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Abstract. This work studies the solution space topology of the Travel-
ing Salesman Problem or TSP, as a bi-objective optimization problem.
The concepts of category and range of a solution are introduced for the
first time in this analysis. These concepts relate each solution of a popu-
lation to a Pareto set, presenting a more rigorous theoretical framework
than previous works studying global convexity for the multi-objective
TSP. The conjecture of a globally convex structure for the solution
space of the bi-criteria TSP is confirmed with the results presented in
this work. This may support successful applications using state of the
art metaheuristics based on Ant Colony or Evolutionary Computation.
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1 Introduction

Metaheuristics are a class of optimization algorithms that today constitute one
of the best options to solve very complex problems. These algorithms try to
combine basic heuristic methods in higher level frameworks aimed at efficiently
and effectively exploring a search space [1].

The research in the field of metaheuristics has evolved on the basis of trial
and error [2], often motivated by the competition for improving the best known
solutions for given problems, and not by identifying the reasons for the success
and failure of these algorithms.

The Traveling Salesman Problem or TSP has been used as a benchmark
problem for the study of many metaheuristics. The topology of the single-
objective TSP has been study in [3–6], and the three-objective TSP in [2], for
specific instances. In general, all these results suggest that the solution space
has a globally convex structure.

Global Convexity is not convexity in the strict sense [2], but may be used to
denote the empirical observation that the best local optima are gathered in a
small part of the solution space, which hopefully includes the global optimum.
Metaheuristics exploit this by concentrating their search in that part of the
solution space [2].
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This work studies the solution space topology of the bi-objective TSP in a
more practical way than the studies carried out in [2], by means of two new
metrics, category and range of a solution. The former, relates a solution with
the number of solutions that dominate it; the latter, establishes a hierarchy in
the solution space. The whole solution space was studied for random instances
with 7, 8, 9 and 10 cities. Then, subsets of the solution space ware analyzed
for larger problems with 100 and 150 cities. It is interesting to mention that
when global convexity exists, it may be exploited in metaheuristics for multi-
objective combinatorial optimization [2]. Global convexity can be used to design
good algorithms or to explain the reason of success of well known metaheuristics
that make good use of this property, like Ant Colony Optimization (ACO) and
Evolutionary Algorithms (EA) [7].

The remainder of this work is organized as follows. Section 2 presents a
general definition of a multiple objective problem. The multi-objective TSP is
presented in section 3. Global convexity is described in section 4. The theo-
retical framework and experimental results are explained in section 5. Finally,
conclusions and future work are left for section 6.

2 Multi-Objective Optimization Problems

A general Multi-Objective Optimization Problem (MOP) includes a set of n

decision variables, k objective functions, and m restrictions. Objective functions
and restrictions are functions of decision variables. This can be expressed as:

Optimize y = f(x) = (f1(x), f2(x), . . . , fk(x))
Subject to γ(x) = (γ1(x), . . . , γm(x)) ≥ 0
where x = (x1, x2, . . . , xn) ∈ X is the decision vector, and

y = (y1, y2, . . . , yk) ∈ Y is the objective vector

X denotes the decision space while Y is the objective space. Depending on the
problem, “optimize” could mean minimize or maximize. The set of restrictions
γ(x) ≥ 0 determines the set of feasible solutions Xf ⊆ X and its corresponding
set of objective vectors Yf ⊆ Y. A multi-objective problem consists in finding
x that optimizes f(x). In general, there is no unique “best” solution but a
set of solutions, none of which can be considered better than the others when
all objectives are considered at the same time. This comes from the fact that
there can be conflicting objectives. Thus, a new concept of optimality should
be established for MOPs. Given two decision vectors u,v ∈ X:

f(u) = f(v) iff ∀i ∈ 1, 2, ..., k : fi(u) = fi(v)
f(u) ≤ f(v) iff ∀i ∈ 1, 2, ..., k : fi(u) ≤ fi(v)
f(u) < f(v) iff f(u) ≤ f(v) ∧ f(u) 6= f(v)

Then, in a minimization context, they comply with one of three conditions:
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u ≻ v (u dominates v), iff f(u) < f(v)
v ≻ u (v dominates u), iff f(v) < f(u)
u ∼ v (u and v are non-comparable), iff u ⊁ v ∧ v ⊁ u

Alternatively, u ⊲ v will denote that u ≻ v or u ∼ v. A decision vector x ∈
Xf is non-dominated with respect to a set V ⊆ Xf iff: x ⊲ v, ∀v ∈ V .
When x is non-dominated with respect to the whole set Xf , it is called an
optimal Pareto solution; therefore, the Pareto optimal set Xtrue may be formally
defined as: Xtrue = {x ∈ Xf : x is non-dominated with respect to Xf}. The
corresponding set of objective vectors Ytrue = f(Xtrue) constitutes the Optimal
Pareto Front.

A solution z is attainable if there exists a solution x ∈ Xf such that z =
f(x). The set of all attainable solutions is denoted as Z. The ideal solution z∗,
is defined as z∗ = (min f1(x), . . . ,min fk(x)).

3 The Multi-Objective TSP

Given a complete, weighted graph G = (N,E, d) with N being the set of nodes,
E being the set of edges fully connecting the nodes, and d being a function that
assigns to each edge 〈i, j〉 ∈ E a vector dij , where each element corresponds to
a certain measure (e.g. distance, cost) between i and j, then the multi-objective
TSP (MOTSP) [8] is the problem of finding a “minimal” Hamiltonian circuit
of the graph, i.e., a closed tour visiting each of the n = |N | nodes of G exactly
once, where “minimal” refers to the notion of Pareto optimality [8]. In this
study, we consider symmetric problems, i.e. dij = dji for all pairs of nodes i, j.

We will consider the bi-objective TSP:

Minimize y = f(x) = (y1 = f1(x), y2 = f2(x))
subject to f(x) > 0
where x = (〈1, 2〉, 〈2, 3〉, . . . , 〈n − 1, n〉, 〈n, 1〉) ∈ X

and y = (y1, y2) = (f1(x), f2(x)) ∈ Y

where f1 and f2 could be considered as the length of the tour, and the time
required to traverse it respectively.

We will measure similarity of two solutions x, x′ by the number of common
edges 〈i, j〉 ∈ x,x′. On the contrary, the distance δ(x,x′) is defined as the
number of non-common edges, i.e. n minus the similarity.

4 Global Convexity

The structure of the single-objective TSP has been studied by Boese et al. [3,4].
Their results indicate that the cost surface exhibits a globally convex structure,
where good solutions are together in a small region of the search space, and the
best solutions are located centrally with respect to the others.
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In a minimization context, Boese suggested an analogy with a big valley
structure, in which the set of local minima appears convex with one central
global minimum [4]. Even though there is no standard definition of global con-
vexity, figure 1 gives an intuitive picture of a globally convex structure.

 

Fig. 1. Intuitive picture of the big valley or globally convex solution space structure

The global convexity idea is based on two assumptions [2]:

– Convexity: Local optima are gathered in a relatively small region of the so-
lution space.

– Centrality: The best local optima are located centrally with respect to the
population of local optima.

If both assumptions are valid, we should also expect that local optima are gath-
ered in a small region close to the best local optimum [2]. Besides, any assess-
ment of global convexity only makes sense once a topology has been established
in the solution space [2].

Global Convexity has also been studied by Borges and Hansen in [2] for the
three-objective TSP, by means of scalarization functions. These results were
based on observed behavior rather than on theoretical analysis, and they are not
very practical. In fact, Borges and Hansen reduced the multi-objective problem
to a single-objective one [2], loosing several characteristics of a truly multi-
objective problem, whose theoretical solution is a whole Pareto set and not an
ideal solution which is not attainable in practice. Therefore, this work introduces
truly multi-objective concepts as category and range, trying to achieve a more
general multi-objective framework. This generalization allows a more rigorous
analysis of a MOP for any number of objective functions or measurement units.

5 Topological Analysis of the Solution Space

Boese used the length of a tour to study the quality of a solution [4], what is
completely valid in a single-objective context. For a MOP, Borges and Hansen
proposed the use of scalarization functions that reduce the multi-objective prob-
lem to a single-objective one [2].
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In what follows, the concepts of category and range of a solution are pre-
sented for the first time as quality metrics, to allow a further topological analysis
of the bi-objective TSP.

A population P = {x1,x2, . . . ,x|P |} is defined as a set of valid solutions
xi ∈ Xf of the bi-objective TSP, with cardinality |P |.

Definition 1. Let P ⊂ Xf be a population, and x ∈ P a solution. The category

of a solution x in a population P is defined as:

cat(x, P ) = |{u ∈ P : u ≻ x}|

Then, the category of the solution x is the number of solutions in P that domi-
nates x. Therefore, a solution of the Pareto front will always have a 0 category,
i.e. if u ∈ Xtrue then cat(u,Xf ) = 0.

Definition 2. Let P ⊂ Xf be a population. The non-dominated frontier of P

is defined as:

NF(P ) = {u ∈ P : cat(u, P ) = 0}

If P = Xf then NF(P ) = Xtrue.

Definition 3. Let P ⊂ Xf be a population, and x ∈ P a solution. The range

of a solution x in a population P , denoted as rng(x, P ), is defined according to

the following algorithm:

if x ∈ NF(P ) then rng(x, P ) = 0
else rng(x, P ) = 1 + rng(x, P ′) where P ′ = P − NF(P )

From now on, the use of the parameter P will be omitted from the range

and category notation. Therefore, they will be denoted as rng(x) and cat(x)
respectively. The parameter P is left only for ambiguous cases.

A definition of distance is now presented for the study of global convexity
in the bi-objective TSP.

Definition 4. Let P ⊂ Xf be a population, and x ∈ P a solution. The mean

distance of a solution x to a population P is defined as:

δ(x, P ) =
1

|P | − 1

|P |∑

i=1

δ(u,x) ∀u ∈ P.

This paper is inspired in Boese’s approach [4], where different solutions of an n

city problem are saved in a set P ; consequently, each solution x has:

– A category cat(x).
– A range rng(x).
– A mean distance to the other solutions of P denoted as δ(x, P ).
– A distance to the non-dominated frontier denoted as δ(x,NF(P )) (defined

in the next section).
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This work is divided in two parts. For the first part, small random instances
were thoroughly analyzed, and for the second part, analyses based on larger
instances from TSPLIB1 were made.

5.1 Exhaustive Study of the Solution Space

The study is based on random generated instances with 7, 8, 9 and 10 cities,
named litAB7, omiAB8, encAB9 and asuAB10. These problems are described
in [9].

Due to the presence of multiple optimal solutions, a definition of distance
to the non-dominated frontier is needed.

Definition 5. Let P ⊂ Xf be a population, and x ∈ P a solution. The distance

of a solution x to the non-dominated frontier of P is defined as:

δ(x,NF(P )) = min{δ(x,x∗
i ) : x∗

i ∈ NF(P )} (1)

The e best solutions of P will be denoted as P(e); e.g. P(100) denotes the set
of the best 100 solutions of P , i.e., the 100 solutions with the smallest category.

For the calculations, an exhaustive search was made. The obtained popula-
tion is the whole solution space for an n city problem, i.e. P = Xf , therefore,

|Xf | = |P | = (n−1)!
2 , and, NF(P ) = Xtrue.

For each solution x ∈ P , correlations between the following variables were
calculated:

– the distance to the non-dominated frontier δ(x,NF(P )) and the category of
a solution cat(x), denoted as ρ(cat(x), δ(x,NF(P )));

– the mean distance to the population δ(x, P ) and the category of a solution
cat(x) denoted as ρ(cat(x), δ(x, P ));

– the distance to the non-dominated frontier δ(x,NF(P )) and the mean dis-
tance to the population δ(x, P ) denoted as ρ(δ(x, P ), δ(x,NF(P )));

– the mean distance to the population δ(x, P ) and the range of a solution
rng(x) denoted as ρ(rng(x), δ(x, P ));

– the distance to the non-dominated frontier δ(x,NF(P )) and the range of a
solution rng(x) denoted as ρ(rng(x), δ(x,NF(P )));

– the range and category of a solution denoted as ρ(rng(x), cat(x)).

A summary for these values is shown in tables 1 to 4, and the figures for these
correlations can be found in [9].

These results suggest that range and category are very similar quality met-
rics, with correlations between them larger than 0.9.

High values can be observed for the correlations ρ(cat(x), δ(x, P )) and
ρ(rng(x), δ(x, P )), which suggests a concentration of very good solutions in
the center of the solution space, satisfying the centrality assumption of a
globally convex structure. Also, the correlations ρ(cat(x), δ(x,NF(P ))) and

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Table 1. Correlations for the problem litAB7

P P (|P | − 1) P (
|P |
2

) P (
|P |
4

)

ρ(cat(x), δ(x, P )) 0 0.602793 0.761135 0.659006
ρ(cat(x), δ(x,NF(P ))) 0.767441 0.763554 0.548112 0.585267
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.582333 0.633253 0.706702
ρ(rng(x), δ(x, P )) 0 0.628991 0.752562 0.661246
ρ(rng(x), δ(x,NF(P ))) 0.786593 0.783295 0.567543 0.633579
ρ(rng(x), cat(x)) 0.960048 0.960550 0.937163 0.933828

Table 2. Correlations for the problem omiAB8

P P (|P | − 1) P (
|P |
2

) P (
|P |
4

)

ρ(cat(x), δ(x, P )) 0 0.645277 0.868166 0.782142
ρ(cat(x), δ(x,NF(P ))) 0.774954 0.774225 0.627201 0.524996
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.549804 0.686872 0.555586
ρ(rng(x), δ(x, P )) 0 0.644026 0.929499 0.853578
ρ(rng(x), δ(x,NF(P ))) 0.810660 0.810222 0.678969 0.594514
ρ(rng(x), cat(x)) 0.976814 0.976843 0.973864 0.959215

Table 3. Correlations for the problem encAB9

P P (|P | − 1) P (
|P |
2

) P (
|P |
4

)

ρ(cat(x), δ(x, P )) 0 0.572255 0.825523 0.697679
ρ(cat(x), δ(x,NF(P ))) 0.641862 0.641802 0.435708 0.409532
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.329447 0.478431 0.371982
ρ(rng(x), δ(x, P )) 0 0.564819 0.894474 0.759983
ρ(rng(x), δ(x,NF(P ))) 0.672059 0.671998 0.483163 0.492397
ρ(rng(x), cat(x)) 0.971607 0.971621 0.974710 0.971266

Table 4. Correlations for the problem asuAB10

P P (|P | − 1) P (
|P |
2

) P (
|P |
4

)

ρ(cat(x), δ(x, P )) 0 0.508309 0.830280 0.734061
ρ(cat(x), δ(x,NF(P ))) 0.712957 0.712944 0.536178 0.488927
ρ(δ(x, P ), δ(x,NF(P ))) 0 0.392366 0.577878 0.442818
ρ(rng(x), δ(x, P )) 0 0.493534 0.899061 0.803484
ρ(rng(x), δ(x,NF(P ))) 0.750817 0.750809 0.583105 0.533937
ρ(rng(x), cat(x)) 0.970935 0.970937 0.976167 0.975501

ρ(rng(x), δ(x,NF(P ))), indicate that these solutions are gathered in a rela-
tively small region of the solution space, satisfying the convexity assumption.

As both assumptions are fulfilled, it is expected that these solutions are
close to the Pareto front, which is consistent with a globally convex structure
conjecture.

The correlations for the bi-objective TSP do not present the high values
obtained by Boese for the single-objective case [4]. The reason for this fact is
due to the existence of a whole set of Pareto solutions. As a consequence, non-
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Pareto solutions could be more central in the solution space than other Pareto
solutions.

Larger problems are analyzed in the next section using the same metrics
with subsets of the solution space.

5.2 Study of a Subset of Solutions

This analysis was based on the TSPLIB instances kroAB100, kroCD100,
kroAD100, kroBC100 and kroAB150. From each of these bi-objective TSPs,
n2 random samples were taken. The local search algorithm 2-Opt was used for
the optimization of each sample set, achieving populations containing local op-
tima solutions. This search strategy was chosen because it presents a simple
neighborhood structure, and allows the study of local optima distribution in
the solution space.

The methodology of the analysis remains the same, using subsets of the
solution space instead of considering the whole solution space. The correlations
obtained are shown in table 5.

Table 5. Correlations for the instances kroAB100, kroCD100, kroAD100, kroBC100,
kroAB150

kroAB100 kroCD100 kroAD100 kroBC100 kroAB150
ρ(cat(x), δ(x, P )) 0.616596 0.596558 0.603098 0.589122 0.571318
ρ(cat(x), δ(x,NF(P ))) 0.396173 0.401700 0.391263 0.396632 0.384648
ρ(δ(x, P ), δ(x,NF(P ))) 0.613169 0.626019 0.611728 0.653360 0.633580
ρ(rng(x), δ(x, P )) 0.639641 0.628951 0.645090 0.617764 0.606404
ρ(rng(x), δ(x,NF(P ))) 0.432760 0.441982 0.449073 0.437721 0.423266
ρ(rng(x), cat(x)) 0.945914 0.941865 0.937078 0.941890 0.938438

The results for the problem kroAB100 are shown in figure 2. The figures
for the other problems can be found in [9]. Correlations between range and
category, still maintain a value larger than 0.9, which confirms their similarity,
although range presents better results in the whole study.

A concentration of the best solutions centrally with respect to the population
is observed in figures 2.a and 2.d. Despite low correlations in the previous figures
(around 0.6), figure 2.c shows that solutions located centrally are closer to
the non-dominated frontier, and suggests the existence of a globally convex
structure. The same results were obtained for the rest of the studied instances.

6 Conclusions and Future Work

The concepts of category and range proved to be very effective quality metrics
for the bi-objective TSP, and the generalization of these concepts can be easily
made for any instance of the MOTSP. Besides, they can be used in any MOP
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Fig. 2. Population of 10,000 optimized solutions for the instance kroAB100

without definition changes. Although these concepts seem to be very similar,
range showed better results.

Category, range, mean distance to the population and distance to the non-
dominated frontier experimentally demonstrated to be correlated, showing the
topological characteristic of global convexity. These metrics could be used for
the study of global convexity in other MOPs, where metaheuristics, as ACO or
EA, have shown to be very efficient, and for the creation of new metaheuris-



10 Marcos Villagra, Benjamı́n Barán, and Osvaldo Gómez

tics that could exploit this type of structure. However, since the results were
obtained experimentally, it is not certain that this structure holds for every
instance of the bi-objective TSP. Nevertheless, for the single-objective case, no
instance was found without a globally convex structure [6].

A problem with a known global convexity structure will allow us to limit
the search to a smaller solution area, and from there, it will be possible to use
another appropriate algorithms to achieve better approximations to the Pareto
set.

There is a lot to do in the study of global convexity, like the creation of meta-
heuristics based on the exploitation of this structure, the study of instances with
correlated objectives, and the use of another kind of neighborhood structure
(different than 2-Opt). Also, it can be considered the development of a formal
theory for global convexity, and the identification of globally convex problems.
Just [3,4,6] refers to the subject of global convexity in the TSP, and [2] for the
MOTSP.
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Abstract. This paper presents an encoding technique that is common for many 
different logic synthesis problems. It enables us to construct a system of 
Boolean functions, and then to decompose this system into sub-systems in 
such a way that a dependency of functions, included into each sub-system, on 
the respective arguments is reduced. For complex applications such type of 
encoding has a high computational complexity and the paper proposes a novel 
evolutionary algorithm for the solution of this problem. 

1 Introduction 

There are many combinatorial tasks that involve encoding algorithms. These tasks 
appear in particular at various steps in the logic synthesis of digital circuits. One of 
these tasks is based on such encoding technique that enables us to construct a system 
of Boolean functions, and then to decompose this system into sub-systems for which 
we are able to reduce dependency of the functions, included into each sub-system, on 
the respective arguments [1,2]. Commonly the logic scheme of a finite state machine 
(FSM) is composed of a combinational circuit and a memory (a set of flip-flops). 
The combinational circuit implements a system of Boolean functions D1,...,DR that 
depend on variables x1,...,xL,τ1,...,τR. The x1,...,xL are external input variables and 
τ1,...,τR bring the code of the state afrom from which we have to carry out transition(s). 
The functions D1,...,DR enable the FSM to calculate the code of the next state ato. The 
lines τ1,...,τR are the outputs from the FSM memory and the lines D1,...,DR are the 
inputs to the FSM memory. For example, the FSM can be described as shown in 
Table 1 (at the beginning let us ignore all symbols enclosed in parenthesis). Here, 
afrom - is an initial state, K(afrom) and K(ato) - are the codes of the states afrom and ato, 
respectively, ato - is the next state, X(afrom,ato) - is a product of inputs that forces a 
corresponding transition. We assume that FSM memory is built from D flip-flops. 
Let us consider various transitions from the same state. We can see that for all 
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conditional transitions (i.e. for all transitions except from the state a6), all the sub-
functions of D1,...,D3 that must be activated on transitions from a state, depend on 
both the state and inputs. We will say that a sub-function is active if it has to be 
assigned to 1. Since all the sub-functions depend on states and inputs, the relevant 
Boolean expressions, that are used to calculate the values D1,...,D3, contain variables 
from the full set {x1,...,xL,τ1,...,τR}, where L - is the number of external inputs (in our 
example L=5) and R - is the size of the FSM memory (in our example R=3). 

Table 1. An example of FSM 

afrom K(afrom) X(afrom,ato) ato K(ato) D(afrom,ato) 
a1 000 (000) x1x2 

not_x1 not_x 2 
not_x 1x2 
x1 not_x 2 

a1 
a2 
a3 
a6 

000 (000) 
001 (011) 
010 (001) 
101 (010) 

- (-) 
D3 (D2,D3) 
D2 (D3) 
D1,D3 (D2) 

a2 001 (011) x3 
not_x 3 

a3 
a5 

010  (001) 
100 (101) 

D2 (D3) 
D1 (D1, D3) 

a3 010 (001) not_x 1 
x1x2 

x1 not_x 2 

a4 
a5 
a7 

011 (100) 
100 (101) 
110 (111) 

D2,D3 (D1) 
D1 (D1, D3) 
D1,D2 (D1, 
D2, D3) 

a4 011 (100) not_x 4 

x4 
a1 
a4 

000 (000) 
011 (100) 

- (-) 
D2,D3 (D1) 

a5 100 (101) x1 
not_x 1 

a1 
a6 

000 (000) 
101 (010) 

- (-) 
D1,D3 (D2) 

a6 101 (010) 1 a7 111 D1,D2,D3 
a7 110 (111) x5 

not_x 5 
a2 
a7 

001 (011) 
110 (111) 

D3 (D2, D3) 
D1,D2 (D1, 
D2, D3) 

Consider all sub-functions of D1,...,D3 that are generated for proper transitions 
from a state. For example, sub-functions D1

3,...,D3
3, that have to be activated in 

transitions from the state a3 (later we will also mark such sub-functions with a 
corresponding superscript) are the following: D1

3 = a3x1; D2
3 = a3 (not_x1 ∨ not_x2); 

D3
3 = a3not_x1 (these expressions can easily be obtained from Table 1). Note that 

since there exist 3 transitions from a3, they can be distinguished with the aid of just 
two Boolean variables, such as D1

3,...,D3
3. As a result, inputs such as x1 and x2 can 

affect (and change) just two variables from the set {D1
3,...,D3

3} and the remaining 
variables (in our example one variable from the set {D1

3,...,D3
3}) can be independent 

of external inputs from the set X = {x1,...,xL}, i.e. they will only depend on the 
current state (in our example on the state a3). If the number of different (non 
coinciding) next states in state transitions from am is equal to qm, then (R-intlog2qm) 
variables from the subset D1

m,...,DR
m can be independent of the input variables from 

the set X. 
Let us suppose now that the states for our example have been coded as shown in 

parenthesis in Table 1. The values of the sub-functions D1
r,...,D3

r (r=1,2,...,M, M - is 
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the number of FSM states and for our example M=7) that do not depend on input 
variables, are marked with bold and italic bold fonts. Note that the bold font has been 
used for passive values, and italic bold font for active values of the sub-functions.  

Now the combinational circuit S of the FSM can be decomposed into two sub-
circuits in such a way that the first sub-circuit Sax implements all active values of 
D1

1,...,D3
M that are not bold. The functions of Sax depend on both FSM inputs and 

states. The second sub-circuit Sa implements all active values of D1
1,...,D3

M  that are 
bold. The functions of Sa depend only on the states and for our example they are: 

D1 = a3 ∨ a6; D2 = a6 ∨ a7; D3 = a2 ∨ a6 ∨ a7; 

Such functions are well suited for minimization and are usually very simple. For 
instance, Sa can be constructed from just four 2-input logic elements of types XOR, 
AND and OR, which convert values of τ1,τ2,τ3 to values of D1,D2,D3. On the other 
hand, such kind of decomposition enables us to essentially simplify the sub-functions 
of Sax, i.e. the active sub-functions that are not bold in Table 1. Finally, even for our 
very simple example, the proposed state encoding permits the number of logic 
elements to be reduced by approximately 20%. 

Similar problems appear in a large number of practical applications and we will 
point out just some of them: 
• One-level control circuits based on blocks, such as programmable logic arrays 

(see [3, p. 182]. It allows reducing essentially the total number of 
interconnections by eliminating the repeated outputs for different blocks; 

• RAM-based implementation of FSMs [2], etc. 
The paper presents an evolutionary algorithm that allows the encoding 

considered above to be achieved. It should be noted that the technique of artificial 
evolution has been widely used for hardware design [4]. Evolutionary algorithms 
(EA) are based on a process of "generate-and-test" [5] and this strategy can be 
applied at different levels. For example, in [6] a genetic algorithm is employed to 
search for circuits that represent the desired state transition function. Many examples 
demonstrating EAs that have been successfully employed for hardware design are 
presented in [7-9]. For some circuits they produced unforeseen results of very high 
quality (for example, [10]), which have never been obtained by human designers. 

The remainder of this paper is organized in four sections. Section 2 presents the 
detailed description of the proposed evolutionary algorithm. Section 3 discusses 
feasible variations of the algorithm. Section 4 presents the results of experiments, 
which clearly demonstrate the advantages of the proposed encoding technique. The 
conclusion is in section 5. 

2 Evolutionary Algorithm 

The basic idea of EA was used for the considered problem in the traditional simple 
way [11]. The algorithm includes the following steps: 

1. Production of an initial population composed of individuals that represent a set 
of randomly generated codes for a given number of variables (FSM states). 

2. Evaluation of the population and measuring its fitness. 
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3. Variation of the population by applying such operations as reproduction, 
mutation and crossover. A reproduction operator makes a copy of the individual 
(with a probability based on its fitness) for inclusion in the next generation of the 
population. A mutation operator creates new individuals by performing some 
changes in a single individual, while the crossover operator creates new individuals 
(offspring) by combining parts of two or more other individuals (parents) [9].  

4.  Performing a selection process, where the most fit individuals survive and 
form the next generation.  

Points 2-4 are repeated until a predefined termination condition is satisfied. 
Let us assume that a population π including ν individuals π1,...,πν has been 

randomly generated. In order to evaluate each individual πι, ι=1,…,ν, it is necessary 
to specify a fitness function. For our problem it is very easy. Let A={a1,...,aM} be a 
set of variables that have to be encoded, M is the number of variables in the set A. 
The variables in each individual subset A(afrom) (where A(afrom) is a set of states to 
which there exist direct conditional transitions from the state afrom, km=|A(afrom)|>1, 
m=1,...,M) have to be encoded in such a way that the number wm (wm=R-intlog2km) 
of their bits with the same indices have equal values. Here R=intlog2M is the 
minimum number of bits in the codes of states assuming binary encoding. Thus, any 
solution for which the fitness function W is equal to Σwm (km>1, m=1,...,M) gives an 
optimal result (we assume that such result exists, which, in fact, is not true for a 
general case). Actually we can discover several optimal results and for each of them 
the function W has the same maximum possible value. Any of these results provides 
the best solution to the problem so we just have to find out the first of them. 

Now the fitness can be estimated very easily. For randomly generated codes πι 
we have to calculate the function Wi and compare the result with the value W. The 
less the difference W-Wi the better the fitness for the individual πι. 

The next step produces a variation of the population and can be carried out by 
applying such operations as reproduction, mutation and crossover. Two kinds of 
reproduction have been examined and compared. The first one is based on elitist rule 
[11] where the best solutions in the population are certain to survive to the next 
generation. This rule has been implemented as follows. For reproduction purposes 
10% of individuals with the best fitness have been copied to the next generation of 
the population. The second kind of reproduction uses the same percentage of 
individuals, but it is based on proportional selection [11]. 

The mutation operation runs on one parental individual selected with a 
probability based on fitness and creates one new offspring individual to be inserted 
into the new population at the next generation. In order to choose which parents will 
produce offspring, a fitness proportional selection is employed. Each parent πi is 
assigned a weight Wi, calculated at the previous step. The probability of selection for 
each parent is proportional to its weight. The main idea of the mutation operation 
will be illustrated by an example of state encoding for FSM with specification 
presented in [12]. The FSM has 10 states and the following transitions 
afrom⇒A(afrom): a1⇒{a2,a3,a4}, a2⇒{a2,a4,a5}, a3⇒{a6,a7,a8,a9}, a4⇒{a5}, a5⇒{a3}, 
a6⇒{a5,a7}, a7⇒{a3,a9}, a8⇒{a2,a10}, a9⇒{a10}, a10⇒{a1}. Since M=10 and R=4 for 
each individual we can chose any 10 from 24=16 possible codes. Suppose that at 
some step of EA we found the codes for an individual I shown in Table 2 and this 
individual has to be mutated. 
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Table 2. An individual I that has been selected for mutation operation 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
I 0 0 4 8 0 0 0 3 

Codes 1000 1001 1010 1011 1100 1101 1110 1111 
I 5 6 2 9 7 0 10 1 

For the individual I all the state codes have to be examined and all the weights 
wI

1,...,wI
M that exceed the value 1 have to be calculated. Some (or all for the best 

result) of these weights correspond to an optimal result. For all weights wI
m that have 

an optimal value the respective states am have to be selected (see in Table 2 bold 
underlined numbers m of states am). For example, we have the following state 
transitions a1→ {K(a2)=1010, K(a3)=0111, K(a4)=0010}, a2→{K(a2)=1010, 
K(a4)=0010, K(a5)=1000}opt, a3→{K(a6)=1001, K(a7)=1100, K(a8)=0011, 
K(a9)=1011}, a6→{K(a5)=1000, K(a7)=1100}opt, etc. Optimal solutions are indicated 
by subscript "opt" and the respective bits (i.e. bits with coincident indices that have 
equal values) of the codes are marked with bold font. The mutation operation permits 
a new child individual to be created and includes the following steps. 

Step 1. All the elements that correspond to an optimal solution (see bold 
underlined numbers in Table 2) are included in the new individual (offspring). 

Step 2. The codes for the remaining elements will be randomly regenerated in 
such a way that just free codes (i.e. such codes that have not been already chosen at 
step 1) can be selected.   

Crossover is the most complicated operation of the considered EA. The main 
idea of this operation will also be illustrated by the same example of FSM. Suppose 
that at some step of EA we have found the codes for two individuals I1 and I2 shown 
in Table 3 and these individuals were chosen to be parents for creating a new 
individual that is a child. For all weights wI1

m(wI2
s) that have an optimal value the 

respective states am (as) have to be selected (see bold underlined numbers m of states 
am for the first individual I1 and italic underlined numbers s of states as for the 
second individual I2). The parents are chosen on the base of proportional selection 
[11]. 

Table 3. The results of encoding for two individuals 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
I1 0 0 4 8 0 0 0 3 
I2 8 0 5 4 10 1 0 2 

Codes 1000 1001 1010 1011 1100 1101 1110 1111 
I1 5 6 2 9 7 0 10 1 
I2 7 0 9 3 0 0 0 6 

The crossover operation permits a new child individual to be created and includes 
the following steps. 

Step 1. The first solution (see Table 4) is formed from the selected elements of 
the first individual I1 (see bold underlined numbers in Table 3). 
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Step 2. Permitted selected elements from the second individual I2 (see italic 
underlined numbers in Table 3) are added to the first solution (i.e. to the child). An 
element is allowed for step 2 if: 

a) It was not included into the child during the first step; and 
b) It does not have a code that has already been used during the first step.  
Table 5 shows the result of step 2 for our example. 
Step 3. All the remaining permitted elements from the first and the second 

individuals are added to the child. An element is allowed for step 3 if it has not yet 
been included in the child and: 

a) It has the same code for both individuals I1 and I2; or 
b) It is included in the second individual I2 and the respective code of the first 

individual I1 was not used for the states; or 
c) It is included in the first individual I1 and the respective code of the second 

individual I2 was not used for the states; 
Table 6 shows the result of step 3 for our example. 

Table 4. The result of step 1 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child   4      
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5  2  7  10  

Table 5. The result of step 2 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child   4      
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5  2 3 7  10  

Table 6. The result of step 3 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child 8  4   1   
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5 6 2 3 7  10  

Step 4. All the remaining states that have not been assigned yet are recorded in 
free boxes for codes from left to right. 

Table 7 presents the final result of the crossover operation. 
Individuals I1, I2 and the child can be evaluated as follows: WI1=WI2=11, 

Wchild=13 (i.e. the child is better than any of the parents I1 and I2) and the optimal 
weight W=15.  

There are two termination conditions for the considered EA: obtaining an optimal 
solution or exceeding a specified time limit. 
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Table 7. The result of step 4 that gives the final result of the crossover operation 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child 8 9 4   1   
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5 6 2 3 7  10  

3 Variations of the Evolutionary Algorithm 

Note that for many practical applications it is allowed that a state has more than one 
code. If the FSM circuit is constructed from RAM blocks then using multiple codes 
does not make the circuit more complicated [2]. Moreover applying this technique 
enables us to improve the results of encoding. It should be noted that for some 
practical problems an optimal solution, that only permits each state to be assigned a 
single unique code, cannot be obtained. For example, such solution cannot be found 
for the following set of state transitions: a1⇒{a1,a2}, a2⇒{a2,a3}, a3⇒{a4,a5}, 
a4⇒{a1,a3}, a5⇒{a1}. However, if more than one code is permitted for the states we 
can find an optimal solution, which is: K(a1)=000, K(a2)=001, K(a3)=100 and 101, 
K(a4)=011, K(a5)=111. The EA can be modified slightly in order to produce the 
proper solution. Indeed if an optimal result cannot be found within a predefined time 
interval we can allow using more than one code for states. Thus, the algorithm is 
relatively flexible when it comes to future improvements and modifications. 

4 Experimental Results 

The results of the proposed EA were estimated for more than 100 digital circuits that 
required the considered above encoding technique within the respective process of 
synthesis. Fig. 1 shows these results for 25 FSMs. We considered block-based 
decomposition of FSMs [3], where R=intlog2M and Rav is an average number of 
outputs for the blocks. So the considered technique makes possible the number of 
outputs required for each block to be decreased on average by 1.8.  
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Fig. 1. The results of experiments. 
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The EA has been analyzed in several contexts. Firstly, we evaluated primary 
genetic operations that are reproduction (based on elitist rule and proportional 
selection criteria), mutation and crossover. The considered options A, B, C and D are 
listed below: 

A: the crossover operation was carried out in order to form 90% of population for 
the next generation and 10% of population for the next generation was chosen with a 
probability based on fitness (i.e. based on proportional selection); 

B: firstly the crossover operation was carried out in order to form 100% of 
population, secondly the mutation operation based on proportional selection was 
performed for 10% of individuals of the new generation and finally 10% of 
individuals in the next generation were replaced with 10% of randomly generated 
individuals; 

C: the mutation operation based on proportional selection was carried out in 
order to form 100% of population for the next generation and 10% of individuals in 
the next generation were replaced with 10% of randomly generated individuals; 

D: the crossover operation was carried out in order to form 90% of population for 
the next generation and 10% of population for the next generation was chosen based 
on elitist rule. 

Fig. 2 shows how the execution time for all four options depends on the number 
of individuals in population. This dependency was considered for an FSM with 15 
states (M=15) and with at maximum 4 transitions from each state. The experiments 
were performed on PentiumIII/800MHz/256MB. Fig. 3 shows how the number of 
required generations for all four options depends on the number of individuals in 
population. 

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

10
00

Number of individuals

Ex
ec

ut
io

n 
tim

e 
(s

)

A
B
C
D

 
Fig. 2. Dependency of execution time on the number of individuals in population 

Secondly, we examined practical applications that could benefit from the 
considered encoding technique. This enabled us to estimate some parameters, such as 
the expectable size of codes. Table 8 presents examples of control circuits used in 
assembly lines for manufacturing purposes. The number of individuals in population 
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was chosen to be 15. Here NG is the number of generations, W is the optimal weight, 
We is the obtained weight, ET is the execution time, Gmin = max (intlog2|A(am)|), 
m=1,...,M. 

Thirdly, we performed a set of experiments for randomly generated examples 
with different initial data (such as the number of individuals in populations) and 
variable requirements (such as using one code for each state of FSM or employing 
more than one code for some states). Table 9 shows the best results for options A, B, 
C, D obtained for arbitrary selected examples (the option that gave the best result is 
indicated in the first column in parentheses). For the examples aex7 and aex8 just the 
option D was used and we received We<W because the value W cannot be obtained 
when using just one code for each state. If we allow to employ more than one code 
for some states then the result with We=W can be easily found (ET = 41.12 s for 
aex7 and ET = 9.38 s for aex8). 
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Fig. 3. Dependency of the number of generations on the number of individuals in population 

Table 8. The results of experiments for practical examples 

Example NG W We ET (s) M Gmin 
Ex1 134 32 32 0.424 20 2 
Ex2 63 36 36 0.261 29 2 
Ex3 99 7 7 0.202 12 4 
Ex4 111 30 30 0.255 15 2 

Table 9. Experiments with arbitrary selected FSMs 

Example NG W We ET (s) M Gmin 
aex1 (B) 15 21 21 0.052 21 2 

aex2 (B,D) 4 25 25 0.017 28 2 
aex3 (D) 146 15 15 0.216 10 2 
aex4 (B) 23682 34 34 61.767 15 3 
aex5 (B) 490 31 31 3.897 47 2 
aex6 (B) 12854 42 42 49.201 16 3 

aex7 5534 88 87 1000 52 2 
aex8 1024 38 37 1000 49 3 
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5 Conclusion 

In the previous discussion we have presented the evolutionary algorithm for state 
encoding that allows Boolean functions to be decomposed in such a way that the 
dependency of sub-functions obtained as a result of the decomposition on the 
arguments can be reduced. The algorithm has been analyzed in several contexts. 
Firstly, we evaluated the primary genetic operations that are reproduction, mutation 
and crossover. Secondly, we examined practical applications that require the 
considered encoding technique. This enabled us to estimate some parameters, such as 
the expectable size of codes. Thirdly, we performed a set of experiments with 
different initial data (such as the number of individuals in populations) and variable 
requirements (such as using one code for each state of finite state machine or 
employing more than one code for some states).  The examples in the paper and the 
results of experiments with a C++ program that implements the proposed 
evolutionary algorithm have shown that the considered approach is very effective. 
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Abstract. We present a resolution technique of the University course 
Timetabling problem (UCTP), this technique is based in the implementation of 
Hypercube framework using the Max-Min Ant System. We presented the 
structure of the problem and the design of resolution using this framework. 

A simplification of the UCTP problem is used, involving three types of 
hard restrictions and three types of soft restrictions.  We solve experimental 
instances and competition instances the results are presented of comparative 
form to other techniques. We presented an appropriate construction graph and   
pheromone matrix representation. A representative instance is solved in 
addition to the schedules of the school of Computer science engineering of the 
Catholic University of Valparaiso. The results obtained for this instance 
appear. Finally the conclusions are given. 

1 Introduction 

The Timetabling problems are faced periodically by each school, college and 
university in the world. In a basic problem, a set of events (particular classes, 
conferences, classes, etc) must be assigned to a set of hours of a way that all the 
students can attend all of their respective events. With the reservation of which 
restrictions of hard type which necessarily they must be satisfied and soft restrictions 
exist that deteriorate the quality of the generated schedule. Of course, the difficulty 
of any particular case of the UCTP [1] [2] depends on many factors and in addition 
the assignment of rooms perceivably makes the problem more difficult in general. 

Many techniques have been used in the resolution of this problematic one, 
between these we can find evolutionary algorithms, simulated annealing, and tabu-
search. Other technique has presented good results is the genetic algorithms [3]. But 
we looked for here specifically to represent the resolution through the ant colony 
optimization (ACO) and through the implementation of Hypercube framework for 
Max-Min Ant System (abbreviation in Spanish MTH-SHMM). We give a 
representation for the problem, generating an appropriate construction graph and the 
respective pheromone matrix associated. 
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In the following sections we present the UCTP problem, the problem design for 

Hypercube framework. The instances of the problem used and the results of the 
experimentation. Finally the conclusions of the work appear. 

 

2 University Course Timetabling Problem (UCTP) 

2.1 Problem description 

The problem timetabling considered to make this study similar to one is presented 
initially by Paechter in [4]. Timetabling of university courses is a simplification of a 
typical problem [5]. It consists of a set of events E and must to be scheduled in a set 
of timeslots T ={t1,…,tk}  (k = 45, they correspond to 5 days of 9 hours each), a set of 
rooms R in which the events will have effect, a set of students S who attend the 
events, and a set of features F required by the events and satisfied by the rooms. 
Each student attends a number of events and each room has a maximum capacity. A 
feasible timetable is one in which all the events have bee assigned a timeslot and a 
room so that the following hard constraints are satisfied: 

• No student attends more than one event at the same time;  
• The rooms must be sufficiently great for all students who attend a class and 

to satisfy all the features required by the event;  
• Only one event is in each room at any timeslot.  
  

In addition, All possible timetable generated is penalized for each occurrence 
according to the number of violations that exists of the soft constraint of problem. 
Some of these restrictions appear next: 

• A student has a class in the last slot of the day;  
• A student has more than two classes in a row;  
• A student has exactly one class on a day. 
Feasible solutions are always considered to be superior to infeasible solutions, 

independently of the numbers of soft constraint violations. In fact, in any 
comparison, all infeasible solutions are to be considered equally worthless. The 
objective is to minimize the number of soft constraint violations in a feasible 
solution.  

3 Design of Hypercube Framework SHMM for Timetabling 
(MTH-SHMM) 

3.1 Resolution Structure 

Given restrictions presented in the previous section and the characteristics of 
problem, we can now consider the option to design an effective MTH-SHMM for the 
UCTP. We have to decide how to transform the assignment problem (to assign 
events to timeslots) into an optimal path problem which the ants can solve [12]. To 
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do this we must create an appropriate construction graph for the ants to follow. We 
must then decide on an appropriate pheromone matrix and heuristic information to 
influence the paths the ants will take through the graph. 
  

We present the principal elements used to generate the UCTP solutions, 
presenting in a figure 1 these three elements. 
 
 
 
 
 
 
 
 
Figure 1. An instance of the problem is received like input, this it happens through an 
association process event-timeslot, assigns events to a timeslot, later a matching algorithm [8] 
is used for makes the assignation from rooms to each one of events associated to timeslot. In 
this point a solution is complete, but is low quality. Then a local search algorithm [16] is 
applied that improves the quality of the solution and gives like final result one optimal 
solution to the UCTP. 

 

3.2 Construction graph 

One of the main elements of the ACO metaheurístic is the power to model to the 
problem on construction graph [6] [7], that way a trajectory through the graph 
represents a problem solution. In this formulation of the UCTP it is required to 
assign each one of │E│ events to │T│timeslots. Where direct representation of the 
construction graph this dice by E × T; east dice graph we can then establish that the 
ants walk throughout a list of events, choosing timeslot for each event. The ants 
follow one list of events, and for each event and, the ants decide timeslot t. each 
event a this single time in timeslot, thus in each step an ant chooses any possible 
transition as it is in the figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MTHSHMM: 

Asociación 
Evento-timeslot 

Matching 
algorithm  

Rooms 
assignation 

Local 
Search 

Optimizad 
solution instance Solution
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Figure 2. Each ant follows a list of events, and for each event e Є E, an ant chooses a timeslot 
t Є T. 

The ants travel through the construction graph selecting ways of probabilistically 
way. Using the following function: 
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  This probability function is come off the used in [6]. This function of 

probability directly depends on the pheromone information τ, they have the possible 
ways to follow. The parameter α is like appendix of the original function in [6], for 
this case its value is 1.  
 

3.3  The Pheromone matrix 

In search of a pheromone matrix we represented that pheromones indicates the 
absolute position where the events must be placed. With this representation the 
pheromone matrix is given by τ (Ai) = τ, i=1,…,|E|, the pheromone does not depend 
on the partial assignments Ai. It can to observe that in this case the pheromone will 
be associated with nodes in the construction graph rather than edges between the 
nodes.  

A disadvantage of this directs pheromone representation is that the absolute 
position of events in the timeslots it does not matter very much in producing a good 
timetable. The relative placement of events is more important. For example, given a 
perfect timetable, it is usually possible to permute many groups of timeslots without 
affecting the quality of the timetable. 

By another side we defined that for the use of the heuristic information η it must 
use a function that calculates a weighted sum of several or all of the soft and hard 
constrains in each assignation, which is to incur very high a computational cost stops 
this class of problem [8]. For this we will not use east type of information to orient 
the route of the ants.  
 

3.4     Algorithm Description 

We show the general structure of the algorithm, in which some modifications are 
made of presented in [9] [11]. A new assignation values to τmax, τmin ,a new 
pheromone update rules. We define the assignment Ai like the timeslot selected for 
the event i. The algorithm is the following: 
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Only the solution that causes the fewest number of hard constraint violations is 

selected for improvement by the Local Search. The pheromone matrix is updated 
only once by each iteration, and the global best solution is used for the update. Then 
Aglobal_best   be the assignment of the best candidate solution Cglobal_best found since the 
beginning. The following update rule is used: 
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 In the right part of the equation is reduced to ∆τ(e,t)
upd  = 1if Aglobal_best(e) = t   and 

0 in otherwise. Where Aglobal_best is the solution used for pheromone update. With this 
update rule to makes sure that the pheromone values of the graph, are going to be 
always between values [0,1]. The rate of evaporation ρ Є [0.1].  
 

1 Input: Problem instance I 
2 τmax  ← 1 
3 τ(e, t)  ←   τmax  ∀ (e, t) Є E×T 

4 calculate c(e, e’)  ∀ (e, e’) Є  E2 
5 calculate d(e) 
6 sort E according  « , resulting in e1 « e2 « …« en 
7 while time limit not reached do 
8    for  a = 1 to m do 
9          {construction process of ant a} 
10        A0← ∅ 
11        for  i = 1 to |E| do 
12         chooser timeslots t according to probabilities 

),( tei
p for event ei 

13             Ai ← Ai-1 ∪ {(ei, t)} 
14         end for 
15         C←matching_algorithm (An) 
16         Cbest_iteration ← best of  C and Cbest_iteration 
17  end for 
18  Cbest_iteration ← applying local search to Cbest_iteration 
19  Cglobal_best ← best of Cbest_iteration y Cglobal_besl 
20 global pheromone update for τ using Cglobal_best , implicated to MTH 
21 end while 
22 Output: An optimized candidate solution Cglobal_best  for I 
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4 Experimentation 

4.1 Tests 

The algorithm was implemented in C++ programming language, under Linux system 
using GNU G++ compiler GCC 2.96. The behavior of Hypercube framework Max-
Min Ant System (MTH-MMAS) was observed in the resolution of the UCTP. The 
used instances appear to continuation. 

Instances 1: Instances of the UCTP are structured using a generator described in 
[10]. This generator allows generating classes of instances small, medium, which 
reflect varied problems of timetabling of several sizes.  

Instances 2: In addition it was used a series of 20 instances created for 
International Timetabling Competition, these instances is made with the same 
generator used in instances 1. 

The parameters study is made initially, to evaluate the best values than they 
must to assume these parameters. The small (small1) instances was used for using 
the MTH-MMAS without local search making evaluations with different ants 
numbers  m and with different evaporations factors ρ, the parameters of α = 1,  
number on attempts = 10 and a maximum time by attempt = 90 seconds for all the 
tests. The results are in the following table. 

Table 1. It presents the best results obtained when proving the instance small1.tim varying 
ants number m and evaporation factor ρ. 

  
Best solutions MTH-SHMM 

m Evaluation Tº seg. ρ Evaluation Tº seg.

5 17 6,79 0,2 15 7,11 
10 16 7,46 0,5 13 8,1 
20 16 6,06 0,8 17 6,79 

 
In the table to be observed the best results are obtained using the parameter 

m=20 obtaining a evaluation of 16 in 6.06 seconds. And for the case of evaporation 
factor the best value is =0,5 in 8.1 seconds. 

The values shown in the tables previously presented they belong to a series of 
executions that allow of experimental form to determine as are more advisable 
parameters to use in the execution of the algorithm of MTH-MMAS. This way we 
compared the algorithm of the Max-Min Ant System with and without Hypercube 
framework, in addition the local search is included to increment the quality of the 
solutions in different instances. 
 
 

4.2 Distribution results 

We show a graphic in which they are a series of boxplot which they represent 
relative distribution of the number of constrained violations for hypercube 
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framework Max-Min Ant System (MTH-SHMM) and the Max-Min Ant System 
(MMAS) pure for all the instances of type small and medium with which they were 
proven. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Like it is possible to be observed in most of the results for the different instance 
types, the obtained results using hypercube framework they are of better quality (smaller 
violation of soft constrain VRS) since 50% of the data represented by a horizontal line always 
are under the level of the same instance for the Max-Min Ant System  (SHMM) pure. 
 

4.3    Comparison with other techniques 

Here it present a comparative picture between the solutions obtained for different 
instances for the UCTP doing use of different techniques like Simulated annealing, 
advanced search and simulated annealing with local search [13][14][16]. The results 
obtained for the competition instances appear. 
 
 
Table 2. It present the best results obtained when proving the instances of the 
International Timetabling Competition compared with other techniques. 

 
 
 
 
 

 
 
 
 
 
  
 For these instances and compared with the other solutions the MTH-MMAS it 
present two characteristics a to evaluate; first it has the capacity to generate feasible 
solutions for these instances. These instances are of great you make difficult since 
they are for Timetabling competitions. Second the quality of the generated solutions 
is of very low category compared with the technique based on Simulated Annealing, 

Technique 1 2 3 4 5 6 7 8 9 10 
SA 45 25 65 115 102 13 44 29 17 61 
AS 257 112 266 441 299 209 99 194 175 308 

SA-LS 211 128 213 408 312 169 281 214 164 222 
MTH-MMAS 270 193 294 586 406 221 305 244 201 358 

Technique 11 12 13 14 15 16 17 18 19 20 
SA 44 107 78 52 24 22 86 31 44 7 
AS 273 242 364 156 95 171 148 117 414 113 

SA-LS 196 282 315 345 185 185 409 153 281 106 
MTH-MMAS 268 312 341 403 222 234 371 184 345 201 
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which has the best found historical results for these instances, but in comparison with 
the other instances do not present great difference. These evaluations are not feasible 
in order to decide if a technique is better than other, since the differences in variable 
results can be for different external variables. 

To continuation it presents the comparison for the small and medium instances. 
We will compare the algorithm of MTH-MMAS and the MMAS pure with respect to 
Ant Colony System algorithm of Krzysztof Socha (ACS) and to algorithm based on 
random restart local search (RRLS). 

Tabla 3. It present best results obtained when proving the test instances small and medium. 

 
 
 
 
 

 
  
 As it is possible to be observed for these instances in the MTH-MMAS present a 
superiority in the quality of the generated solutions (smaller VRS). Always by on the 
quality the solutions generated with the MMAS. We can to say that the hypercube 
framework it improves the quality of the ant algorithm applied.   

5    In the Practices 

5.1      UCV Instance 

As a form to approach investigation of the project to a practice plane we 
implemented a resolution for the UCTP using the Hypercube framework Max-Min 
Ant System. This problematic is common and it is present in all type of institution of 
study. It is by that one has been implemented resolution to this problematic creating 
an instance of the problem for the Catholic University of Valparaiso and specifically 
for the school of Informatics Engineering. 

 A tool in C language was implemented, to which him the courses enter 
indicating the semester, assistants, if it has assistantship, times to the week that are 
dictated and his characteristics. In addition the rooms are entered to him, certain their 
capacity and characteristics. The system generates an instance introducing a factor of 
correlation between the events, generating therefore an instance with the same 
format that those of competition, small, medium. Stored this information in file 
ucv.tim. Ready pair to use by the MTH-MMAS algorithm 

Instance characteristic: Total number of rooms and laboratories: 9. total 
number of event: 194, total Attending: 600. Number of characteristics: 5, maximum 
of events by student: 8, maximum of students by event: variable according to the 
event. 

 Before using the instance it was necessary to correct some parameters of MTH-
MMAS algorithm implemented, since for the instance of UCV the number of 

Technique Small1 small2 small3 medium1 medium2
RRLS 11 8 11 199 202 
ACS 1 3 1 195 184 

MMAS 3 6 3 152 250 
MTH-MMAS 0 4 1 138 186 



Hypercube FrameWork for ACO applied to timetabling 9
 

timeslot that they are used are 40 and not 45 like for other problems of the UCTP. in 
addition to an adaptation for the evaluation of soft constraint.     

 The instance was executed using a number of ants = 20, evaporation factor = 
0.5. Time local search 100 seconds, total time by reboots = 900 seconds, number of 
reboots = 10. The best solution was obtained approximately to the 600 seconds with 
an evaluation of (# VRS) = 0. Which implies that the algorithm generated a complete 
timetable feasible and with the best possible quality.  
 Had to the quality of the solution it can be inferred that the generated instance 
previously that simulated the hour load of a semester of the school of computer 
science engineering had a low degree of correlation between courses of different 
semesters, thus a high performance in the resolution was obtained of the problem. 
 
Table 4. Show the first 20 assigned events a its respective timeslot and rooms as a form to 
represent the solutions. 
 
Event 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Timeslot 2 36 36 43 41 13 31 32 18 16 19 30 27 20 0 19 19 18 7 29 
Room 0 0 1 3 0 4 3 4 2 1 3 3 2 3 4 0 4 4 4 3 
 
 
 In addition a file is had which has associate the classes with its respective ones 
events, since a class can have to correspond to several events in one week. This is a 
form to make a more visible and usable timetable. 
 

6 Conclusion 
 
A formal model was given to apply Hypercube framework to solve the University 
course timetabling problem (UCTP) making use of Max-Min Ant System, was 
generated an efficient model that solves instances of this problem creating good 
construction graph of and expressing a good pheromone matrix.  
 We presented the test result made for the Max-Min Ant System doing use of 
Hypercube framework. We was observed traverse of the given results that this 
propose framework is good means of resolution of combinatorial problems and for 
the case of the UCTP it presented good results for instances of small and medium 
type. Although the results were of low quality for the instances of the Competition. it 
emphasizes the fact that always it generates solutions feasible and for instances of 
normal difficulty of good evaluation. not obtain the best results for this problem, but 
if it improves in contrast with the Max-Min Ant System without work frame. It was 
managed to present a applied instance to the school of Computer science of the 
UCV, for which created a solution feasible thus it clarifies the fact to a technique 
useful in real applications. 
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Abstract. This paper presents a new traffic engineering multitree-
multiobjective multicast routing algorithm (M-MMA) that solves for the first 
time the GMM model for Dynamic Multicast Groups. Multitree traffic engi-
neering uses several trees to transmit a multicast demand from a source to a 
set of destinations in order to balance traffic load, improving network resource 
utilization. Experimental results obtained by simulations using eight real net-
work topologies show that this new approach gets trade off solutions while 
simultaneously considering five objective functions. As expected, when       
M-MMA is compared to an equivalent singletree alternative, it accommodates 
more traffic demand in a high traffic saturated network. 

1   Introduction 

Multicast consists of concurrently data transmission from a source to a subset of all 
possible destinations in a computer network [1]. In recent years, multicast routing 
algorithms have become more important due to the increased use of new point to 
multipoint applications, like radio and TV, on-demand video and e-learning. Such 
applications generally have some quality-of-service (QoS) requirements as maxi-
mum end-to-end delay and minimum bandwidth resources.  

When a dynamic multicast problem considers various traffic requests, not only 
QoS parameters must be considered, but also load balancing and network resource 
utilization [2]. These objectives cannot be met by traditional Best Effort Internet 
routing approaches.  

In order to solve this problem, Traffic Engineering proposes the optimization of 
network resources using load-balancing techniques. The main idea behind a load 
balancing technique for multicast transmission is to partition a data flow into several 
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sub flows –or trees– between a source and all destination nodes. This objective is 
usually accomplished by minimizing the utilization (α) of the most heavily used 
network resource, as a link (what is known as maximum link utilization). Load     
balancing technique not only reduces hot spots over the network, but also provides 
the possibility of supporting connections of high bandwidth requirements through 
several links of low capacity. 

Multicast Traffic Engineering problems (MTE) simultaneously consider several 
objectives to be optimized; therefore, it has been recognized as a Multiobjective 
Optimization Problem (MOP) [3]. A lot of multiobjective algorithms for multicast 
routing were proposed in the literature [3-6, 8-13, 15-18]. They are generalized in 
the GMM model for Dynamic Multicast Groups [11, 18]. GMM model considers a 
multitree multicast load-balancing problem with splitting in a multiobjective context.  

This work presents a multitree routing algorithm that solves for the first time the 
dynamic problem of multicast routing considering not only static routing, but also 
dynamic routing, where multicast groups arrive one after another into a network.  

The remainder of the document is organized as follows: Section 2 presents the 
mathematical formulation of the problem. A brief introduction to multiobjective 
optimization problems appears in Section 3. A complete explanation of the proposed 
algorithm is presented in Section 4. Testing scenarios are shown in Section 5. The 
experimental results are discussed in Section 6, while the final conclusions and  
future works are left for Section 7. 

2   Problem Formulation  

A network is modelled as a direct graph G(V,E), where V is the set of nodes and E is 
the set of links. Let (i,j) ∈ E be the link from node i to node j. For each link (i,j) let 
zij, dij and tij ∈ ℜ+ be its capacity, delay and current traffic respectively. Let s ∈ V 
denotes the source node, N ⊆ V - {s} denote the set of destination nodes, and φ ∈ ℜ+ 
the traffic demand (in kbps) of a multicast request, which is treated as a flow f. Let 
consider that f can be split into a number of sub flows fk (k=1,2,..,|K|), where |K| 
denotes the cardinality of set K. For each fk, a multicast tree Tk(s,N) must be       
constructed to transport a traffic φk , which is part of the total flow demand φ, as 
shown in (9).  

Let pTk (s, n) ⊆ Tk(s, N) denote the path that connects the source node s with a 
destination node n ∈ N using tree Tk. Finally, let d(pTk(s, n)) and h(pTk(s, n)) repre-
sent the delay and the hop count of pTk (s, n), i.e.,  
         ( )( ) ∑

∈

=
n)(s,p j)(i,
ijTk

Tk

dns,pd    (1)          ( )( ) ∑
∈

=
n)(s,pj)(i,

Tk
Tk

ns,ph 1     (2) 

Using the above definitions, the multicast routing problem for traffic engineering 
treated in this paper is formulated as a MOP that tries to find a set of |K| multicast 
trees Tk(s,N) that minimizes the following five objective functions: 

 
a- Maximal link utilization: 

⎭
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⎧
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b- Average delay:  
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c- Maximal delay:  

( )( ){ }ns,pdMaxD Tk
Kk
NnM

∈
∈=  (5) 

 

d- Hop count average: 

( )( )∑∑
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=
Kk Nn

TkA ns,ph
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1H  (6) 
 

e- Total bandwidth consumption:  

∑
∈

⋅=
Kk

kk TBW φ  (7) 
 

 

subject to: 
f-  Link capacity constraint: 

ij
Kk Tkj)(i,

kij zt ≤+ ∑ ∑
∈ ∈

φ  (8)
 

g-  Total information constraint:  

∑
=

||K

1k

φk  = φ (9) 
 

 

It should be mentioned that not all |K| sub flows are necessary used. Therefore, if 
any φk =0 (k =1,2,..,|K|), Eq. (4), (5) and (6) do not consider the corresponding   

Tkp (s, n) for calculation given that the tree is not used to transmit any information. 
Of course, the value of |K| should be properly adjusted. 

3   Multiobjective Optimization Problems 

A general Multiobjective Optimization Problem (MOP) includes a set of l decision 
variables, r objective functions, and c restrictions. Objective functions and restrictions 
are functions of decision variables. This can be expressed as: 

Optimize      y = g(x) = (g1(x), g2(x), ... ,gr(x)). 
Subject to    e(x) = (e1(x), e2(x), ... ,ec(x)) ≥ 0, 
 

Where  x =  (x1, x2, ...,  xl) ∈ X  is the decision vector, and  
                y =  (y1, y2, ...,  yr ) ∈ Y  is the objective vector. 
 

 X denotes the decision space while the objective space is denoted by Y.  De-
pending on the problem at hand, “optimize” could mean minimize or maximize. The 
set  of  restrictions  e(x)≥0  determines  the  set  of  feasible  solutions  Xf  and  its 
corresponding set of objective vectors Yf.  A multiobjective problem consists in 
finding x that optimizes g(x). In general, there is no unique “best” solution but a set 
of solutions, none of which can be considered better than the others when all objec-
tives are considered at the same time. This derives from the fact that there can be 
conflicting objectives. Thus, a new concept of optimality should be established for 
MOPs. Given two decision vectors p, q ∈ Xf : 

 

g(p)  =   g(q)   iff   ∈∀i { 1, 2,..., r}:  gi(p) =  gi(q) 
g(p)  ≤   g(q)   iff   ∈∀i {1,2,..., r}:  gi(p) ≤  gi(q) 
g(p)  <   g(q)    iff     g(p) ≤  g(q)  and  g(p) ≠  g(q) 

Then, in a minimization context, two solutions p, q ∈ Xf  satisfy one and only 
one of the following three conditions:  

p ≻ q  (p dominates q),  iff   g(p)<g(q) 
q ≻ p  (q dominates p),  iff   g(q)<g(p) 
p ~ q  (p and q  are non-comparable), iff  p⊁q  and  q⊁p. 
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A decision vector x∈ Xf  is non-dominated with respect to a set Q ⊆  Xf iff:      
x ≻ q   or   x ~ q, ∀ q∈ Q. When x is non-dominated with respect to the whole set 
Xf, it is called an optimal Pareto solution; therefore, the Pareto optimal set Xtrue may 
be formally defined as: Xtrue ={x∈ Xf | x is non-dominated with respect to Xf}. The 
corresponding set of objective vectors Ytrue = f(Xtrue) constitutes the Optimal Pareto 
Front. 

4   Proposed Algorithm 

Inspired in the SPEA scheme [14] the proposed M-MMA algorithm holds an evolu-
tionary population P and an external Pareto solution set Pnd. The algorithm begins 
with a set of random configurations called initial population. Each individual in the 
population represents a potential solution to the problem. 

At each generation, the individuals are evaluated using an adaptability function, 
also known as fitness, proposed by SPEA, which is based on the dominance criterion 
presented in section 3. Based on this value, some individuals called parents are se-
lected. The probability of selection of an individual is related to its fitness. Then, 
genetic probabilistic operators are applied to the parent to construct new individuals 
that will be part of a new population. The process continues until a stop criterion (as 
a maximum number of generations) is satisfied. M-MMA is summarized in Fig. 1. 

 

 
  - Read multicast group and traffic demand 
  - Initialize sets P and Pnd 
  Do { 
  - Discard identical individuals of P 
  - Calculate objective functions of each individual in P 
  - Apply local optimization algorithm 
  - Update non-dominated set Pnd 
  - Compute fitness 
  - Selection 
  - Construct new solutions using crossover 
  } while stop criterion is not satisfied 

Fig. 1. M-MMA algorithm                        Fig. 2. Chromosome representation          

4.1.   Encoding 
Each chromosome or individual is a candidate solution for the problem. Inspired 

in the GMM-model [11], an individual is represented by a set of trees transporting a 
flow f (Fig. 2). Each flow is split in |K| sub flows, as shown in (9), with a tree Tk 
transmitting sub flow fk. A tree is represented by the set of links belonging to it [6]. 
The field φk associated to each sub flow is the total information transmitted through 
Tk. This encoding scheme was selected motivated by the promising results obtained 
by Crichigno et al. [6], who conclude that better solutions are found when the trees 
are represented as a set of links instead of different paths. 

4.2.   Initial population 
The procedure proposed in M-MMA to generate each initial solution of P is 

shown in Fig. 3. The initialization procedure, called PrimRST (Prim Random Steiner 

 
Flow f 
 
 
 

 
                    Subflow f1 

Tree T1 φ1 
 
 

   

Subflow f1 Subflow f2 ··· Subflow f|K| 

⎭
⎬
⎫

⎩
⎨
⎧

)n (j, ),n (i,
 ),n (i, j), (s, i), (s,

|k|2

1
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Tree), was proposed in [6]. Starting with a source node s, at each iteration, the algo-
rithm expands the tree Tk by choosing a new link from a set A, which contains all 
possible new links for the tree. A set Vc contains the nodes already in the tree. The 
procedure continues until all destination nodes N are included in Vc. The value of φk 
is initialized as φ / |K|. The value of |K| should be previously decided by the traffic 
engineer. For the experimental results that follows, |K| = 2 was chosen. We have 
considered this small value because the problem is very complex. Moreover, in 
GMM model [11] the quantity of sub flows is considered as an objective function, 
because this algorithm is thought for MPLS networks [2], where the quantity of 
labels is limited. The PrimRST algorithm is iteratively used to construct each tree Tk 
of the |K| trees that constitute a chromosome, as shown in Fig. 2. 

 

 

 

 
 
 
 
 

 

 

 
 
 

Fig. 3. Procedure PrimRST used to build             Fig. 4. Local Optimization Procedure 
random multicast Trees   

 

4.3.   Local optimization 
This procedure tries to optimize the amount of information φk to be transmitted 

through each sub flow, satisfying (8) and (9). In order to differentiate between two 
individuals of P, let f i be the i-th flow or individual of P (i=0,1,…,|P|), φ 

i the total 
flow demand for that individual, and φk

i the k-information amount transmitted 
through sub flow fk

i. Local Optimization procedure is presented in Figure 4. The 
process modifies the values of φk

i in the following way:  
a)  φ1

i is increased and φ2
i  is decreased in a percentage ∆ of φ i . In fact, φ2

i  is calcu-
lated as (φ i - φ1

i ). Initial value for ∆ (known as ∆0) and its minimum value ε are 
parameters of the procedure.  

b)  If total information constraint (9) is fulfilled, new temporal values φ1
*
 and φ2

*
  are 

calculated and objective vector f * is evaluated; otherwise, ∆ is reduced to ∆/2 
and the process goes back to step a). 

c)  If the new solution f * dominates f i, new values φ1
*
 and φ2

*
  are accepted as   

current best value and the process continues; otherwise, ∆ is reduced to ∆/2 and 

PrimRST(G(V,E), s, N) 
- Tk = {}; 
- Vc = {s}; 
- A = {(s, j) |  (s, j) ∈ E,  j ∈ V}; 
do{ 
        - Choose a link (i, j) ∈ A at random. 
        - A = A – {(i, j)}. 
         If  j ∉ Vc  Then 
              - Tk = Tk ∪ {(i, j)}. 
              - Vc = Vc ∪ {j}. 
              - A = A ∪ {(j, w)  | (j, w) ∈ E , w ∉ Vc}; 
          End if 
} while (N  ∪ {s} ⊄ Vc) 
- Prune useless links of Tk 
- Return Tk 

Local Optimization (P, ∆0, ε ) 
For  i=1 until |P| 
∆=∆0 

While ∆ > ε 
 If  φ1

 i
 + ∆·φ i ≤ φ i  then 

 φ1
*

 = φ1
 i

 + ∆·φ i 
 φ2

* = φ i  - φ1
 i

 

 Evaluate individual f* 
 If  f* ≻ f i then 
  φ1

 i
 = φ1

*   
  φ2

 i
 = φ2

* 
 else 
  ∆ = ∆ / 2 
 End if 
 else 
 ∆ = ∆ / 2 
 End if 
 End while 
End for
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the procedure goes back to step a). 
d)  Iteration continues while ∆ > ε.  
Once the iteration is completed, a new iteration begins, but instead of incrementing 
φ1

i, it is decreased.  

4.4.   Crossover 
The crossover algorithm is based on the one originally presented by Zhengying et 

al. [16]. It was also used in several other publications [6, 7, 15]. The algorithm has 
four stages: 

1. choose one tree from each parent; 
2. identify common links of the selected pair. These links will be part of the child 

tree  that will be in the next generation of P.  Given  that  common links of the 
parents could lead to a child composed of disjoined sub-trees, new links may be 
added [16]; 

3. connect the disjoined sub-trees until a multicast tree is constructed. At this step, 
the  sub-trees are connected at random.  Each sub-tree has a root node.  At each 
iteration, an interconnection algorithm adds a new link, which has a source-node 
already in a sub-tree. Two sub-trees are connected when the root of one sub-tree 
(T1) is the destination node of the selected link, and the source node of the link be-
longs to the other sub-tree (T2); the root of the new sub-tree is the root of T2 ; 

4. calculate ( ) 2q
j

p
jj φφφ += , for both sub flows j=1, 2, where p

jφ and q
jφ  are the 

j-information amount (φ j) from the two parent trees p and q. 
In order to fulfil the flow constraint given by (9), a normalized process computing φk 
is used. For a new individual, the new φk is given by the following equation:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

||

1

K

k
kk

new
k φφφφ  (10) 

5   Testing Scenario 

Eight network topologies were used for testing purpose. They were: NTT (Nippon 
Telephone and Telegraph Co., Japan) [5], NSF (National Science Foundation, 
United States-US) [5], Telstra (Australia) [19], Sprintlink (US) [19], Ebone (Europe) 
[19], Tiscali (Europe) [19], Exodus (US) [19] and Abovenet (US) [19]. 

In order to compare M-MMA behaviour under several traffic loads over the net-
work, three scenarios were defined for every topology: (a) low load, (b) high load 
and (c) saturation. For every scenario, Ψ traffic requests were generated, simulating 
a dynamic situation in which they arrive one after another. Each traffic request was 
created using a groupGenerator algorithm [7], summarized in Fig. 5. 

The groupGenerator algorithm generates a multicast group with a destination 
size between |N|min and |N|max; then, random(unif, 0, 2000) gives the arrival time of 
the group, with a uniform distribution between 0 and 2000 seconds. The duration of 
each group was exponentially distributed, with an average of 60 seconds. Finally,  
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       Fig. 5. GroupGenerator algorithm 
 
the traffic demand is set to a value between φ min and φ max. The parameters used to 
generate each scenario are given in Table 1.  

Talavera et al. [7] showed that most MOEAs may suit for the task of routing mul-
ticast demand, but the main factor to define performance in a dynamical environment 
is the policy used to choose a specific solution from a Pareto front. They proposed 
different policies to perform this task, proving that the policy of choosing the closest 
solution to the origin provides excellent trade-off values, outperforming the tradi-
tional policy of choosing the solution with better α.  Consequently,  we use that 
approach to select a solution from a Pareto front in our experiments. It is useful to 
mention that  [7] concluded that average number  of rejected groups might be con-
sidered an important metric to compare different algorithms and policies.  

Table 1. Parameters used to generate testing scenarios 

Network topology Parameters 

Name 
(Location) 

Nodes Links 
Scenarios 

load Ψ
 

minN
 

maxN
 

minφ  maxφ
 

Low 200 4 10 25 50 
High 300 10 25 50 200 

Telstra 
(Australia) 57 118 

Saturation 400 10 35 75 300 
Low 200 3 6 25 50 
High 300 9 12 50 200 

Sprintlink 
(US) 44 166 

Saturation 400 9 20 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Ebone 
(Europe) 23 76 

Saturation 400 8 15 75 300 
Low 200 4 6 25 50 
High 300 9 12 50 200 

Tiscali 
(Europe) 49 172 

Saturation 400 10 20 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Exodus 
(US) 22 74 

Saturation 400 8 15 75 300 
Low 200 3 6 25 50 
High 300 5 10 50 200 

Abovenet 
(US) 33 84 

Saturation 400 8 15 75 300 
Low 200 4 10 100 200 
High 300 10 25 200 800 

NTT 
(Japan) 55 144 

Saturation 400 10 35 200 800 
Low 200 2 5 25 50 
High 300 3 7 50 200 

NSF 
(US) 14 42 

Saturation 400 6 9 75 300 
 
For this problem, M-MMA was compared against MMA2 algorithm [6]. MMA2 

is a multiobjective multicast algorithm that routes a request demand through only 

groupGenerator 
group(i)  =    groupGenerator(|N|min, |N|max);    
Tbeg(i)       =    random(unif, 0,2000);  
Tend(i)       =   Tbeg(i) +  random(exp, 0,2000);  
φ  (i)       =   random(unif, φ  min, φ  max);  
End  groupGenerator
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one tree. We have chosen this algorithm because of its promising results when com-
pared to other alternatives as MMA1 [4, 5] and SK [17]. The following dominance 
metrics were taken into account: 
DMMA2:   Percentage of solutions selected using MMA2 that dominates the  

  corresponding M-MMA solutions. 
DM-MMA:  Percentage of solutions selected using M-MMA that dominates  

  the corresponding MMA2 solutions. 
I:     Percentage of indifference relationships. This occurs when solutions  

  found  by MMA2 and M-MMA are non-comparables. 
Eq:    Percentage of solutions found by both algorithms that have equal  

  values for objective functions. 
We also have compared the amount of solutions selected by M-MMA that uses only 
one tree to transmit the traffic demand. Finally, percentages of rejected groups for 
lack of link capacity are given for each scenario. 

6   Experimental results 

Results for the simulations performed on eight network topologies are shown in 
tables 2, 3 and 4. 

Table 2 summarizes the amount of solutions for each scenario according to the 
dominance metrics defined in section 5. There is not a clear dominant algorithm, 
given that many solutions are indifferent (in a multiobjective context) or they have 
identical values for the objective vectors. Shadowed cells in table 2 highlight this 
fact. This result is not a surprise, given that we are considering several conflicting 
objective functions. 

Table 2. Classification of solutions according to dominance metrics 

Network Scenario DMMA2 DM-MMA I Eq Network Scenario DMMA2 DM-MMA I Eq 

Low 32.50 5.50 50.50 11.50 Low 8.50 2.50 4.00 85.00 
High 11.33 17.67 57.33 13.67 High 9.33 7.67 1.00 82.00 Telstra 

Saturation 26.00 8.75 48.00 17.25
Exodus 

Saturation 6.50 12.00 10.25 71.25 
Low 3.00 11.50 2.50 83.00 Low 11.50 4.50 5.50 78.50 
High 3.67 16.33 0.67 79.33 High 2.67 10.33 1.00 86.00 Sprintlink 

Saturation 21.50 11.75 14.25 52.50
Abovenet

Saturation 11.75 12.50 22.50 53.25 
Low 7.50 13.00 3.00 76.50 Low 0.50 34.50 0.50 64.50 
High 21.00 12.67 3.33 63.00 High 2.33 27.67 0.33 69.67 Ebone 

Saturation 7.50 10.75 29.25 52.50

NTT 

Saturation 5.50 22.50 2.75 69.25 

Low 7.00 13.50 3.00 76.50 Low 4.50 9.50 6.50 79.50 
High 2.33 0.00 3.67 94.00 High 0.67 10.33 0.00 89.00 Tiscali 

Saturation 9.25 0.75 28.50 61.50

NSF 

Saturation 8.00 15.50 2.75 73.75 

 
The percentage of multicast groups routed by a single tree is given in Table 3. We 

should clarify that M-MMA solutions not always use multitree, given that one tree 
may transport the whole information φ. In many cases, both algorithms found the 
same unitree solution. Multitree solution is used only when it is clearly better than 
unitree. This is the main reason why M-MMA could find better global solutions. 
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Actually, a mean of 63.2% of the best solutions had only one tree, and M-MMA is 
able to find those solutions, just as MMA2. However, in several opportunities the 
best solution for a given situation is multitree and therefore, only M-MMA is able to 
find it, making clear why M-MMA outperforms MMA2.  

Finally, table 4 gives an idea about multitree performance considering  the per-
centage of rejected groups for lack of link capacity. This result illustrates that        
M-MMA solutions fulfil the Traffic Engineering purpose, using load-balancing 
techniques in order to optimize network resources, and therefore, accommodating 
more traffic than a purely unitree approach like MMA2. 

Table 3. Percentage of multicast   Table 4. Percentage of groups rejected 
groups routed by a single tree  for lack of link capacity for both algorithms 

 

 

 

7   Conclusion and future work 

This paper presents the M-MMA algorithm, which is able to solve for the first time 
the GMM-model in a dynamical environment, considering multitree. The proposed 
algorithm treats the multiobjective problem of multicast routing in a network,  
splitting traffic demand into several trees (multitree context) to optimize network 
resource utilization. To better accomplish the optimization goal, M-MMA proposes a 
local optimization procedure that finds better solutions improving the relative 
amount of information to be transmitted through each tree. 

Results obtained by simulations on dynamical environments where traffic de-
mands come one after another show that no studied algorithm is clearly dominant. In 
fact, many times the best solution under the given policy had only one tree; however, 
the best solution for a given situation is sometimes a multitree and therefore, only 

% Rejected by Network Scenario 
MMA2 M-MMA 

Low 0.00 0.00 
High 5.67 5.67 Telstra 

Saturation 37.75 35.75 
Low 0.00 0.00 
High 0.33 0.00 Sprintlink

Saturation 14.00 9.00 
Low 0.00 0.00 
High 2.00 2.00 Ebone 

Saturation 27.00 27.00 
Low 0.00 0.00 
High 3.00 0.00 Tiscali 

Saturation 28.50 7.75 
Low 0.00 0.00 
High 0.00 0.00 Exodus 

Saturation 10.25 10.00 
Low 0.00 0.00 
High 0.00 0.00 Abovenet

Saturation 22.00 19.50 
Low 0.00 0.00 
High 0.33 0.00 NTT 

Saturation 2.50 1.50 
Low 0.00 0.00 
High 0.00 0.00 NSF 

Saturation 1.75 1.25 

Network Scenario % 
Low 93.50 
High 91.67 Telstra 

Saturation 58.25 
Low 53.00 
High 85.00 Sprintlink 

Saturation 83.75 
Low 46.00 
High 68.33 Ebone 

Saturation 57.25 
Low 82.50 
High 82.00 Tiscali 

Saturation 83.00 
Low 41.50 
High 53.00 Exodus 

Saturation 60.25 
Low 50.50 
High 77.33 Abovenet 

Saturation 74.50 
Low 25.00 
High 28.33 NTT 

Saturation 46.50 
Low 62.00 
High 50.00 NSF 

Saturation 42.00 
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M-MMA is able to find it. As a consequence, M-MMA is able to accommodate more 
traffic demand under a saturated scenario. For further study, we plan to consider 
simultaneous routing of several multicast requests in optical networks.  
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