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Summary. A novel method based on shape and texture information is proposed in
this paper for facial expression recognition from video sequences. The Discriminant
Non-negative Matrix Factorization (DNMF) algorithm is applied at the image cor-
responding to the greatest intensity of the facial expression (last frame of the video
sequence), extracting that way the texture information. A Support Vector Machines
(SVMs) system is used for the classification of the shape information derived from
tracking the Candide grid over the video sequence. The shape information consists
of the differences of the node coordinates between the first (neutral) and last (fully
expressed facial expression) video frame. Subsequently, fusion of texture and shape
information obtained is performed using Radial Basis Function (RBF) Neural Net-
works (NNs). The accuracy achieved is equal to 98,2% when recognizing the six
basic facial expressions.

1.1 Introduction

During the past two decades, many studies regarding facial expression recog-
nition, which plays a vital role in human centered interfaces, have been
conducted. Psychologists have defined the following basic facial expressions:
anger, disgust, fear, happiness, sadness and surprise [?]. A set of muscle move-
ments, known as Action Units, was created. These movements form the so
called Facial Action Coding System (FACS) [?]. A survey on auto-
matic facial expression recognition can be found in [?].

In the current paper, a novel method for video based facial expression
recognition by fusing texture and shape information is proposed. The texture
information is obtained by applying the DNMF algorithm [?] on the last
frame of the video sequence, i.e. the one that corresponds to the greatest
intensity of the facial expression depicted. The shape information is calculated
as the difference of Candide facial model grid node coordinates between the
first and the last frame of a video sequence [?]. The decision made regarding



the class the sample belongs to, is obtained using a SVM system. Both the
DNMF and SVM algorithms have as an output the distances of the sample
under examination from each of the six classes (facial expressions). Fusion
of the distances obtained from DNMF and SVMs applications is attempted
using a RBF NN system. The experiments performed using the Cohn-Kanade
database indicate a recognition accuracy of 98,2% when recognizing the six
basic facial expressions. The novelty of this method lies in the combination of
both texture and geometrical information for facial expression recognition.

1.2 System description

The diagram of the proposed system is shown in Figure ??.
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Fig. 1.1. System architecture for facial expression recognition in facial videos

The system is composed of three subsystems: two responsible for texture
and shape information extraction and a third one responsible for the fusion
of their results. Figure ?? shows the two sources of information (texture and
shape) used by the system.

1.3 Texture information extraction

Let U be a database of facial videos. The facial expression depicted in each
video sequence is dynamic, evolving through time as the video progresses. We
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take under consideration the frame that depicts the facial expression in its
greatest intensity, i.e. the last frame, to create a facial image database Y .
Thus, Y consists of images where the depicted facial expression obtains its
greatest intensity . Each image y ∈ Y belongs to one of the 6 basic facial
expression classes{Y1,Y2, . . . ,Y6} with Y =

⋃6
r=1 Yr. Each image y ∈ <K×G+

of dimension F = K ×G forms a vector x ∈ <F+. The vectors x ∈ <F+ will be
used in our algorithm.

The algorithm used was the DNMF algorithm, which is a extension of the
Non-negative Matrix Factorization (NMF) algorithm. The NMF algorithm al-
gorithm is an object decomposition algorithm that allows only additive com-
binations of non negative components. DNMF was the result of an attempt
to introduce discriminant information to the NMF decomposition. Both NMF
and DNMF algorithms will be presented analytically below.

1.3.1 The Non-negative Matrix Factorization Algorithm

A facial image xj after the NMF decomposition can be written as xj ≈ Zhj ,
where hj is the j-th column of H. Thus, the columns of the matrix Z can
be considered as basis images and the vector hj as the corresponding weight
vectors. Vectors hj can also be considered as the projections vectors of the
original facial vectors xj on a lower dimensional feature space .

In order to apply NMF in the database Y, the matrix X ∈ <F×G+ = [xi,j ]
should be constructed, where xi,j is the i-th element of the j-th image, F is
the number of pixels and G is the number of images in the database. In other
words the j-th column of X is the xj facial image in vector form (i.e. xj ∈ <F+).



NMF aims at finding two matrices Z ∈ <F×M+ = [zi,k] and H ∈ <M×L+ = [hk,j ]
such that :

X ≈ ZH. (1.1)

where M is the number of dimensions taken under consideration (usually
M � F ).

The NMF factorization is the outcome of the following optimization prob-
lem :

min
Z,H

DN (X||ZH) subject to (1.2)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

The update rules for the weight matrix H and the bases matrix Z can be
found in [?].

1.3.2 The Discriminant Non-negative Matrix Factorization
Algorithm

In order to incorporate discriminants constraints inside the NMF cost function
(??), we should use the information regarding the separation of the vectors
hj into different classes. Let us assume that the vector hj that corresponds
to the jth column of the matrix H, is the coefficient vector for the ρth facial

image of the rth class and will be denoted as η
(r)
ρ = [η

(r)
ρ,1 . . . η

(r)
ρ,M ]T . The mean

vector of the vectors η
(r)
ρ for the class r is denoted as µ(r) = [µ

(r)
1 . . . µ

(r)
M ]T

and the mean of all classes as µ = [µ1 . . . µM ]T . The cardinality of a facial
class Yr is denoted by Nr. Then, the within scatter matrix for the coefficient
vectors hj is defined as:

Sw =
6∑

r=1

Nr∑

ρ=1

(η(r)
ρ − µ(r))(η(r)

ρ − µ(r))T (1.3)

whereas the between scatter matrix is defined as:

Sb =
6∑

r=1

Nr(µ
(r) − µ)(µ(r) − µ)T . (1.4)

The discriminant constraints are incorporated by requiring tr[Sw] to be as
small as possible while tr[Sb] is required to be as large as possible.

Dd(X||ZDH) = DN (X||ZDH) + γtr[Sw]− δtr[Sb]. (1.5)

where γ and δ are constants and D is the measure of the cost for factoring X
into ZH [?].

Following the same Expectation Maximization (EM) approach used by
NMF techniques [?], the following update rules for the weight coefficients hk,j
that belong to the r-th facial class become:



h
(t)
k,j =

T1 +
√
T 2

1 + 4(2γ − (2γ + 2δ) 1
Nr

)h
(t−1)
k,j

2(2γ − (2γ + 2δ) 1
Nr

)
∑
i z

(t−1)
i,k

xi,j
∑
l z

(t−1)
i,l

h
(t−1)
l,j

2(2γ − (2γ + 2δ) 1
Nr

)
. (1.6)

where T1 is given by:

T1 = (2γ + 2δ)(
1

Nr

∑

λ,λ6=l
hk,λ)− 2δµk − 1. (1.7)

The update rules for the bases ZD, are given by:

ź
(t)
i,k = z

(t−1)
i,k

∑
j h

(t)
k,j

xi,j∑
l z

(t−1)
i,l h

(t)
l,j∑

j h
(t)
k,j

(1.8)

and

z
(t)
i,k =

ź
(t)
i,k∑
l ź

(t)
l,k

. (1.9)

The above decomposition is a supervised non-negative matrix factorization
method that decomposes the facial images into parts while, enhancing the class
separability. The matrix Z†D = (ZTDZD)−1ZTD, which is the pseudo-inverse

of ZD, is then used for extracting the discriminant features as x́ = Z†Dx.
The most interesting property of DNMF algorithm is that it decomposes the
image to facial areas, i.e. mouth, eyebrows, eyes, and focuses on extracting
the information hiding in them. Thus, the new representation of the image is
a better one compared to the one acquired when the whole image was taken
under consideration.

For testing, the facial image xj is projected on the low dimensional feature
space produced by the application of the DNMF algorithm:

x́j = Z†Dxj (1.10)

For the projection of the facial image x́j , one distance from each center class
is calculated. The smallest distance defined as:

rj = min
k=1,...,6

‖x́j − µ(r)‖ (1.11)

is the one that is taken as the output of the DNMF system.

1.4 Shape information extraction

The geometrical information extraction is done by a grid tracking system,
based on deformable models [?]. The tracking is performed using a pyramidal



implementation of the well-known Kanade-Lucas-Tomasi (KLT) algorithm.
The user has to place manually a number of Candide grid nodes on the corre-
sponding positions of the face depicted at the first frame of the image sequence.
The algorithm automatically adjusts the grid to the face and then tracks it
through the image sequence, as it evolves through time. At the end, the grid
tracking algorithm produces the deformed Candide grid that corresponds to
the last frame i.e. the one that depicts the greatest intensity of the facial
expression.

The shape information used from the j video sequence is the displace-
ments dij of the nodes of the Candide grid, defined as the difference between
coordinates of this node in the first and last frame [?]:

dij = [∆xij∆y
i
j ]
T i ∈ {1, . . . ,K} and j ∈ {1, . . . , N} (1.12)

where i is an index that refers to the node under consideration. In our case
K = 104 nodes were used.

For every facial video in the training set, a feature vector gj of F = 2·104 =
208 dimensions, containing the geometrical displacements of all grid nodes is
created:

gj = [d1
j d2

j . . . dKj ]T . (1.13)

Let U be the video database that contains the facial videos, that are clus-
tered into 6 different classes Uk, k = 1, . . . , 6, each one representing one of 6
basic facial expressions. The feature vectors gj ∈ <F labelled properly with
the true corresponding facial expression are used as an input to a multi class
SVM and will be described in the following section.

1.4.1 Support Vector Machines

Consider the training data:

(g1, l1), . . . , (gN , lN ) (1.14)

where gj ∈ <F j = 1, . . . , N are the deformation feature vectors and
lj ∈ {1, . . . , 6} j = 1, . . . , N are the facial expression labels of the feature vec-
tor. The approach implemented for multiclass problems used for direct facial
expression recognition is the one described in [?] that solves only one opti-
mization problem for each class (facial expression). This approach constructs
6 two-class rules where the k−th function wT

k φ(gj) + bk separates training
vectors of the class k from the rest of the vectors. Here φ is the function that
maps the deformation vectors to a higher dimensional space (where the data
are supposed to be linearly or near linearly separable) and b = [b1 . . . b6]T is
the bias vector. Hence, there are 6 decision functions, all obtained by solving
a different SVM problem for each class. The formulation is as follows:

min
w,b,ξ

1

2

6∑

k=1

wT
k wk + C

N∑

j=1

∑

k 6=lj
ξkj (1.15)



subject to the constraints:

wT
ljφ(gj) + blj ≥ wT

k φ(gj) + bk + 2− ξkj (1.16)

ξkj ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , 6}\lj .

where C is the penalty parameter for non linear separability and
ξ = [. . . , ξmi , . . .]

T is the slack variable vector. Then, the function used to
calculate the distance of a sample from each center class is defined as:

s(g) = max
k=1,...,6

(wT
k φ(g) + bk). (1.17)

That distance was considered as the output of the SVM based shape extraction
procedure. A linear kernel was used for the SVM system in order to avoid
search for appropriate kernels.

1.5 Fusion of texture and shape information

The application of the DNMF algorithm on the images of the database re-
sulted in the extraction of the texture information of the facial expressions
depicted. Similarly, the classification procedure performed using the SVM sys-
tem on the grid following the facial expression through time resulted in the
extraction of the shape information .

More specifically, the image xj and the corresponding vector of geomet-
rical displacements gj were taken into consideration. The DNMF algorithm,
applied to the xj image, produces the distance rj as a result, while SVMs
applied to the vector of geometrical displacements gj , produces the distance
sj as the equivalent result. The distances rj and sj were normalized in [0, 1]
using Gaussian normalization. Thus, a new feature vector cj , defined as:

cj = [rj sj ]
T . (1.18)

containing information from both sources was created.

1.5.1 Radial Basis Function (RBF) Neural Networks (NNs)

A RBF NN was used for the fusion of texture and shape results. The RBF
function is approximated as a linear combination of a set of basis functions
[?]:

pk(cj) =
M∑

n=1

wk,nφn(cj) (1.19)

where M is the number of kernel functions and wk,n are the weights of the
hidden unit to output connection. Each hidden unit implements a Gaussian
function:



φn(cj) = exp[−(mn − cj)
TΣ−1

n (mn − cj)] (1.20)

where j = 1, . . .M , mn is the mean vector and Σn is the covariance matrix
[?].

Each pattern cj is considered assigned only to one class lj . The decision
regarding the class lj of cj is taken as:

lj = argmax
k=1,...,6

pk(cj) (1.21)

The feature vector cj was used as an input to the RBF NN that was
created. The output of that system was the label lj that classified the sample
under examination (pair of texture and shape information) to one of the 6
classes (facial expressions).

1.6 Experimental results

In order to create the training set, the last frames of the video sequences
used were extracted. By doing so, two databases were created, one for texture
extraction using DNMF and another one for shape extraction using SVMs.
The texture database consisted of images that corresponded to the last frame
of every video sequence studied, while the shape database consisted of the
grid displacements that were noticed between the first and the last frame of
every video sequence.

The databases were created using a subset of the Cohn-Kanade database
that consists of 222 image sequences, 37 samples per facial expression. The
leave-one-out method was used for the experiments [?]. For the implementa-
tion of the RBF NN, 25 neurons were used for the output layer and 35 for the
hidden layer.

The accuracy achieved when only DNMF was applied was equal to 86,5%,
while the equivalent one when SVMs along with shape information were used
was 93,5%. The obtained accuracy after performing fusion of the two informa-
tion sources was equal to 98,2%. By fusing texture information into the shape
results certain confusions are resolved. For example, some facial expressions
involve subtle facial movements. That results in confusion with other facial
expressions when only shape information is used. By introducing texture in-
formation, those confusions are eliminated. For example, in the case of anger,
a subtle eyebrow movement is involved which cannot probably be identified
as movement, but would most probably be noticed if texture is available.
Therefore, the fusion of shape and texture information results in correctly
classifying most of the confused cases, thus increasing the accuracy rate.

The confusion matrix [?] has been also computed. It is a n×n matrix con-
taining information about the actual class label lj , j = 1, .., n (in its columns)
and the label obtained through classification oj , j = 1, .., n (in its rows). The
diagonal entries of the confusion matrix are the numbers of facial expressions



that are correctly classified, while the off-diagonal entries correspond to mis-
classification. The confusions matrices obtained when using DNMF on texture
information, SVM on shape information and when the proposed fusion is ap-
plied are presented in Table ??.

Table 1.1. Confusion matrices for DNMF results, SVMs results and fusion results,
respectively.

labcl\labac anger disgust fear happiness sadness surprise

anger 13 0 0 0 0 0

disgust 10 37 0 0 0 0

fear 4 0 37 0 0 1

happiness 2 0 0 37 0 0

sadness 7 0 0 0 37 5

surprise 1 0 0 0 0 31

labcl\labac anger disgust fear happiness sadness surprise

anger 24 0 0 0 0 0

disgust 5 37 0 0 0 0

fear 0 0 37 0 0 1

happiness 0 0 0 37 0 0

sadness 8 0 0 0 37 0

surprise 0 0 0 0 0 36

labcl\labac anger disgust fear happiness sadness surprise

anger 33 0 0 0 0 0

disgust 2 37 0 0 0 0

fear 0 0 37 0 0 0

happiness 0 0 0 37 0 0

sadness 2 0 0 0 37 0

surprise 0 0 0 0 0 37

1.7 Conclusions

A novel method for facial expression recognition is proposed in this paper.
The recognition is performed by fusing the texture and the shape informa-
tion extracted from a video sequence. The DNMF algorithm is applied at the
last frames of every video sequence corresponding to the greatest intensity of
the facial expression, extracting that way the texture information. Simultane-
ously, a SVM system classifies the shape information obtained by tracking the
Candide grid between the first (neutral) and last (fully expressed facial expres-
sion) video frame. The results obtained from the above mentioned methods
are then fused using RNF NNs. The system achieves an accuracy of 98,2%
when recognizing the six basic facial expressions.
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Abstract. The Limited Receptive Area (LIRA) neural classifier is proposed 
for texture recognition of mechanically treated metal surfaces. It can be used in 
systems that have to recognize position and orientation of complex work 
pieces in the task of assembly of micromechanical devices. The performance 
of the proposed classifier was tested on specially created image database in 
recognition of four texture types that correspond to metal surfaces after: 
milling, polishing with sandpaper, turning with lathe and polishing with file. 
The promising recognition rate of 99.7% was obtained.  

1 Introduction 

The main approaches to microdevice production are the technology of micro 
electromechanical systems (MEMS) [1, 2] and microequipment technology (MET) 
[3-6]. To get the best of these technologies it is important to have advanced image 
recognition systems. 

Texture recognition systems are widely used in industrial inspection, for 
example, in textile industry for detection of fabric defects [7], in electronic industry 
for inspection of the surfaces of magnetic disks [8], in decorative and construction 
industry for inspection of polished granite and ceramic titles [9], etc. 

Numerous approaches were developed to solve the texture recognition problem. 
Many statistical texture descriptors are based on a generation of co-occurrence 
matrices. In [8] the texture co-occurrence of n-th rank was proposed. The matrix 
contains statistics of the pixel under investigation and its surrounding. Another 
approach was proposed in [9]. The authors proposed the coordinated cluster 
representation (CCR) as a technique of texture feature extraction. The underlying 
principle of the CCR is to extract a spatial correlation between pixel intensities using 
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the distribution function of the occurrence of texture units. Experiments with one-
layer texture classifier in the CCR feature space prove this approach to be very 
promising. Leung et al. [10] proposed textons (representative texture elements) for 
texture description and recognition. The vocabulary of textons corresponds to the 
characteristic features of the image. There are many works on applying neural 
networks in texture recognition problem [11, 12]. 

In this paper we propose the LIRA neural classifier [4] for metal surface texture 
recognition. Four types of metal surfaces after mechanical treatment were used to 
test the proposed texture recognition system. 

Different lighting conditions and viewing angles affect the grayscale properties 
of an image due to such effects as shading, shadowing, local occlusions, etc. The real 
metal surface images that it is necessary to recognize in industry have all these 
problems and what is more there are some problems specific for industrial 
environment, for example, metal surface can have dust on it.  

The reason to choose a system based on neural network architecture for the 
current task was that such systems have already proved their efficacy in texture 
recognition due to significant properties of adaptability and robustness to texture 
variety [13]. 

We have chosen the LIRA neural classifier because we have already applied it in 
the flat image recognition problem in microdevice assembly and the results were 
very promising [4].  We have also tested it in handwritten digit recognition task and 
its recognition rate on the MNIST database was 0.55% [4] that is among the best 
results obtained on this database. 

2 Metal surface texture recognition 

The task of metal surface texture recognition is important to automate the assembly 
processes in micromechanics [3]. To assembly a device it is necessary to recognize 
the position and orientation of the work pieces to be assembled [4]. It is useful to 
identify the surface of a work piece to recognize its position and orientation. For 
example, let the shaft have two polished cylinder surfaces for bearings, one of them 
milled with grooves for dowel joint, and the other one turned with the lathe. It will 
be easier to obtain the orientation of the shaft if we can recognize both types of the 
surface textures. 

There are works on fast detection and classification of defects on treated metal 
surfaces using a back propagation neural network [14], but we do not know any on 
texture recognition of metal surfaces after mechanical treatment. 

To test our texture recognition system we created our own image database of 
metal surface images. Four texture classes correspond to metal surfaces after: 
milling, polishing with sandpaper, turning with lathe and polishing with file (Fig. 1). 
It can be seen that different lighting conditions affect greatly the grayscale properties 
of the images. The textures may also be arbitrarily oriented and not centered 
perfectly. Metal surfaces may have minor defects and dust on it. All this image 
properties correspond to the conditions of the real industrial environment and make 
the texture recognition task more complicated. Two out of four texture classes that 
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correspond to polishing with sandpaper and to polishing with file sometimes can be 
hardly distinguished with the naked eye (Fig. 1, columns b and d). 

 
Fig. 1. Examples of metal surfaces after (columns): a) milling, b) polishing with sandpaper, c) 
turning with lathe, d) polishing with file 

3 The LIRA neural classifier 

The LIRA neural classifier [4] was developed on the basis of the Rosenblatt 
perceptron [15]. The three-layer Rosenblatt perceptron consists of the sensor S-layer, 
associative A-layer and the reaction R-layer. The first S-layer corresponds to the 
retina. In technical terms it corresponds to the input image. The second A-layer 
corresponds to the feature extraction subsystem. The third R-layer represents the 
system’s output. Each neuron of this layer corresponds to one of the output classes.  

The associative layer A is connected to the sensor layer S with the randomly 
selected, non-trainable connections. The weights of these connections can be equal 
either to 1 (positive connection) or to -1 (negative connection). The set of these 
connections can be considered as a feature extractor. 

A-layer consists of 2-state neurons; their outputs can be equal either to 1 (active 
state) or to 0 (non-active state). Each neuron of the A-layer is connected to all the 
neurons of the R-layer. The weights of these connections are modified during the 
perceptron training.  

We have made four major modifications in the original perceptron structure. 
These modifications concern random procedure of arrangement of the S-layer 
connections, the adaptation of the classifier to grayscale image recognition, the 
training procedure and the rule of winner selection.  
We propose two variants of the LIRA neural classifier: LIRA_binary and 
LIRA_grayscale. The first one is meant for the recognition of binary (black and 
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white) images and the second one for the recognition of grayscale images. The 
structure of the LIRA_grayscale neural classifier is presented in Fig. 2. 

 
Fig. 2. The structure of the LIRA_grayscale neural classifier 

The one-layer perceptron has very good convergence but it demands the linear 
separability of the classes in the parametric space. To obtain linear separability it is 
necessary to transform the initial parametric space represented by pixel brightness to 
the parametric space of larger dimension. In our case the connections between the S-
layer and the A-layer transform initial (WS · HS)-D space (WS and HS stand for width 
and height of the S-layer) into N-dimension space represented by binary code vector. 
In our experiments WS = HS = 220 and N varied from 64,000 to 512,000. Such 
transformation improves the linear separability. The coding procedure used in the 
LIRA classifier is the following. 

 

3.1 Image coding 

Each input image defines the activities of the A-layer neurons in one-to-one 
correspondence. The binary vector that corresponds to the associative neuron 
activities is termed the image binary code A = (a1, …, aN), where N is the number of 
the A-layer neurons. The procedure that transforms the input image into the binary 
vector A is termed the image coding. 

We connect each A-layer neuron to S-layer neurons randomly selected not from 
the entire S-layer, but from the window h · w that is located in the S-layer (Fig. 2). 

The distances dx and dy are random numbers selected from the ranges: dx from 
[0, wWS − ) and dy from [0, hH S − ). We create the associative neuron masks that 
represent the positions of connections of each A-layer neuron with neurons of the 
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window h · w. The procedure of random selection of connections is used to design 
the mask of A-layer neuron. This procedure starts with the selection of the upper left 
corner of the window h · w in which all connections of the associative neuron are 
located.  

The following formulas are used: 
dxi = randomi ( wWS − ), 
dyi = randomi ( hH S − ), 

where i is the position of a neuron in associative layer A, randomi (z) is a random 
number that is uniformly distributed in the range [0, z). After that position of each 
connection within the window h · w is defined by the pair of numbers:  

xij = randomij (w), 
yij = randomij (h), 

where j is the number of the connection with the retina. 
Absolute coordinates of the connection on the retina are defined by the pair of 

the numbers:  
Xij = xij + dxi, 
Yij =yij + dyi. 

To adapt the LIRA neural classifier for grayscale image recognition we have 
added the additional 2-state neuron layer between the S-layer and the A-layer. We 
term it the I-layer (intermediate layer, see Fig. 2). 

The input of each I-layer neuron is connected to one neuron of the S-layer and 
the output is connected to the input of one neuron of the A-layer. All the I-layer 
neurons connected to one A-layer neuron form the group of this A-layer neuron. 
There are two types of I-layer neurons: ON-neurons and OFF-neurons. The output of 
the ON-neuron i is equal to 1 when its input value is larger than the threshold iθ  and 
it is equal to 0 in opposite case. The output of the OFF-neuron j is equal to 1 when its 
input value is smaller than the threshold jθ  and it is equal to 0 in opposite case. For 
example, in Fig. 2, the group of eight I-layer neurons, four ON-neurons and four 
OFF-neurons, corresponds to one A-layer neuron. The thresholds iθ  and jθ  are 
selected randomly from the range [0, η  · bmax], where bmax is maximal brightness of 
the image pixels, η  is the parameter selected experimentally from the range [0, 1]. 
The i-th neuron of the A-layer is active (ai = 1) only if outputs of all the neurons of its 
I-layer group are equal to 1 and is non-active (ai = 0) in opposite case. 

Taking into account the small number of active neurons it is convenient to 
represent the binary code vector not explicitly but as a list of numbers of active 
neurons. Let, for example, the vector A be: 

A = 00010000100000010000. 
The corresponding list of the numbers of active neurons will be 4, 9, and 16. 

Such compact representation of code vector permits faster calculations in training 
procedure. Thus, after execution of the coding procedure every image has a 
corresponding list of numbers of active neurons. 

3.2 Training procedure 

Before starting the training procedure the weights of all connections between 
neurons of the A-layer and the R-layer are set to 0. As distinct from the Rosenblatt 
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perceptron our LIRA neural classifier has only non-negative connections between 
the A-layer and the R-layer. 

The first stage. The training procedure starts with the presentation of the first 
image to the LIRA neural classifier. The image is coded and the R-layer neuron 
excitations Ei are computed. Ei is defined as: 

∑
=

⋅=
N

j
jiji waE

1

,  

where Ei is the excitation of the i-th neuron of the R-layer, aj is the output signal (0 
or 1) of the j-th neuron of the A-layer, wji is the weight of the connection between the 
j-th neuron of the A-layer and the i-th neuron of the R-layer. 

The second stage. Robustness of the recognition is one of the important 
requirements the classifier must satisfy. After calculation of the neuron excitations of 
the R-layer, the correct class c of the image under recognition is read. The excitation 
Ec of the corresponding neuron of the R-layer is recalculated according to the 
formula: 

),1(* Ecc TEE −⋅=  
where 10 ≤≤ ET  determines the reserve of excitation the neuron that corresponds to 
the correct class must have. In our experiments the value ET  varied from 0.1 to 0.5. 

After that we select the neuron with the largest excitation. This winner neuron 
represents the recognized class. 

The third stage. Let us denote the winner neuron number as j keeping the number 
of the neuron that corresponds to the correct class denoted as c. If j = c then nothing 
is to be done. If j ≠ c then following modification of weights is to be done: 

( ) ( ) ,1 iicic atwtw +=+  

( ) ( ) ,1 iijij atwtw −=+  if ( ) )01( <+twij  then ( ) ,01 =+twij  

where wij(t) and wij(t + 1) are the weights of the connection between the i-th neuron 
of the A-layer and the j-th neuron of the R-layer before and after modification, ai is 
the output signal (0 or 1) of the i-th neuron of the A-layer.  

The training process is carried out iteratively. After all the images from the 
training set have been presented the total number of training errors is calculated. If 
this number is larger than one percent of the total number of images then the next 
training cycle is performed, otherwise training process is stopped. The training 
process is also stopped if the number of performed training cycles is more than a 
predetermined value.  

It is obvious that in every new training cycle the image coding procedure is 
repeated and gives the same results as in previous cycles. Therefore in our 
experiments we performed the coding procedure only once and saved the lists of 
active neuron numbers for each image on the hard drive. Later, during the training 
procedure, we used not the images, but the corresponding lists of active neurons. 
Due to this approach, the training process was accelerated approximately by an order 
of magnitude. 

It is known [16] that the performance of the recognition systems can be improved 
with implementation of distortions of the input image during the training process. In 
our experiments we used different combinations of horizontal, vertical and bias 
image shifts, skewing and rotation. 
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3.3 Recognition procedure 

In our LIRA neural classifier we use image distortions not only in training but also in 
recognition process. There is an essential difference between implementation of 
distortions for training and recognition.  In the training process each distortion of the 
initial image is considered as an independent new image. In the recognition process 
it is necessary to introduce a rule of decision-making in order to be able to make a 
decision about a class of the image under recognition based on the mutual 
information about this image and all its distortions. The rule of decision-making that 
we have used consists in calculation of the R-layer neuron excitations for all the 
distortions sequentially: 

,
0 1
∑∑
= =

⋅=
d

k

N

j
jikji waE  

where Ei is the excitation of the i-th neuron of the R-layer, akj is the output signal (0 
or 1) of the j-th neuron of the A-layer for the k-th distortion of the initial image, wji is 
the weight of the connection between the j-th neuron of the A-layer and the i-th 
neuron of the R-layer, d is the number of applied distortions (case k = 0 corresponds 
to the initial image). 

After that we select the neuron with the largest excitation. This winner neuron 
represents the recognized class. 

4 Results 

To test our texture recognition system we created our own image database of 
mechanically treated metal surfaces (see Section 2 for details). We work with four 
texture classes that correspond to metal surfaces after: milling, polishing with 
sandpaper, turning with lathe and polishing with file. 20 grayscale images of 
220x220 pixels were taken for each class. We randomly divide these 20 images into 
the training and test sets for the LIRA_grayscale neural classifier. The number of 
images in training set varied from 2 to 10 images for each class.  

All experiments were performed on a Pentium 4, 3.06 GHz computer with 1.00 
GB RAM. 

We carried out a large amount of preliminary experiments first to estimate the 
performance of our classifier and to tune the parameter values. On the basis of these 
preliminary experiments we selected the best set of parameter values and carried out 
final experiments to obtain the maximal recognition rate. In preliminary experiments 
the following parameter values were set: window h · w width w = 10, height h = 10, 
parameter that determines the reserve of excitation the neuron that corresponds to the 
correct class must have TE = 0.3. The following distortions were chosen for the final 
experiments: 8 distortions for training including 1 pixel horizontal, vertical and bias 
image shifts and 4 distortions for recognition including 1 pixel horizontal and 
vertical image shifts. The number of training cycles was equal to 30.  

The numbers of ON-neurons and OFF-neurons in the I-layer neuron group that 
corresponded to one A-layer neuron were chosen in order to keep the ratio between 
the number of active neurons K and the total number of associative neurons N within 
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the limits of NcK ⋅= , where c is the constant selected experimentally from the 
range [1, 5]. This ratio corresponds to neurophysiological data. The number of active 
neurons in the cerebral cortex is hundreds times less than the total number of 
neurons. For example, for the total number of associative neurons N = 512,000 we 
selected three ON-neurons and five OFF-neurons. 

In each experiment we performed 50 runs to obtain statistically reliable results. 
That is, the total number of recognized images was calculated as number of images 
in test set for one run multiplied by 50. New mask of connections between the S-
layer and the A-layer and new division into the training and test sets were created for 
the each run.  

In the first stage of final experiments we changed the total number of associative 
neurons N from 64,000 to 512,000. The results are presented in Table 1. Taking into 
account that the amount of time needed for 50 runs of coding and classifier’s training 
and recognition with N = 512,000 is approximately 3 h and 20 min we can conclude 
that such computational time is justified by the increase in the recognition rate. That 
is why we used N = 512,000 in all the posterior experiments. 

Table 1. Dependency of the recognition rate on the total number of associative neurons 

Total number of 
associative neurons 

Number of errors / Total 
number of recognized images 

% of correct 
recognition 

64,000 20 / 2000 99 
128,000 13 / 2000 99.35 
256,000 8 / 2000 99.6 
512,000 6 / 2000 99.7 

 
In the second stage of final experiments we performed experiments with different 

combinations of distortions for training and recognition. The results are presented in 
Table 2. It can be seen that distortions used in training process have great impact on 
the recognition rate that is no wonder if to take into account that the use of 8 
distortions for training allows to increase the size of training set 9 times. Distortions 
used in recognition process also have significant positive impact on the recognition 
rate. 

Table 2. Dependency of the recognition rate on the distortions 

Distortions 
Training Recognition 

Number of errors / Total 
number of recognized images

% of correct 
recognition 

- - 1299 / 2000 35.05 
- + 1273 / 2000 36.35 
+ - 14 / 2000 99.3 
+ + 6 / 2000 99.7 

 
In the third stage of final experiments we performed experiments with different 

numbers of images in the training and test sets. The results are presented in Table 3. 
The note tr./t. reflects how many images were used for training (tr.) and how many 
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for testing (t.). It can be seen that even in case of using only 2 images for training 
and 18 for recognition the LIRA_grayscale neural classifier gives a good recognition 
rate of 83.39%.  

Table 3. Dependency of the recognition rate on the number of images in training set 

tr./t. Number of errors / Total 
number of recognized images 

% of correct 
recognition 

2/18 598 / 3600 83.39 
4/16 174 / 3200 94.56 
6/14 34 / 2800 98.78 
8/12 8 / 2400 99.67 

10/10 6 / 2000 99.7 

5 Discussion 

The LIRA neural classifier was tested in the task of texture recognition of 
mechanically treated metal surfaces. This classifier does not use floating point or 
multiplication operations. This property combined with the classifier’s parallel 
structure allows its implementation in low cost, high speed electronic devices. 
Sufficiently fast convergence of the training process and very promising recognition 
rate of 99.7% were obtained on the specially created image database (see Section 2 
for details). There are quite a few methods that perform well when the features used 
for the recognition are obtained from a training set image that has the same 
orientation, position and lighting conditions as the test image; but as soon as 
orientation or position or lighting conditions of the test image is changed with 
respect to the one in the training set the same methods will perform poorly. The 
usefulness of methods that are not robust to such changes is very limited and that is 
the reason for developing of our texture classification system that works well 
independently of the particular orientation, position and lighting conditions. In this 
regard the results obtained in experiments are very promising. 

6 Conclusion 

This paper continues the series of works on automation of micro assembly processes 
[3, 4]. 

The LIRA neural classifier is proposed for texture recognition of mechanically 
treated metal surfaces. It can be used in systems that have to recognize position and 
orientation of complex work pieces in the task of assembly of micromechanical 
devices as well as in surface quality inspection systems. The performance of the 
proposed classifier was tested on specially created image database in recognition of 
four texture types that correspond to metal surfaces after: milling, polishing with 
sandpaper, turning with lathe and polishing with file. The promising recognition rate 
of 99.7% was obtained.  
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Abstract. This paper proposes a complete framework for accurate face
localization on video frames. Detection and forward tracking are first
combined according to predefined rules to get a first set of face candi-
dates. Backward tracking is then applied to provide another set of pos-
sible localizations. Finally a dynamic programming algorithm is used to
select the candidates that minimize a specific cost function. This method
was designed to handle different scale, pose and lighting conditions. The
experiments show that it improves the face detection rate compared to
a frame-based detector and provides a higher precision than a forward
information-based tracker.

1 Introduction

Achieving a good localization of faces on video frames is of high importance
for an application such as video indexing and thus, multiple approaches were
proposed to increase the face detection rate. In this paper, we introduce a new
method making full use of the information provided by a backward tracking
process and merging the latter with the detection and forward tracking results
using a Dynamic Programming (DP) algorithm. Detection and forward track-
ing were associated in several research works to improve the detection rate
[1]. Combining forward and backward tracking, on the other hand is a rather
new idea. It is suitable for analyzing movie or prerecorded content, since in
such cases, we have access to the entire video. An extension to particle filtering
is described in [2]. In this probabilistic framework, the preliminary detected
faces are propagated by sequential forward tracking. A backward propagation
is then performed to refine the previous results. As for Dynamic Programming
techniques, they are widely used to tackle various issues, among them motion
estimation [3], feature extraction and object segmentation [4]. They were also
used to perform the face detection and tracking, searching for the best match-
ing region for a given face template [5]. In [6], a multiple object tracking is
presented, where the Viterbi Algorithm is used to find the best path between
candidates selected according to skin color criteria.
In this paper, a new deterministic approach is presented. It applies face de-
tection, forward tracking and backward tracking, using some predefined rules.
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From all the possible extracted candidates, a Dynamic Programming algorithm
selects those that minimize a cost function.
The paper is organized as follows: Section 2 presents the new framework for the
extraction and labelling of the candidates for the face localizations. Section 3
describes how the trellis structure is applied to select the trajectory with the
lowest cost. Section 4 provides the results obtained on several video sequences
and section 5 concludes the paper.

2 Tracking Framework

In order to achieve a high detection rate on each frame of a video sequence,
detection and tracking algorithms were combined and some rules were defined
to form a complete tracking framework.

2.1 Detection

The implemented face detector is based on Haar-like features [7]. The algo-
rithm provides good detection results in case the orientation of the face is
almost frontal. But it also produces some false alarms. Therefore, a postpro-
cessing step is added for rejecting detected faces, if the number of skin-like
pixels present in the detected bounding box is below a threshold. The region of
the image containing the detected face is converted into the HSV color space
and two morphological operations, erosion and dilation are performed, in order
to remove the sparse pixels. The detection bounding box is then replaced by the
smallest bounding box containing all the skin-like pixels. This operation helps
removing a part of the background and thus better defining the tracked region.
The skin-like pixels are identified as those that fulfill the three following condi-
tions:

0 < h < 0.1 (1)

0.23 < s < 0.68 (2)

0.27 < v (3)

where h, s and v are the coordinates of the HSV color space. This approach is
similar to the one used in [8].
The detection process is applied on the first and last frame of a shot and every
five frames within the shot. This detection frequency appears to provide satis-
factory results. Ideally, if a person is once correctly located in each shot, then
the forthcoming processes will provide the missing localizations in the other
frames.
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2.2 Forward Tracking

To be able to localize faces on every video frame, a forward tracking process is
performed on each frame, starting from frames where faces have been detected.
The tracking algorithm used is the one described in [9], based on the so-called
morphological elastic graph matching (EGM) algorithm. It is initialized by the
output of the face detection algorithm and the faces can then be tracked until
the next detection of the same face or until the end of the shot, if the faces are
not detected again.
In fact, one face can be detected several times in a shot, this can lead to multiple
tracking of a same actor, which is time consuming. To overcome this problem,
a tracking rule is used in order to identify if newly detected faces correspond
to previously tracked faces. This rule is based on the percentage of overlap
Pover between the detected bounding boxes (Di) and the ones resulting from
the forward tracking (F) in the same frame. We define Pover as follows:

Pover(F ) = max
i

A(F
⋂

Di)

min(ADi
, AF )

(4)

where ADi
is the area of the ith detection bounding box and AF is the area

of the forward tracking bounding box. As for A(F
⋂

Di)
, it corresponds to the

area recovered by both bounding boxes. If Pover is higher than 70%, the two
bounding boxes correspond to the same actor and the new detection is used to
re-initialize the tracker.
This rule is illustrated on Fig 1. On the first frame of the shot, D1 represents
a detected face and is associated to a first actor. The forward tracking of the
detected face is performed until the next detection frame and the bounding
boxes are assigned the same label (Actor 1). On the next detection frame, D2

and D3 are compared to the tracking bounding box on the same frame. The
face that fulfills the overlap condition (D3) is assigned the same label (Actor 1)
while the other (D2) is associated to a new actor (Actor 2). This rule is applied
to the other detections D4 and D5 as well.

2.3 Backward Tracking

In order to provide a new set of face candidates, a backward tracking process is
performed on each frame. The tracker is initialized by the face detection results
as shown in Fig 1. This backward process is very useful in case a face is not
detected at the beginning but in the middle of a shot. The forward tracking
provides the bounding box localizations from the detection frame to the end of
the shot. As for the backward tracking, it will provide the missing results from
the first frame of the shot to the frame where the last face detection has been
performed.
A more interesting contribution of the backward tracking is obtained when the
forward tracking or the detection process fails to accurately locate the face of
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Actor 1

F F F F F F F F F F F F F F F

B B B BB B B B BB B B B B

D1
D2

D3

D1 D5

Actor 2

F F F F F F F F F F

B B B BB B B B BB B B B B

D2

D3
D4

Frame 1 Frame 6 Frame 16Frame 11

B

B

B B

B

D4

D5

Fig. 1. Illustration of the tracking rule. (D): Detection bounding boxes, (F): Forward
tracking bounding boxes and (B): Backward tracking bounding boxes

an actor on a frame i, due for instance to an occlusion, bad illumination or if
the tracker sticks to the background. If the next detection of this same actor
on the frame (i + 5n, n ∈ N∗) is more precise, then this information will be
propagated back and might generate, on i, a new face candidate with a higher
accuracy.
Proceeding this way, we will get one, two or three candidates per frame for
the face localization, corresponding to respectively the face detection, forward
tracking and backward tracking results.

3 A trellis structure for optimal face detection

Now in order to improve face localization, Dynamic Programming is used as a
postprocessing. In Section 2, each bounding box was assigned a label. Therefore
a trellis can be defined for each actor as represented in Fig 2. The labels D, F
and B define the states of the trellis diagram. The frames, where face detection
took place can have states D, F and B, while the other frames can have states
F and B only.
The complexity of the trellis is considerably reduced in comparison with other
approaches that draw the trellis using all the bounding boxes provided by the
detector or the tracker [6]. In fact, the number of possible paths in the trellis
grows exponentially with the number of nodes. Therefore, limiting the number
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of candidates to three is a major advantage of this method.

0 2 4 6 8
1

2

3 (F)

(B)

(D)

Fig. 2. Model of trellis with 7 frames (N = 7). (D): Detection results,(F): Forward
tracking results and (B): Backward tracking results

3.1 Cost

Finding the optimal face detection/tracking is equivalent to a best path ex-
traction from a trellis. For each frame of the video sequence we have one, two
or three states representing the face candidates provided by the face detec-
tion/tracking framework. The cost of a path until the frame l can be expressed
as follows:

C(l) = −
l∑

i=1

C(si) −
l∑

i=2

C(si−1, si) (5)

For each edge connecting a state si−1(corresponding to a bounding box Bi−1

in the previous frame) to another state si(corresponding to a bounding box Bi

in the current frame) we define the transition cost C(si−1, si) as a combination
of two metrics C1(si−1, si) and C2(si−1, si):

1. The first cost C1 takes into account the overlap between the bounding boxes
referenced Bi and Bi−1.

O(Bi−1, Bi) =
A(Bi−1

⋂
Bi)

min(ABi−1
, ABi

)
(6)

where ABi
is the area of the bounding box Bi. A(Bi−1

⋂
Bi)

represents the

area of the intersection of the bounding boxes Bi and Bi−1. We will assume
that the bounding boxes of two consecutive frames must have a non-zero
overlap. C1 will take a −∞ value in order to forbid the transition between
non-overlapping bounding boxes.

C1(si−1, si) =

{
O(Bi, Bi+1), if O(Bi, Bi+1) > 0

−∞, otherwise
(7)

Practically, a very small negative value will suffice.
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2. The cost C2 is equal to the ratio between the areas of the bounding boxes
as specified by Eq.8. This metric penalizes big changes of the bounding box
area during tracking.

C2(si−1, si) =
min(ABi−1

, ABi
)

max(ABi−1
, ABi

)
(8)

The transition cost C(si−1, si) is then deduced from C1(si−1, si) and C2(si−1, si)
e.g. by simple multiplication.
To obtain now the node cost C(si), we compute the distance between the center
of the bounding box (xci

, yci
) and the centroid (x, y) of the skin-like pixels.

C(si) = exp


−

√
(x − xci

)
2

+ (y − yci
)
2

√
H2 + W 2


 (9)

with H and W being the height and width of the frame.
The position of the centroid is defined as follows:

x =
1

nm

n∑

i=1

m∑

j=1

jA(i, j) (10)

y =
1

nm

n∑

i=1

m∑

j=1

iA(i, j) (11)

where A is an n × m matrix, whose elements take the value 1 when the
corresponding pixel in the bounding box Bi is skin-like and 0 otherwise.

Once both node and transition costs are defined, the optimal path will be
extracted as follows. For each node on the frame l, the accumulate cost C(l)
from the first frame to l is calculated using the accumulate cost C(l− 1) to the
different states in the frame l−1. The lowest cost provides the shortest path to
the current node and the sequence of nodes leading to this cost are memorized.
This process is iterated until the last frame. The shortest path is then retrieved
by backtracking the path to the first frame. An example of optimal path is
presented on Fig 3 for 30 video frames.

0 5 10 15 20 25 30
1

2

3 (F)

(B)

(D)

Fig. 3. Shortest path extracted from a 30-frame trellis.
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4 Experiments and results

4.1 Metrics for performance evaluation

Three metrics are used to evaluate the performance of the algorithm described
above:

– Detection Rate (DR)

DR =
NGD

NGT

(12)

where NGD is the number of good detections within the set of detected
bounding boxes. NGT is the number of ground-truth bounding boxes. A de-

tected bounding box is considered as good detection if
A

(GT

⋂
D)

AGT
> 0.3, where

A(GT
⋂

Di)
is the overlapping area between the ground-truth bounding box

and the detected bounding box associated to it.
– False Alarm rate (FA)

FA =
NFA

ND

(13)

where NFA refers to the number of false alarms within the set of detected
bounding boxes. ND is the number of bounding boxes detected. A bounding

box is counted as false alarm if
A

(GT

⋂
D)

AGT
< 0.3.

– Overlap precision measure (P )

P =
1

NGD

NGD∑

i=1

A(GT
⋂

Di)√
AGT ADi

(14)

This metric evaluates the overlap between the ground-truth and the correctly
detected bounding boxes [10]. This measure not only favors the bounding
boxes presenting a high overlap with the ground-truth bounding boxes, but
also penalizes those that contain a lot of non-ground-truth pixels

4.2 Results

Ground-truth has been generated manually for a series of video sequences in
order to evaluate the performance of the algorithm.
The metrics were calculated for three sets of results. The first set (A) corre-
sponds to the detections performed on each frame, the second set (B) contains
the results of the detection (with a five-frame period) combined with a forward
tracking process, while the third set (C) represents the detection, forward and
backward results merged by the proposed algorithm as shown in the previous
sections. The results obtained on three video sequences are presented in Table1.

In the three cases, we notice that the Detection Rate (DR) increases when
forward tracking is used. In fact, the face detector fails to determine the position
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Sequence 1 Sequence 2 Sequence 3
setA setB setC setA setB setC setA setB setC

Detection Rate(DR) 0.6923 1 1 0.7345 1 1 0.6281 0.9587 1

False Alarm (FA) 0 0 0 0 0 0 0.4685 0.5105 0.5105

Precision (P ) 0.7911 0.7183 0.7595 0.7971 0.7985 0.8044 0.8262 0.8242 0.8515

Table 1. Performance results.

of some faces due to the pose or the poor illumination. The missed faces can be
recovered by the forward tracking process. The Detection Rate (DR) also further
increases when both forward and backward tracking have been used, since the
face was not detected at the beginning of the shot but after several frames. For
each of these frames, the trellis contained only one candidate resulting from
backward tracking.
Once candidates were provided by the detector, forward and backward trackers,
the trellis performed a selection that always improved the overlap precision (P),
i.e. the face localization on the video frame.
We can also notice that one drawback of the tracking approach is that when a
face is erroneously detected, then it is tracked on the whole shot thus increasing
the False Alarm rate (FA), as can be seen in the case of the sequence 3.

5 Conclusion

In this paper, we proposed a forward/backward tracking process providing an
accurate face localization in digital videos. It can also be applied for tracking any
object for which we process an object detector. The described process combines
detection, forward and backward tracking algorithms in order to extract possible
faces. These candidates are used as nodes in a trellis diagram. The extraction
of the optimal path from this trellis provided us the optimal choice of the facial
bounding boxes. Our approach was mainly oriented towards face localization
improvement and we noticed in fact that the precision rate was increased, while
realizing a good detection rate. In our future work we will go further into
exploiting the trellis structure and work towards decreasing the false alarm
rate by merging distinctive trajectories.
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Abstract 

 
ICA decomposes a set of features into a basis whose components are statistically independent. It minimizes the 

statistical dependence between basis functions and searches for a linear transformation to express a set of features as a 
linear combination of statistically independent basis functions. Though ICA has found its application in face 
recognition, mostly spatial ICA was employed. Recently, we studied a joint spatial and temporal ICA method, and 
compared the performance of different ICA approaches by using our special face database collected by AcSys FRS 
Discovery system. In our study, we have found that spatiotemporal ICA apparently outperforms spatial ICA, and it can 
be much more robust with better performance than spatial ICA. These findings justify the promise of spatiotemporal 
ICA for face recognition. In this paper we report our progress and explore the possible combination of the Euclidean 
distance features and the ICA features to maximize the success rate of face recognition. 
  
Keywords: Machine vision, Face recognition, Spatiotemporal ICA.  
 
1.  INTRUDUCTION 
 

Face recognition is one of the most successful applications of image processing and analysis, and it has become one 
of the major topics in the research areas of machine vision and pattern recognition in the recent years. The applications 
can be seen in, but not limited to, the following areas: access control, advanced human-computer interaction, video 
surveillance, automatic indexing of images, video database and etc. In reality the process of face recognition is 
performed in two steps: (1) feature extraction and selection; and (2) classification of objects. These two steps are 
mutually related. Although the performance of classifier is crucial, a successful face recognition methodology may also 
depend heavily on the particular choice of features used by the classifier. So as far as face recognition is concerned, 
much effort has been put on how to extract and select the representative features [1]. Feature extraction and selection 
involve the derivation of salient features from the raw input data for classification and provide enhanced discriminatory 
power. Various kinds of methods have been proposed in the literatures [1]. Among them statistical techniques, such as 
principle component analysis (PCA), independent component analysis (ICA), have been widely used for face 
recognition. These techniques represent a face as a linear combination of low rank basis images. They employ feature 
vectors consisting of coefficients that are obtained by simply projecting facial images onto a set of basis images [2]. 
The practice proved that statistical method offers much more robustness and flexibility in terms of handling variations 
in image intensity and feature shapes. PCA uses eigenvectors with the largest eigenvalues to obtain a set of basis 
functions such that the original function can be represented by a linear combination of these basis functions [3]. The 
basis functions found by the PCA are uncorrelated, i.e. they cannot be linearly predicted from each other. However, 
higher order dependencies still exist in the PCA and, therefore, the basis functions are not properly separated [4]. ICA 
is a method that is sensitive to high-order relationship [5, 6]. By using ICA we can explore the important information 
hidden in high-order relationship among the basis functions. On the other hand Euclidean features are extracted from 
distances between certain important points on the face. This technique takes the advantage of the fact that different 
people have different face shape. But how to precisely locate the face organs is a big challenge. 
    Recently, Chen [7] proposed a spatiotemporal ICA algorithm to identify dynamic micro-Doppler motions. 
Continuing his work, we have applied spatiotemporal idea to face recognition. All experiments were performed on our 
special face database collected by AcSys FRS Discovery system. Two face datasets have been set up. One face dataset 
has less variation, while the other encompasses much more changes in terms of face expression and head side 
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movements. In this study a comparison of performances among different face recognition approaches has been made. 
And we also explore the possible combination of the Euclidean distance features and the spatiotemporal ICA features 
to maximize the success rate of face recognition. 
 
2.  THE FACE ORGAN LOCALIZATION AND EUCLIDEAN FEATURE 

COMPUTATION 
 
    Feature based face recognition seeks to extract, from a face image, a set of numerical characteristics that can 
uniquely identify that face. Our proposed feature set is based upon the physical distances between common points of 
the face. In our study two features were chosen. The first feature was calculated by obtaining the distance between the 
centers of the eyes and the distance from the center of the left eye to the center of the mouth. These two values were 
then used to form a ratio in order to normalize for variance in the scaling of each image. The second feature was 
determined symmetrically with the center of the right eye. The third feature was extracted by making a ratio of the 
distance between two eyes and distance from the mouth to the middle point of two eyes. 
To obtain the centers of the eyes and the mouth, a number of image processing methods were employed.  In order to 
find the eyes, pattern matching was used to locally identify possible eyes. Specifically, the light to dark to light contrast 
of the pupils and eyelashes was looked for in the original grayscale image.  All areas exuding this appearance were 
highlighted for closer scrutiny in a more global pattern-matching scheme after all potential eyes within a certain area 
were highlighted.   
 

 
Figure 1. Identify eyes on a face 

 

 

 Kirsch  edges ThresholdOriginal image

 Located mouth Noise filtered 

Figure 2.  Finding the month on a face
After all areas of interest were highlighted, a simple symmetry detection scheme was implemented to identify 

possible pairs of eyes. The two pairs closest in size and shape to a predefined notion of an eye were chosen.  More 
specifically, for each pixel, the number of highlighted pixels within a short distance of that pixel was stored at that 
pixel’s location in a two dimensional array.  Then two local maxima were searched for which were on approximately 
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the same level.  These two points were chosen as the approximate center of the eye, and everything not within a short 
distance of these areas was erased from the image. The procedures can be seen from Figure 1. 
    To find the mouth, a kirsch edge detection [8] filter was applied to the preprocessed grayscale image.  The image had 
its edges removed and was then threshed based on the distribution of its histogram.  The threshold value was set at the 
80th percentile of the gray distribution.  The mouth is one of the most contrasting features of the face, and thus with 
kirsch edge detection, it is featured more brightly than most parts of the face. The image was divided into small blocks 
in order to search for thin vertical lines and remove them as noise. The next step was to search through the binary 
image and obtain the characteristics of each cohesive group of remaining pixels.  Objects were matched to a predefined 
notion of what a mouth could be, based on height verse width and area.  The best matching group of pixels was taken 
as the mouth. The procedures of finding the month on a face are illustrated in Figure 2.  
    Obviously the above algorithms have their own problems and weaknesses. These revolve around alterations to the 
face and large variances in lighting.  Dark framed glasses or glasses with any significant glare resulted in erroneous 
measurements.  Asymmetrical facial expressions also resulted in off measurements, especially when the center of the 
mouth was shifted.  Mustaches extending over the mouth also resulted in errors finding and reading the whole of the 
mouth. When part of the face was cast in a heavy shadow, unsatisfactory features were obtained. Because of these 
problems it is hard to use these features exclusively for classification. Combination with other features is necessary. 

  
3.  SPATIAL ICA AND SPATIOTEMPORAL ICA FOR FACE RECOGNITION 
 

ICA is a statistical data processing technique to de-correlate the high order relationship of input. It was originally 
used for blind source separation (BSS). The basic ideal behind is to represent a set of random variables using basic 
functions, where the components (basic functions) are statistically as independent as possible. The observed random 
data (signal) X= (x1, x2, ..., xm)T can be linear combination of independent components (signals) S = (s1, s2, ..., sn)T. We 
may express the model as 
 

X = AS,                                                                                              (1) 
 
where A is an unknown constant matrix, called the mixing matrix. In feature extraction the columns of A represent 
features, and si is the coefficient of the ith feature in the data vector X.  Several methods for estimation of this model 
have been proposed [9, 10]. Here we used fixed-point fast ICA algorithm for independent components (ICs) estimation 
[11]. 
 
3.1 Spatial ICA 
 

If we concatenate a 2-D face image column-wisely, it can be represented as a 1-D signal (space-varying signal) as 
shown in Figure 3. Thus, a single face image becomes one entry in matrix X of (1).  In face recognition, the first step is 
to find the ICs as well as A or its inverse W as in (2) from X by using an ICA algorithm. Each IC component can also 
be represented by an image. Figure 4 illustrates the procedure, and Figure 5 shows some samples of ICs.    

 
(2)      X, * W C~I =  

            
                                             (A)                                                                        (B) 
 
Figure 3. Face image signals created by concatenating rows of the image: (A) One face image; (B) A sequence of 

images            

  3



                                 

IC
~

X 

W 

IC = W * X 
~ 

Face images Learned 
weights Outputs

 
     Figure 4. Estimate a set of ICs using ICA algorithm                            Figure 5. Some examples of spatial ICs 
 

After ICs have been obtained, any observed new face image can be represented by linear combination of these ICs 
with a coefficient vector A as illustrated in Figure 6, and expressed in (3): 

 

)3(
1

,),(),( ∑
=

=
N

n
yxnICnAyxkX  

 
where (A1, A2, ..., An)= A.  The vector A is the desirable feature set of the observed image and will be used for 
classification. 
 
3.2 Spatiotemporal ICA 
 

Basically, spatiotemporal ICA shares the similar ideal with spatial ICA, but using an image sequence instead of a 
single image as operating unit. The face image sequence contains the features in both the space-domain and the time-
domain. The goal of the spatiotemporal approach is to add time-domain feature into spatial 2-D feature set.  So an entry 
in the X contains multiple images. A typical temporal image sequence is presented in Figure 7.  
 

 
Figure 7.  A sample of a face image sequence  Figure 6.  Representation of observed image with ICs  

                 

                    

Figure 9. Representation of observed image sequence
                with spatiotemporal ICs  

Figure 8. An examples of spatiotemporal ICs 

  4



Similar to the spatial ICA, spatiotemporal ICs can be obtained by using joint spatial and temporal algorithm. That is 
the entries of X in (1) are image sequences.  Spatiotemporal ICs are also sequences. Figure 8 illustrates an example of 
spatiotemporal ICs, where each sequence consists of 12 images. 

Observed face image sequences can be represented by the spatiotemporal ICs as illustrated in Figure 9 and expressed 
with 

)4(
1

,),,(),,( ∑
=

=
N

n
tyxnICnAtyxkX  

 
where (A1, A2, ..., An)= A.  Notice in (4) that the time feature has been included, which means more information is added 
in this model with respect to spatial ICA. 
 
4.  LOCALIED ICA 
 
    With respect to PCA, ICA is spatially more localized [2, 6]. But it does not display perfectly the local characteristics 
and still uses the whole face information for operation if the input is with entire face images. Actually to recognize a 
person, ICA only bases on the important and valuable part of face information, such as eyes, mouth, and nose. If the 
whole face information is used, it may not add any more help. On the other hand, it may “dilute” the essential ones and 
makes performance deteriorated. So additional localization constraints should be imposed on ICA for better 
performance. For this purpose we take the advantage of the fact that eyes and mouth can be localized by the algorithm 
established in section 2. After positions of eyes and mouth have been found, a certain size of patches around eyes and 
mouth are respectively dug out. These two patches are concatenated together into a vector as the operation unit for 
matrix X of (1). 
 
5. AcSys FRS DISCOVERY SYSTEM AND FACIAL DATABASE PREPARATION 
 
    Face database used in this work was produced by AcSys FRS Discovery System, which is powered by HNet 
technology and developed by AcSys Biometrics Corp., Canada. The System, which is not just a video camera, can 
track precisely the human face and store a sequence of face images in real time. The purpose of our study is to consider 
complicated situations, such as different face expressions, face side movements, and other variations (such as with 
glasses) in the image sequences. The AcSys FRS system can help us to achieve this goal, while other commercially 
available database cannot. Figure 10 shows the main display screen of the system. Using the functions provided by the 
system, we can customize and take the sequential face images for different purposes. In this study, two facial datasets 
have been collected, one with less variation (dataset 1), and the other one with more changes in terms of face 
expressions and head side movements (dataset 2). For each person 200 face images were sequentially recorded for each 
dataset. Every face image was manually cropped to 112-by-92 pixel size. 
 

 
 
        Figure 10.  FRS main screen 

 
6.  THE EXPERIMENTS  
 

Face recognition experiments respectively using spatial ICA, spatiotemporal ICA, localized ICA, and Euclidean 
feature were conducted. Instead of one single image used for input data unit as with spatial ICA and localized ICA, 
spatiotemporal ICA employs a sequence of images (12 images used in our experiments). As a result the dimension of 

  5



image signal vector can become 12x112x92=123648, which is impracticable in terms of computational speed. To 
reduce the dimension we resized all the face images to 31-by-21 pixels. For each person 12 image sequences were 
produced in the following way. In the 200 image long sequence, we randomly choose a starting point, and took the 
following 12 images as an image sequence like given in Figure 7. For experiments of spatial ICA, localized ICA, and 
Euclidean features, 20 facial images were randomly picked from 200 images for each individual. In localized ICA, the 
patch sizes are 20-by-40 for eyes and 20-by-20 for month. For each experiment, we used half of the dataset (6 
sequences for spatiotemporal ICA, 10 images for the others) for training and the remaining half for testing. 

As mentioned earlier, in order to apply ICA algorithms to 2-D images, we concatenate rows of a 2-D image into a 
vector. The concatenated face image (space-varying) shares the same syntactic characteristics to regular time-varying 
signal (see Figure 3). This ensures that ICA can be applied to face image data [12]. After matrix X has been constructed 
with multi-image vectors, we also apply data normalization to eliminate the variation of images. Independent 
components (ICs) were estimated using training dataset. With the estimated ICs each observed new face image 
(sequence) can be represented by variant linear combination of ICs as building blocks. The variation is reflected in the 
amplitudes of coefficients of ICs (that is rows of matrix A), which can be found by 
 

A = X * ICs-1    ,                                                                               (5) 
 

where X is the new image (sequence) matrix (multi-images or image sequences). This matrix A contains representing 
features of the images (or image sequence). We used it as input data set for classification. For the purpose of 
performance evaluation, the numbers of ICs (features) from 2 to 200 with 10 as steps were respectively estimated. 
Classification was done on all of these numbers of features respectively. We calculated 3 Euclidean features for each 
image. Classification was conducted only once for this experiment.  

We also explored performance of feature set combined from ICA features and Euclidean features. For this purpose 
we just appended Euclidean features to ICA feature space and repeated the above procedures. It must be noted all the 
experiments were conducted on both dataset1 and dataset2 parallelly. 

In our experiments, linear Bayes normal classifier (LDC) and k-nearest neighbor (KNN) classifier [13] were used. 
 
7.  RESULTS AND DISCUSSION 
    
The face recognition rates with respect to different numbers of features for different approaches are shown in Figure 
11. The highest values are listed in the Table 1.  The results show that spatiotemporal ICA outperforms any other 
approaches. This gracefully conforms to our expectation.  In addition, all approaches perform better using dataset 1 
than using dataset 2. This is not surprising since dataset 1 represents more stable condition. What worth noticing at this 
point are the disparities of performances between using different datasets within the same approach. Even though in 
Figure 11 (D) we see two performance curves apart in the middle part of the figure, they tend to converge at the end. 
Especially in Figure 11 (A) two curves get very close. For the other methods the two performance curves are 
consistently separated. This observation proofs that spatiotemporal ICA is less affected by variations of face expression 
and other factors. That is spatiotemporal ICA should be more robust than other methods. These findings justify the 
promise of spatiotemporal ICA for face recognition. 
 

Table 1   The highest recognition rate for each experiment 
 

Spatial ICA Spatiotemporal ICA Localized ICA Euclidean   
Classifier 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 

LDC 0.6823 0.6212 0.9724 0.9615 0.7616 0.7043 0.4016 0.3143 Highest 
Correct 

Rate 
 

K-NN 0.7002 0.6389 0.8954 0.7979 0.7530 0.7028 0.4021 0.3087 

 
    The recognition rate of spatial ICA itself is not good. But after the features were localized the performance was 
apparently improved (see Figure 11 (B), (C), (E) and (F)). So localization of face images before conducting ICA is a 
choice for improvement. It is worth for further investigation. 

Though Euclidean features can be used in face recognition, it shows very poor performance with 40% recognition 
rate. In the hope that Euclidean distance features may give help for other approaches, we explored the combination of 
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the Euclidean distance features with ICA features. Figure 12 displays the changes of recognition rates after Euclidean 
distance features have been added to ICA feature spaces. It seems that when the size of ICA feature space is small, 
Euclidean distance features put great weight for the performance improvement. But when the number of ICA features 
gets large the weight of Euclidean features in the total feature space dies away dramatically. This means Euclidean 
features only helps when the ICA performance is not good enough. 
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Figure 11.  Face recognition rate against different feature numbers  
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Figure 12. The Differences of recognition rates between before and after combining Euclidean features 
 

Acknowledgements   
 
We would like to thank Dr. Victor C. Chen of NRL, who has made many suggestions and provided support and advice. 
 
References 
 
[1] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld,  Face Recognition: A Literature Survey, ACM Computing 

Surveys, Vol.35, No. 4, 399-458, December, 2003. 
[2]  Jongsun Kim, Jongmoo Choi, Juneho Yi, and Matthew Turk, Effective Representation Using ICA for Face 

Recognition Robust to Local Distortion and partial Occlusion, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 27, No. 12, 2005, 1977-1981. 

 
[3]   M. Turk, A. Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1), 71-86, 1991.  
 
[4]   R. Brunell and T. Poggio, Face Recognition: Features vs. Templates, IEEE Trans. Pattern Analysis and Machine 

Intelligence, 15(10):1042-1053, 1993. 
 
[5]   Chengjun Liu and Harry Wechsler, Comparative Assessment of Independent Component Analysis (ICA) for  Face 

Recognition, In: the 2nd International Conference on Audio- and Video-Based Biometric Person Authentication, 
AVBPA’99, Washington D.C. USA, March 22-24,1999. 

 
[6]  M. Stewart Bartlett, J. R. Movellan, and T. J. Sejnowski, Face Recognition by Independent Component Analysis, 

IEEE Transactions on Neural Network, Vol.13, Nov., 1450-1464, 2002. 
 

  8



  9

[7]  Victor C. Chen, “Spatial and Temporal Independent Component Analysis of Micro-Doppler Features” In: 2005 
IEEE International Radar Conference Record, 348 – 353, 9 – 12 May 2005, Arlington, VA, USA. 

 
[8] Umbaugh, Scott E. Computer Imaging: Digital Image Analysis and Processing. New York, Taylor & Francis,2005. 
 
[9]  Bruce A. Draper, Kyungim Baek,  Marian S. Bartlett, and J. Ross Beveridge, Recognizing Faces with PCA and 

ICA, http://www.face-rec.org/algorithms/Comparisons/draper_cviu.pdf 
 
[10] Andreas Jung, An Introduction to a New Data Analysis Tool: Independent Component Analysis,  

http://andreas.welcomes-you.com/research/paper/Jung_Intro_ICA_2002.pdf.   
 
[11]  FastICA MATLAB package: http://www.cis.hut.fi/projects/ica/fastica 
 

 [12]  James V. Stone, Independent Component Analysis: A Tutorial Introduction, Bradford Book, 2004.   
 
[13]  R.P.W. Duin, P. Juszczak, P. Paclik,E. Pekalska, D. de Ridder, D.M.J. Tax, Prtools, http://www.prtools.org/. 
 
 
 

http://www.face-rec.org/algorithms/Comparisons/draper_cviu.pdf
http://andreas.welcomes-you.com/research/paper/Jung_Intro_ICA_2002.pdf
http://www.cis.hut.fi/projects/ica/fastica


 
 
 


	122_WCC2006_122_Lei.pdf
	3. SPATIAL ICA AND SPATIOTEMPORAL ICA FOR FACE RECOGNITION


