : G← D ∪ E
t10 : D ← D ∪ πA1,A3,A4,A6(A)
t11 : H ← A !"(A2=B1) B

t12 : B ← Fupdate(B3=NewValue)(ΣB1=Value(B))
t13 : I ← A !"NJ B
t14 : J ← H ∩ I

t16 : H ← I − J
t17 : A← ρA2=B1(A)

t18 : J ← ∅

VB2

VB1

VC1

VJ2

VB3VI1

VA2

VD1

VH1

VJ1

VD2

VC2

VE1

VG1

VA1

VA3

VH2 t15 : H ← ∅VH3

Figure 1. RA log grouped into value blocks.

tional algebra operators. The RA log is also grouped into value blocks,
representing blocks of queries in which a particular relation remains un-
changed. The notation VA1 represents the first value block of a relation
R while t1, t2, . . . represent the time stamps at which a particular query
is executed. With reference to this RA log, some of the questions that
might be asked in a forensic investigation include:

Case 1: Was a particular value in column D1 of relation D at
time t8?

Case 2: Is the claim that a value was in column H2 of relation H
at t13 true?

Case 1. In order to determine if a particular value was in column D1

of relation D at time t8, it is necessary to reconstruct at least the values
that were in column D1 at time t8 and check for the value. According
to Figure 1, the data in D remained unchanged between t7 and t9 (value
block VD1). Thus, if the data in D1 can be determined anywhere in value
block VD1, then it is possible to check for the desired value. This can
be accomplished by computing the inverse of the union of relations D



Fasan & Olivier 281

and E at time t9. Because the second operand of the union (E) and its
result (G) have not been changed since t9, a partial or complete tuples
inverse D (depending on whether D and E had any tuples in common)
can be computed as:

∪−1(G) = (D∗, E) where D∗ = G− E (2)

An easier alternative to the reconstruction of values in D1 is to per-
form the actual query that resulted in D at time t7. This requires the
computation of the inverse of the operations that changed the data in re-
lation A between t7 and the current time. Since queries at t7, t8, . . . , t16
are in the same value block of A (i.e., VA2), the relation A was only mod-
ified at t17. The inverse of the rename operation at t17 (A← ρA2=B1(A))
is computed by simply changing the name of column B1 to its previous
name A2 using the equation:

ρ−1
A2=B1

(A) = ρB1=A2(A) = A (3)

The query at t7 can then be performed again to generate the complete
relation D.

Since t7 is in VD1 , another alternative to reconstructing the values in
D is to compute the inverse of the first query in value block VD2 (i.e.,
D ← D ∪ πA1,A3,A4,A6(A)) as in Equation (2):

∪−1(D) = (D∗, πA1,A3,A4,A6(A)) where D∗ = D − πA1,A3,A4,A6(A) (4)

Although the relation A was updated at t17, the update does not affect
the projection involved in Equation (4) because the renamed column is
not projected. Thus, no inverse rename is required.

It is important to note that the reconstruction of a value in a database
can often be done in several ways. The different approaches may yield
the same outputs or some outputs may be more complete than others. In
cases where the approaches for reconstructing a value generate minimal
tuples (or columns), the union of the different approaches should be
computed in order to generate a relation with more data.

Case 2. To determine if a value was in column H2 of relation H at
time t13 (in value block VH1), it is necessary to check the value blocks
VH1 and VH2 . It is obvious that the inverse of the first line of VH2

cannot be computed because all the data in H was deleted at this point
(t15). From value block VH1, there are two alternatives for reconstructing
column H2 of relation H. An inverse of the intersection operation at
t14 generates a partial tuples inverse H∗ that contains all the data in



282 ADVANCES IN DIGITAL FORENSICS VIII

relation J . Unfortunately, the data in J was deleted at t18. Thus, the
only feasible option to reconstruct a value in H is to re-execute the query
that resulted in H at t11 (H ← A !"(A2=B1) B). In order to do this, the
inverse of the rename operation on A at t17 and the inverse of the update
on B at t12 must be computed. The relation B can also be determined
by computing the inverse of the natural join operation at t13.

The inverse of the rename operation at t17 is computed according to
Equation (3). To determine B using the inverse of the update at t12, it
is necessary to replace the values in column B3 of B with the previous
values prior to the update. Since these values are not known from the
query log, the values in column B3 are replaced with nulls. In addition,
since the update contains a selection from B first, the result of the inverse
of the update operation contains partial tuples of B with missing values
in column B3. Thus, the inverse of the query at t12 is given by:

F
−1
update(B3=NewValue)(σ

−1
B1=Value(B)) = Fupdate(B3=null)(B

∗) = B∗ (5)

The relation B with partial tuples can also be obtained by computing
the inverse of the natural join operation at t13. Since both relations I
and A (from Equation (3)) are known, relation B can be obtained by:

!"
−1
NJ (I) = (A, B∗) where B∗ = πB1,B2,...,Bn(I) (6)

As mentioned earlier, the union of the two relations generated from
Equations (5) and (6) can be computed to generate a more complete
B∗. For example, the actual values of the nulls in column B3 of B∗ gen-
erated by Equation (5) may be determined from those of B∗ generated
by Equation (6). Finally, since both relations A and B (with partial
tuples and probably some null values) can be determined, the query at
t11 (H ← A !"(A2=B1) B) can be executed again in order to obtain H ∗,
which most likely contains partial tuples as well. The claim that H2

contains a particular value can then be ascertained by checking the data
in H2.

It is possible that the value of interest is contained in the tuples miss-
ing in H after performing the reconstruction. In a forensic investigation,
the conclusion about the presence or absence of a value in a relation can
be strengthened by reconstructing the value in other relations in which
it is expected to be present. If the value cannot be reconstructed in any
other relation in which it should be present, then it is highly probable
that the value is not in the relation of interest (H).



Fasan & Olivier 283

01: inverse(Relation D, RA Query VDi [1]) {
02: OUTPUT: Inverse of the assignment into D from query q
03: Let q = the query at VDi [1];
04: switch(q) {
05: case (D← ∅):
06: T = ∅; return T;
07: case (D← op D):
08: T = op−1(D); return T;
09: case (D← A op D):
10: case (D← D op A): //Assume A is in VAi

11: if (op = ∩): T = D; return T;
12: if ((op = ∪) and (∃ VAi+1)): T = ∅; return T;
13: else:
14: A← SOLVE(A, VAi , log, S);
15: T = op−1(D)|A; return T;
16: }
17: }

Figure 2. inverse function.

4.3 Reconstruction Algorithm

This section generalizes the reconstruction process as an algorithm for
reconstructing values in a database. The algorithm, defined as function
solve, takes as input the name of the relation D to be reconstructed,
the value block VDi in which D is to be reconstructed, an RA log log,
and a set S for storing tuples of the relation and value block (and the
corresponding result) that are considered during the reconstruction. The
algorithm returns the reconstructed relation D in the specified value
block.

The solve function makes use of the inverse function (Figure 2),
which takes as input the name of the relation to be reconstructed (D)
together with a query in the first line of a value block of D (i.e., VDi [1])
and computes the inverse of the query in order to determine D in its
previous value block (VDi−1). Calls to the inverse function occur when
a value block VDi−1 exists and its output depends on the operation per-
formed by the query. The notation op−1(D)|A (line 15) denotes the
inverse of an operation with two operands of which one operand (i.e.,
A) is known.

The solve function (Figure 3) begins by generating a set Q of queries
involving the relation D in the value block VDi in which it is to be
reconstructed. Each element of Q represents a different approach in
which D can be reconstructed. The algorithm initializes a set R in
which all possible reconstructions of D are stored. The parameter S
of the solve function is empty the first time the function is called and
it stores tuples of the relation and value block (with the corresponding
result) that have already been considered in the reconstruction process



284 ADVANCES IN DIGITAL FORENSICS VIII

solve(Relation D, Value Block VDi , RA Log log, Set S)
OUTPUT: Reconstructed relation D in value block VDi (RD)
01: Let Q = Set of queries involving relation D in value block VDi;
02: Let R = Set to reconstructed D from different approaches;
03: If (D, VDi , RD) ∈ S: return RD
04: else:
05: S = S ∪ (D, VDi , RD); //RD is initialized as an empty relation
06: for each element e in Q:
07: switch(e) {
08: case (D ← op D):
09: if (! VDi+1): return D;
10: else:
11: D← SOLVE(D, VDi+1 , log, S); T ← INVERSE(D, VDi+1 [1]);
12: Insert T into R
13: OR
14: D← SOLVE(D, VDi−1 , log, S); T ← op D;
15: Insert T into R
16: case (D ← op A): //Assume is in VAi

17: if (! VDi+1): return D;
18: else:
19: if (! VAi+1):
20: D ← op A; return D;
21: else:
22: A← SOLVE(A, VAi+1 , log, S); A ← INVERSE(A, VAi+1 [1]);
23: D ← op A; return D;
24: case (D ← A op D):
25: case (D ← D op A): //Assume A is in VAi

26: if (! VDi+1): return D;
27: else:
28: D← SOLVE(D, VDi+1 , log, S); T ← INVERSE(D, VDi+1 [1]);
29: Insert T into R;
30: if (! VAi+1):
31: D← SOLVE(D, VDi−1 , log, S);
32: T ← A op D or (D op A); //depending on case
33: Insert T into R;
34: else:
35: D← SOLVE(D, VDi−1 , log, S);
36: A← SOLVE(A, VAi , log, S);
37: T ← A op D or (D op A) //depending on case
38: Insert T into R;
39: OR
40: D← SOLVE(D, VDi−1 , log, S);
41: A← SOLVE(A, VAi+1 , log, S); A← INVERSE(A, VAi+1 [1]);
42: T ← A op D or (D op A); //depending on case
43: Insert T into R;

Figure 3. solve function.

in order to avoid loops in the recursive calls to solve. If an attempt
to reconstruct D in value block VDi has been made earlier (line 3),
the solve function returns the associated reconstructed relation RD.
Otherwise, the relation and value block parameters of the function are
stored as a tuple in S with an associated reconstructed relation that is
initially empty. The algorithm then considers the possible combinations



Fasan & Olivier 285

44: case (G← op D): //Assume G is in VGi

45: if (! VDi+1): return D;
46: else:
47: if (! VGi+1):

48: T ← op−1(G); Insert T into R;
49: else:
50: D← SOLVE(D, VDi+1 , log, S); T ← INVERSE(D, VDi+1 [1]);
51: Insert T into R;
52: OR
53: G← SOLVE(G, VGi+1 , log, S); G← INVERSE(G, VGi+1 [1]);

54: T ← op−1(G); Insert T into R;
55: case (G← D op A):
56: case (G← A op D): //Assume G and A are in VGi and VAi respectively
57: if (! VDi+1): return D;
58: else:
59: if (! VGi+1):
60: if (op = ∩):
61: Insert G into R;
62: if (op ̸= ∪):
63: T ← op−1(G)[1]; //D is at index 1 in the output of op−1(G)
64: Insert T into R;
65: if (! VAi+1):

66: T ← op−1(G)|A; Insert T into R;
67: else:
68: A← SOLVE(A, VAi+1 , log, S); A← INVERSE(A, VAi+1 [1]);

69: T ← op−1(G)|A; Insert T into R;
70: else:
71: if (! VAi+1):
72: G← SOLVE(G, VGi+1 , log, S); G← INVERSE(G, VGi+1 [1]);

73: T ← op−1(G)|A; Insert T into R;
74: else:
75: G← SOLVE(G, VGi+1 , log, S); G← INVERSE(G, VGi+1 [1]);
76: if (op = ∩): Insert G into R;
77: else:
78: A← SOLVE(A, VAi+1 , log, S); A← INVERSE(A, VAi+1 [1]);

79: T ← op−1(G)|A; Insert T into R;
80: }
81: RD ← union of all the relations in R; //Reconstructed D
82: return RD;

Figure 3. solve function (continued).

of D in a query and outlines the steps to be followed in reconstructing D
from the different approaches listed in Q. After all the queries in Q have
been considered, the union of all the possible reconstructions is stored
as the reconstructed relation RD and this result is returned.

It is important to note that some of the reconstructed relations in R
may contain more information than others and might be adequate for
the purpose of the reconstruction process. In situations where recon-
struction is performed to determine or check a particular value or claim
in a relation, the reconstruction algorithm can be improved by searching
each of the possible reconstructed relations before inserting it in the set



286 ADVANCES IN DIGITAL FORENSICS VIII

R. The solve algorithm is terminated when the value of interest or
desired information has been determined.

In a few cases, it is possible that the reconstruction process results
in an empty relation. This could occur if all the tuples in a relation
were deleted before the relation was used in any way. Nevertheless, the
algorithm is useful for reconstructing values in relations for forensic pur-
poses. We conjecture that it can be proved that the tuples generated in a
reconstructed relation are indeed in the relation and that the algorithm
does not result in an infinite loop. Developing these proofs will be the
subject of our future research.

5. Conclusions

The database reconstruction algorithm presented in this paper en-
ables forensic investigators to determine whether or not data of interest
was present in a database at an earlier time despite the fact that several
database modifications may have been performed since that time. The
algorithm, which is based on the formal model of relational databases,
employs inverse relational algebra operators along with a relational al-
gebra log and value blocks of relations to determine whether or not data
of interest was present in a database at an earlier time.

Our future work will investigate the conditions under which the recon-
struction algorithm may not yield adequate results. Also, it will attempt
to enhance the algorithm to ensure that the reconstructed relations pre-
serve the integrity constraints imposed on the original relations.

Acknowledgements

This research was supported by the Organization for Women in Sci-
ence for the Developing World (OWSD).

References

[1] C. Binnig, D. Kossmann and E. Lo, Reverse query processing, Pro-
ceedings of the Twenty-Third IEEE International Conference on
Data Engineering, pp. 506–515, 2007.

[2] C. Binnig, D. Kossmann and E. Lo, Towards automatic test
database generation, IEEE Data Engineering Bulletin, vol. 31(1),
pp. 28–35, 2008.

[3] N. Bruno and S. Chaudhuri, Flexible database generators, Proceed-
ings of the Thirty-First International Conference on Very Large
Databases, pp. 1097–1107, 2005.



Fasan & Olivier 287

[4] E. Codd, The Relational Model for Database Management: Version
2, Addison-Wesley, Reading, Massachusetts, 1990.

[5] F. Cohen, Digital Forensic Evidence Examination, ASP Press, Liv-
ermore, California, 2010.

[6] G. Graefe, Query evaluation techniques for large databases, ACM
Computing Surveys, vol. 25(2), pp. 73–170, 1993.

[7] L. Haas, J. Freytag, G. Lohman and H. Pirahesh, Extensible query
processing in Starburst, Proceedings of the ACM SIGMOD Interna-
tional Conference on the Management of Data, pp. 377–388, 1989.

[8] D. Litchfield, Oracle Forensics Part 1: Dissecting the Redo Logs,
NGSSoftware, Manchester, United Kingdom, 2007.

[9] D. Litchfield, Oracle Forensics Part 2: Locating Dropped Objects,
NGSSoftware, Manchester, United Kingdom, 2007.

[10] D. Litchfield, Oracle Forensics Part 3: Isolating Evidence of Attacks
Against the Authentication Mechanism, NGSSoftware, Manchester,
United Kingdom, 2007.

[11] D. Litchfield, Oracle Forensics Part 4: Live Response, NGSSoftware,
Manchester, United Kingdom, 2007.

[12] D. Litchfield, Oracle Forensics Part 5: Finding Evidence of Data
Theft in the Absence of Auditing, NGSSoftware, Manchester,
United Kingdom, 2007.

[13] D. Litchfield, Oracle Forensics Part 6: Examining Undo Segments,
Flashback and the Oracle Recycle Bin, NGSSoftware, Manchester,
United Kingdom, 2007.

[14] M. Olivier, On metadata context in database forensics, Digital In-
vestigation, vol. 5(3-4), pp. 115–123, 2009.

[15] P. Wright, Oracle Database Forensics using LogMiner, NGSSoft-
ware, Manchester, United Kingdom, 2005.

[16] P. Wright, Oracle Forensics: Oracle Security Best Practices, Ram-
pant Techpress, Kittrell, North Carolina, 2010.

[17] S. Xu, S. Wang and M. Hong, Application of SQL RAT translation,
International Journal of Intelligent Systems and Applications, vol.
3(5), pp. 48–55, 2011.


