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Abstract. This paper presents an encoding technique that is common for many 
different logic synthesis problems. It enables us to construct a system of 
Boolean functions, and then to decompose this system into sub-systems in 
such a way that a dependency of functions, included into each sub-system, on 
the respective arguments is reduced. For complex applications such type of 
encoding has a high computational complexity and the paper proposes a novel 
evolutionary algorithm for the solution of this problem. 

1 Introduction 

There are many combinatorial tasks that involve encoding algorithms. These tasks 
appear in particular at various steps in the logic synthesis of digital circuits. One of 
these tasks is based on such encoding technique that enables us to construct a system 
of Boolean functions, and then to decompose this system into sub-systems for which 
we are able to reduce dependency of the functions, included into each sub-system, on 
the respective arguments [1,2]. Commonly the logic scheme of a finite state machine 
(FSM) is composed of a combinational circuit and a memory (a set of flip-flops). 
The combinational circuit implements a system of Boolean functions D1,...,DR that 
depend on variables x1,...,xL,τ1,...,τR. The x1,...,xL are external input variables and 
τ1,...,τR bring the code of the state afrom from which we have to carry out transition(s). 
The functions D1,...,DR enable the FSM to calculate the code of the next state ato. The 
lines τ1,...,τR are the outputs from the FSM memory and the lines D1,...,DR are the 
inputs to the FSM memory. For example, the FSM can be described as shown in 
Table 1 (at the beginning let us ignore all symbols enclosed in parenthesis). Here, 
afrom - is an initial state, K(afrom) and K(ato) - are the codes of the states afrom and ato, 
respectively, ato - is the next state, X(afrom,ato) - is a product of inputs that forces a 
corresponding transition. We assume that FSM memory is built from D flip-flops. 
Let us consider various transitions from the same state. We can see that for all 
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conditional transitions (i.e. for all transitions except from the state a6), all the sub-
functions of D1,...,D3 that must be activated on transitions from a state, depend on 
both the state and inputs. We will say that a sub-function is active if it has to be 
assigned to 1. Since all the sub-functions depend on states and inputs, the relevant 
Boolean expressions, that are used to calculate the values D1,...,D3, contain variables 
from the full set {x1,...,xL,τ1,...,τR}, where L - is the number of external inputs (in our 
example L=5) and R - is the size of the FSM memory (in our example R=3). 

Table 1. An example of FSM 

afrom K(afrom) X(afrom,ato) ato K(ato) D(afrom,ato) 
a1 000 (000) x1x2 

not_x1 not_x 2 
not_x 1x2 
x1 not_x 2 

a1 
a2 
a3 
a6 

000 (000) 
001 (011) 
010 (001) 
101 (010) 

- (-) 
D3 (D2,D3) 
D2 (D3) 
D1,D3 (D2) 

a2 001 (011) x3 
not_x 3 

a3 
a5 

010  (001) 
100 (101) 

D2 (D3) 
D1 (D1, D3) 

a3 010 (001) not_x 1 
x1x2 

x1 not_x 2 

a4 
a5 
a7 

011 (100) 
100 (101) 
110 (111) 

D2,D3 (D1) 
D1 (D1, D3) 
D1,D2 (D1, 
D2, D3) 

a4 011 (100) not_x 4 

x4 
a1 
a4 

000 (000) 
011 (100) 

- (-) 
D2,D3 (D1) 

a5 100 (101) x1 
not_x 1 

a1 
a6 

000 (000) 
101 (010) 

- (-) 
D1,D3 (D2) 

a6 101 (010) 1 a7 111 D1,D2,D3 
a7 110 (111) x5 

not_x 5 
a2 
a7 

001 (011) 
110 (111) 

D3 (D2, D3) 
D1,D2 (D1, 
D2, D3) 

Consider all sub-functions of D1,...,D3 that are generated for proper transitions 
from a state. For example, sub-functions D1

3,...,D3
3, that have to be activated in 

transitions from the state a3 (later we will also mark such sub-functions with a 
corresponding superscript) are the following: D1

3 = a3x1; D2
3 = a3 (not_x1 ∨ not_x2); 

D3
3 = a3not_x1 (these expressions can easily be obtained from Table 1). Note that 

since there exist 3 transitions from a3, they can be distinguished with the aid of just 
two Boolean variables, such as D1

3,...,D3
3. As a result, inputs such as x1 and x2 can 

affect (and change) just two variables from the set {D1
3,...,D3

3} and the remaining 
variables (in our example one variable from the set {D1

3,...,D3
3}) can be independent 

of external inputs from the set X = {x1,...,xL}, i.e. they will only depend on the 
current state (in our example on the state a3). If the number of different (non 
coinciding) next states in state transitions from am is equal to qm, then (R-intlog2qm) 
variables from the subset D1

m,...,DR
m can be independent of the input variables from 

the set X. 
Let us suppose now that the states for our example have been coded as shown in 

parenthesis in Table 1. The values of the sub-functions D1
r,...,D3

r (r=1,2,...,M, M - is 
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the number of FSM states and for our example M=7) that do not depend on input 
variables, are marked with bold and italic bold fonts. Note that the bold font has been 
used for passive values, and italic bold font for active values of the sub-functions.  

Now the combinational circuit S of the FSM can be decomposed into two sub-
circuits in such a way that the first sub-circuit Sax implements all active values of 
D1

1,...,D3
M that are not bold. The functions of Sax depend on both FSM inputs and 

states. The second sub-circuit Sa implements all active values of D1
1,...,D3

M  that are 
bold. The functions of Sa depend only on the states and for our example they are: 

D1 = a3 ∨ a6; D2 = a6 ∨ a7; D3 = a2 ∨ a6 ∨ a7; 

Such functions are well suited for minimization and are usually very simple. For 
instance, Sa can be constructed from just four 2-input logic elements of types XOR, 
AND and OR, which convert values of τ1,τ2,τ3 to values of D1,D2,D3. On the other 
hand, such kind of decomposition enables us to essentially simplify the sub-functions 
of Sax, i.e. the active sub-functions that are not bold in Table 1. Finally, even for our 
very simple example, the proposed state encoding permits the number of logic 
elements to be reduced by approximately 20%. 

Similar problems appear in a large number of practical applications and we will 
point out just some of them: 
• One-level control circuits based on blocks, such as programmable logic arrays 

(see [3, p. 182]. It allows reducing essentially the total number of 
interconnections by eliminating the repeated outputs for different blocks; 

• RAM-based implementation of FSMs [2], etc. 
The paper presents an evolutionary algorithm that allows the encoding 

considered above to be achieved. It should be noted that the technique of artificial 
evolution has been widely used for hardware design [4]. Evolutionary algorithms 
(EA) are based on a process of "generate-and-test" [5] and this strategy can be 
applied at different levels. For example, in [6] a genetic algorithm is employed to 
search for circuits that represent the desired state transition function. Many examples 
demonstrating EAs that have been successfully employed for hardware design are 
presented in [7-9]. For some circuits they produced unforeseen results of very high 
quality (for example, [10]), which have never been obtained by human designers. 

The remainder of this paper is organized in four sections. Section 2 presents the 
detailed description of the proposed evolutionary algorithm. Section 3 discusses 
feasible variations of the algorithm. Section 4 presents the results of experiments, 
which clearly demonstrate the advantages of the proposed encoding technique. The 
conclusion is in section 5. 

2 Evolutionary Algorithm 

The basic idea of EA was used for the considered problem in the traditional simple 
way [11]. The algorithm includes the following steps: 

1. Production of an initial population composed of individuals that represent a set 
of randomly generated codes for a given number of variables (FSM states). 

2. Evaluation of the population and measuring its fitness. 
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3. Variation of the population by applying such operations as reproduction, 
mutation and crossover. A reproduction operator makes a copy of the individual 
(with a probability based on its fitness) for inclusion in the next generation of the 
population. A mutation operator creates new individuals by performing some 
changes in a single individual, while the crossover operator creates new individuals 
(offspring) by combining parts of two or more other individuals (parents) [9].  

4.  Performing a selection process, where the most fit individuals survive and 
form the next generation.  

Points 2-4 are repeated until a predefined termination condition is satisfied. 
Let us assume that a population π including ν individuals π1,...,πν has been 

randomly generated. In order to evaluate each individual πι, ι=1,…,ν, it is necessary 
to specify a fitness function. For our problem it is very easy. Let A={a1,...,aM} be a 
set of variables that have to be encoded, M is the number of variables in the set A. 
The variables in each individual subset A(afrom) (where A(afrom) is a set of states to 
which there exist direct conditional transitions from the state afrom, km=|A(afrom)|>1, 
m=1,...,M) have to be encoded in such a way that the number wm (wm=R-intlog2km) 
of their bits with the same indices have equal values. Here R=intlog2M is the 
minimum number of bits in the codes of states assuming binary encoding. Thus, any 
solution for which the fitness function W is equal to Σwm (km>1, m=1,...,M) gives an 
optimal result (we assume that such result exists, which, in fact, is not true for a 
general case). Actually we can discover several optimal results and for each of them 
the function W has the same maximum possible value. Any of these results provides 
the best solution to the problem so we just have to find out the first of them. 

Now the fitness can be estimated very easily. For randomly generated codes πι 
we have to calculate the function Wi and compare the result with the value W. The 
less the difference W-Wi the better the fitness for the individual πι. 

The next step produces a variation of the population and can be carried out by 
applying such operations as reproduction, mutation and crossover. Two kinds of 
reproduction have been examined and compared. The first one is based on elitist rule 
[11] where the best solutions in the population are certain to survive to the next 
generation. This rule has been implemented as follows. For reproduction purposes 
10% of individuals with the best fitness have been copied to the next generation of 
the population. The second kind of reproduction uses the same percentage of 
individuals, but it is based on proportional selection [11]. 

The mutation operation runs on one parental individual selected with a 
probability based on fitness and creates one new offspring individual to be inserted 
into the new population at the next generation. In order to choose which parents will 
produce offspring, a fitness proportional selection is employed. Each parent πi is 
assigned a weight Wi, calculated at the previous step. The probability of selection for 
each parent is proportional to its weight. The main idea of the mutation operation 
will be illustrated by an example of state encoding for FSM with specification 
presented in [12]. The FSM has 10 states and the following transitions 
afrom⇒A(afrom): a1⇒{a2,a3,a4}, a2⇒{a2,a4,a5}, a3⇒{a6,a7,a8,a9}, a4⇒{a5}, a5⇒{a3}, 
a6⇒{a5,a7}, a7⇒{a3,a9}, a8⇒{a2,a10}, a9⇒{a10}, a10⇒{a1}. Since M=10 and R=4 for 
each individual we can chose any 10 from 24=16 possible codes. Suppose that at 
some step of EA we found the codes for an individual I shown in Table 2 and this 
individual has to be mutated. 
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Table 2. An individual I that has been selected for mutation operation 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
I 0 0 4 8 0 0 0 3 

Codes 1000 1001 1010 1011 1100 1101 1110 1111 
I 5 6 2 9 7 0 10 1 

For the individual I all the state codes have to be examined and all the weights 
wI

1,...,wI
M that exceed the value 1 have to be calculated. Some (or all for the best 

result) of these weights correspond to an optimal result. For all weights wI
m that have 

an optimal value the respective states am have to be selected (see in Table 2 bold 
underlined numbers m of states am). For example, we have the following state 
transitions a1→ {K(a2)=1010, K(a3)=0111, K(a4)=0010}, a2→{K(a2)=1010, 
K(a4)=0010, K(a5)=1000}opt, a3→{K(a6)=1001, K(a7)=1100, K(a8)=0011, 
K(a9)=1011}, a6→{K(a5)=1000, K(a7)=1100}opt, etc. Optimal solutions are indicated 
by subscript "opt" and the respective bits (i.e. bits with coincident indices that have 
equal values) of the codes are marked with bold font. The mutation operation permits 
a new child individual to be created and includes the following steps. 

Step 1. All the elements that correspond to an optimal solution (see bold 
underlined numbers in Table 2) are included in the new individual (offspring). 

Step 2. The codes for the remaining elements will be randomly regenerated in 
such a way that just free codes (i.e. such codes that have not been already chosen at 
step 1) can be selected.   

Crossover is the most complicated operation of the considered EA. The main 
idea of this operation will also be illustrated by the same example of FSM. Suppose 
that at some step of EA we have found the codes for two individuals I1 and I2 shown 
in Table 3 and these individuals were chosen to be parents for creating a new 
individual that is a child. For all weights wI1

m(wI2
s) that have an optimal value the 

respective states am (as) have to be selected (see bold underlined numbers m of states 
am for the first individual I1 and italic underlined numbers s of states as for the 
second individual I2). The parents are chosen on the base of proportional selection 
[11]. 

Table 3. The results of encoding for two individuals 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
I1 0 0 4 8 0 0 0 3 
I2 8 0 5 4 10 1 0 2 

Codes 1000 1001 1010 1011 1100 1101 1110 1111 
I1 5 6 2 9 7 0 10 1 
I2 7 0 9 3 0 0 0 6 

The crossover operation permits a new child individual to be created and includes 
the following steps. 

Step 1. The first solution (see Table 4) is formed from the selected elements of 
the first individual I1 (see bold underlined numbers in Table 3). 
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Step 2. Permitted selected elements from the second individual I2 (see italic 
underlined numbers in Table 3) are added to the first solution (i.e. to the child). An 
element is allowed for step 2 if: 

a) It was not included into the child during the first step; and 
b) It does not have a code that has already been used during the first step.  
Table 5 shows the result of step 2 for our example. 
Step 3. All the remaining permitted elements from the first and the second 

individuals are added to the child. An element is allowed for step 3 if it has not yet 
been included in the child and: 

a) It has the same code for both individuals I1 and I2; or 
b) It is included in the second individual I2 and the respective code of the first 

individual I1 was not used for the states; or 
c) It is included in the first individual I1 and the respective code of the second 

individual I2 was not used for the states; 
Table 6 shows the result of step 3 for our example. 

Table 4. The result of step 1 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child   4      
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5  2  7  10  

Table 5. The result of step 2 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child   4      
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5  2 3 7  10  

Table 6. The result of step 3 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child 8  4   1   
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5 6 2 3 7  10  

Step 4. All the remaining states that have not been assigned yet are recorded in 
free boxes for codes from left to right. 

Table 7 presents the final result of the crossover operation. 
Individuals I1, I2 and the child can be evaluated as follows: WI1=WI2=11, 

Wchild=13 (i.e. the child is better than any of the parents I1 and I2) and the optimal 
weight W=15.  

There are two termination conditions for the considered EA: obtaining an optimal 
solution or exceeding a specified time limit. 
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Table 7. The result of step 4 that gives the final result of the crossover operation 

Codes 0000 0001 0010 0011 0100 0101 0110 0111 
Child 8 9 4   1   
Codes 1000 1001 1010 1011 1100 1101 1110 1111 
Child 5 6 2 3 7  10  

3 Variations of the Evolutionary Algorithm 

Note that for many practical applications it is allowed that a state has more than one 
code. If the FSM circuit is constructed from RAM blocks then using multiple codes 
does not make the circuit more complicated [2]. Moreover applying this technique 
enables us to improve the results of encoding. It should be noted that for some 
practical problems an optimal solution, that only permits each state to be assigned a 
single unique code, cannot be obtained. For example, such solution cannot be found 
for the following set of state transitions: a1⇒{a1,a2}, a2⇒{a2,a3}, a3⇒{a4,a5}, 
a4⇒{a1,a3}, a5⇒{a1}. However, if more than one code is permitted for the states we 
can find an optimal solution, which is: K(a1)=000, K(a2)=001, K(a3)=100 and 101, 
K(a4)=011, K(a5)=111. The EA can be modified slightly in order to produce the 
proper solution. Indeed if an optimal result cannot be found within a predefined time 
interval we can allow using more than one code for states. Thus, the algorithm is 
relatively flexible when it comes to future improvements and modifications. 

4 Experimental Results 

The results of the proposed EA were estimated for more than 100 digital circuits that 
required the considered above encoding technique within the respective process of 
synthesis. Fig. 1 shows these results for 25 FSMs. We considered block-based 
decomposition of FSMs [3], where R=intlog2M and Rav is an average number of 
outputs for the blocks. So the considered technique makes possible the number of 
outputs required for each block to be decreased on average by 1.8.  
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Fig. 1. The results of experiments. 
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The EA has been analyzed in several contexts. Firstly, we evaluated primary 
genetic operations that are reproduction (based on elitist rule and proportional 
selection criteria), mutation and crossover. The considered options A, B, C and D are 
listed below: 

A: the crossover operation was carried out in order to form 90% of population for 
the next generation and 10% of population for the next generation was chosen with a 
probability based on fitness (i.e. based on proportional selection); 

B: firstly the crossover operation was carried out in order to form 100% of 
population, secondly the mutation operation based on proportional selection was 
performed for 10% of individuals of the new generation and finally 10% of 
individuals in the next generation were replaced with 10% of randomly generated 
individuals; 

C: the mutation operation based on proportional selection was carried out in 
order to form 100% of population for the next generation and 10% of individuals in 
the next generation were replaced with 10% of randomly generated individuals; 

D: the crossover operation was carried out in order to form 90% of population for 
the next generation and 10% of population for the next generation was chosen based 
on elitist rule. 

Fig. 2 shows how the execution time for all four options depends on the number 
of individuals in population. This dependency was considered for an FSM with 15 
states (M=15) and with at maximum 4 transitions from each state. The experiments 
were performed on PentiumIII/800MHz/256MB. Fig. 3 shows how the number of 
required generations for all four options depends on the number of individuals in 
population. 
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Fig. 2. Dependency of execution time on the number of individuals in population 

Secondly, we examined practical applications that could benefit from the 
considered encoding technique. This enabled us to estimate some parameters, such as 
the expectable size of codes. Table 8 presents examples of control circuits used in 
assembly lines for manufacturing purposes. The number of individuals in population 



Evolutionary Algorithm for State Encoding 9
 

was chosen to be 15. Here NG is the number of generations, W is the optimal weight, 
We is the obtained weight, ET is the execution time, Gmin = max (intlog2|A(am)|), 
m=1,...,M. 

Thirdly, we performed a set of experiments for randomly generated examples 
with different initial data (such as the number of individuals in populations) and 
variable requirements (such as using one code for each state of FSM or employing 
more than one code for some states). Table 9 shows the best results for options A, B, 
C, D obtained for arbitrary selected examples (the option that gave the best result is 
indicated in the first column in parentheses). For the examples aex7 and aex8 just the 
option D was used and we received We<W because the value W cannot be obtained 
when using just one code for each state. If we allow to employ more than one code 
for some states then the result with We=W can be easily found (ET = 41.12 s for 
aex7 and ET = 9.38 s for aex8). 
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Fig. 3. Dependency of the number of generations on the number of individuals in population 

Table 8. The results of experiments for practical examples 

Example NG W We ET (s) M Gmin 
Ex1 134 32 32 0.424 20 2 
Ex2 63 36 36 0.261 29 2 
Ex3 99 7 7 0.202 12 4 
Ex4 111 30 30 0.255 15 2 

Table 9. Experiments with arbitrary selected FSMs 

Example NG W We ET (s) M Gmin 
aex1 (B) 15 21 21 0.052 21 2 

aex2 (B,D) 4 25 25 0.017 28 2 
aex3 (D) 146 15 15 0.216 10 2 
aex4 (B) 23682 34 34 61.767 15 3 
aex5 (B) 490 31 31 3.897 47 2 
aex6 (B) 12854 42 42 49.201 16 3 

aex7 5534 88 87 1000 52 2 
aex8 1024 38 37 1000 49 3 
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5 Conclusion 

In the previous discussion we have presented the evolutionary algorithm for state 
encoding that allows Boolean functions to be decomposed in such a way that the 
dependency of sub-functions obtained as a result of the decomposition on the 
arguments can be reduced. The algorithm has been analyzed in several contexts. 
Firstly, we evaluated the primary genetic operations that are reproduction, mutation 
and crossover. Secondly, we examined practical applications that require the 
considered encoding technique. This enabled us to estimate some parameters, such as 
the expectable size of codes. Thirdly, we performed a set of experiments with 
different initial data (such as the number of individuals in populations) and variable 
requirements (such as using one code for each state of finite state machine or 
employing more than one code for some states).  The examples in the paper and the 
results of experiments with a C++ program that implements the proposed 
evolutionary algorithm have shown that the considered approach is very effective. 
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