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1 Introduction

1.1 Motivation

This paper proposes an original generic hierarchical framework in order to fa-
cilitate the modeling stage of complex autonomous robotics mission planning
problems with action uncertainties. Such stochastic planning problems can be
modeled as Markov Decision Processes [5]. This work is motivated by a real
application to autonomous search and rescue rotorcraft within the RESSAC!
project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must fly
and explore over regions, using waypoints, and in order to find one (roughly lo-
calized) person per region (dark small areas). Uncertainties can come from the
unpredictability of the environment (wind, visibility) or from a partial knowl-
edge of it: map of obstacles, or elevation map etc. After a short presentation
of the framework of structured Markov Decision Processes (MDPs), we present
a new original hierarchical MDP model based on generic Dynamic Bayesian
Network templates. We illustrate the benefits of our approach on the basis of
search and rescue missions of the RESSAC project.

1.2 Factored Markov Decision Processes

MDPs [5] are a classical model for decision-making under uncertainty. A MDP
is a tuple (S, A, P,R) where S is the set of agent’s states, A is the set of
its actions, P and R respectively are the markovian probability and reward
transitions between states for each action. A solution of a MDP is a mapping
7 : § — A named policy, that can be iteratively computed on the basis of the
Bellman’s equation [5].

Factored Markov Decision Processes (MDPs) [1, 3] are an extension of MDPs
where the state space S is defined as a cartesian product of n subspaces V
corresponding to an equal number of state variables S = ®7'_, V;. State variable
transitions are defined using Dynamic Bayesian Networks (DBNs) [1]. For each

! http://www.cert.fr/dcsd/RESSAC/
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Fig. 1. (a) Search and rescue autonomous rotorcraft mission: 3 persons must be res-
cued in the 3 regions of the navigation subspace (software screenshot). (b) Local policy
defined in the region 7(7) = Z2. Stochastic outcomes are regions {(m) = {Z1; Z3}.

action, a DBN represents the stochastic dependencies between post-action state
variables (X/)!, and pre-action state variables (X;)!" ; (see Figure 6.a).

For each post-action state variable X;, a probability tree encodes the
stochastic distribution of X/ values (tree’s leafs) knowing the other state vari-
ables values (nodes), as shown in Figure 6.b. The reward transitions are encoded
as a single decision tree for each action. Classical MDP optimization algorithms

are generalized in structured algorithms [1, 3].

1.3 A hierarchical approach

Modeling autonomous robotics problems with factored MDPs remains difficult.
In the very simple search and rescue mission of Figure 1.a, with 5 actions: west,
east, north, south, statio, and 4 state variables: the rotorcraft’s localization
and the status of the 3 persons to rescue, the localization variable has 24 possible
values (as many as the number of waypoints), that must be enumerated in any
decision tree containing a waypoint node. More complicated missions can have
hundreds of waypoints, which makes it a burden to model by hand the problem
because the trees’ sizes are polynomial in the arity of state variables.

Our hierarchical model allows to tackle larger state spaces by reducing the
size of the decision trees used to model the problem. We use state abstractions
in order to decompose the problem with respect to its variables of highest
arity: in the search and rescue example of Figure 1, the localization variable (24
positions) is decomposed into a region variable of arity 3.



Stochastic Planning with Generic DBNs 3
2 Hierarchical factored MDP

2.1 State subspace splitting

Let X, be a state variable with a large arity. The state subspace generated by X,
(navigation subspace) is a graph V), that can be partitioned into smaller weakly
coupled abstract subgraphs f/p. The partition can be either a mission input, or
the result of an automatic partition process [6]. The resulting abstracted states
can be considered as the values of a new abstracted state variable Xp, which
is an abstraction of the original state variable X,. The abstract state space of
the factored MDP becomes V = (®ixpVi) x V,. Let us consider the mission
of Figure 1: whereas a X, node would have 24 subtrees, the corresponding Xp
node only has 3 subtrees.

2.2 Local policies

Actions need to be abstracted correspondingly into macro-actions. At the region
level, abstract actions correspond to local policies defined and applied within
the regions of the partition Vp. Let 7 be such a local policy, defined in a region
#,. Let IT, be a set of local policies defined on each region of the partition V.
A minimal set of local policies can be automatically generated [2, 4], in such
a way that an optimal policies can be obtained as a combination of such local
policies in the regions. Extra local policies can be added by other methods.

Unfortunately, in both cases, the number of local policies can be very large.
In theory, the maximum number of local policies is 3=, <. |A| %r]each of which
should have a corresponding DBN encoding for the (fependencies between the
pre- and post-action variables.

In order to keep a substantial benefit from the decomposition, it is useful
to notice that in most problems, all the local policies DBNs share a common
structure. It is indeed possible to define a single DBN structure, where the
corresponding local policy, the region where it is applicable, and the reachable
regions appear as parameters that can be automatically instantiated when the
local policies are computed.

3 Abstract generic Dynamic Bayesian Network

In this section, we present the syntax of our abstract generic DBN for mod-
eling factored stochastic autonomous robotics problems. Our generic DBN is
parametrized by a local policy 7 € II,,. Since a local policy is defined for a sin-
gle region of the reduced variable X'p, we can define the mapping 7 : I, — f/p
between local policies and the region where they are each one defined.

We illustrate our approach with a small academic instance of a search and
rescue autonomous rotorcraft mission (see Figure 1.b). The decomposed sub-
space matches the localization variable, whose arity is 24, abstracted in 3 re-

gions (X). We will consider a local policy 7 defined in the second region &,
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that consists in going out towards the regions ; and 3 with respectively the
probabilities 1 — p and p. Last but not least, each region contains a person to
rescue: these subgoals are represented by 3 binary state variables (Y”“)l <i<3
indicating if each person was already rescued or not.

3.1 Reduced state variable modeling

Let us consider a decision tree (probability tree or reward tree) containing a
node of the reduced variable Xp. The local policy 7 is only defined in 7(m)
so that the node Xp only has two abstract subtrees: one corresponding to the
value 7(m), and one other representing the other values where the policy is not
applicable, noted 7(r) =V, \ {7(m)}.

Since 7 is only applicable over 7(r), the 7(7)-subtree of any Xp variable in
probability trees is symbolically represented as a nil leaf. Instead of defining
these nil leafs inside each probability tree, it is better to define a binary mask
tree that indicates where the local policy is applicable. This mask tree should
contain at least a node of the state variable Xp, as shown in Figure 2.

=
(m) 7(m) local policy o
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Fig. 2. Generic mask tree example and one of its instantiations

The function that automatically instantiates the subtrees of a X, node in
any decision tree is presented in Algorithm 1. It calls the function
InstantiateTree, that instantiates the 7(m)-subtree of the generic node 7
(see Algorithm 6). The 7(7)-subtrees are nil leafs (nil leaf).

Algorithm 1: Function InstantiateXpSubtrees

Data: 7 (generic node), 7™ (instantiated node), 7, 7, ¢, [0, = —1]
Result: 77 (instantiated tree)
begin
subtree «— T .son(‘T(m)’);
for v, € Vp do
if v, = 7(7) then 77 .sons().push(InstantiateTree(subtree,,,(,0,));
L else 77 .sons().push(nilleaf);

return 77,
end
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The treatment of a Xz’j node is slightly different from a Xp node. Let ¢ :

11, — f/p be the mapping from a local policy to its reachable regions. It means
that 7 transforms 7(7) into ¢(m). In our small instance depicted in Figure 1.b,
only the regions #; and 3 are reachable with = : ((7) = {Z1;Z3}.

A X{D node can only have 2 abstract subtrees: one for the value ((r) and
one other for the value {(7) = V, \ ¢(r). Each subtree must be transformed
into as many subtrees as the cardinality of the corresponding abstract value
(see Figure 3 and Algorithm 2).

} )
s AUTOMATIC s
@ . INSTANTIATION .
— L
\5(”) Tfr{/ local policy oo 5
7 N 1 N N N
/8T AN of Figure L.b //ST1<\/ AN \/>ST|\\

Fig. 3. Example of a decision tree containing a X; node and one of its instantiations

Algorithm 2: Function InstantiateXppSubtrees

Data: 7 (generic node), 7™ (instantiated node), m, 7, ¢
Result: 77 (instantiated tree)
begin
st1 «— T.son(‘¢C(7));
sty — T.son(‘¢(n));
for o, € Vp do
if v, € ((w) then T7.sons().push(InstantiateTree(sti,,T,¢,Tp));
L else T7.sons().push(InstantiateTree(sts, m,T,(,Dp));
return 77,
end

3.2 State variables depending on the reduced state variable

We can take advantage of our abstract model to introduce state variables that
are defined for each value of the reduced state variable. In the case of our
small exploration mission (Figure 1), let us consider a person to rescue in each
region of the navigation subspace. Each value ¢, of the abstract navigation
state variable corresponds to a subgoal to achieve, represented by a binary
state variable Y% (see Figure 1.b).

Only can be achieved the subgoal corresponding to the region where the un-
known local policy of our generic DBN is defined. The other subgoals can not be
realized with this local policy, since it is not applicable inside the regions where
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they are enclosed. Therefore, for each set (Yﬁp) i of variables depending on
P

Up

the reduced variable, the generic DBN defines 2 abstract variables: the variable

Y7(™) defined for the abstract value 7(7), and the variable Y7(™) representing
all the variables defined in the regions 7(m).

Figure 4 depicts the decision trees of Y7(™ and Y™™ and an instance of
their automatic instantiation for a given local policy. A decision tree containing
a Y7(™) node is illustrated too.

YT1 tree:

Any decision tree: Any decision tree:
y7(m) ) )
tree: AN /r\\

i i A AUTOMATIC I
/ _
\ INSTANTIATION Y2 tree: / \
\ E \
y7(m) .
tree: local policy
A RS ) of Figure 1.b Y3 tree: g2 o
/A\/ \‘/A\ ,“J \y‘
RN PN R RETAN

Fig. 4. Example of the decision trees of Y™™ and Y™™ and of a decision tree
containing a Y™™ node. An automatic instantiation is presented.

Algorithm 3 details the automatic instantiation of the two abstract probabil-
ity trees 7y+(x) and 7., +5. Since a node of any decision tree can be an abstract
Y7(™) node (primed or not), it must be analyzed before being instantiated, as
done in Algorithm 4.

Algorithm 3: Function InstantiateYpTrees
Data: Ty (xy, Ty-'mw m, T, C
. G
Result: ( Y”P)f;pe\”/p
1)+ (x) < InstantiateTree(Zy r(x),7,T,();

for ¥, € 7(7) do 7;, < InstantiateTree(7,  qy,, T, ();

3.3 Abstract leafs of the generic probability trees

Due to action uncertainties, the outcome of a local policy is not deterministic.
Let us consider for instance the local policy depicted in Figure 1.b: starting
from region I, the local policy can lead to regions Z; and T3 with respectively
probabilities 1 — p and p. Let P™ be the abstract probability transition distri-
bution over the partitioned subspace Vp for the local policy 7: this distribution
is the stationary probability distribution of the markov chain resulting from
application of the local policy 7 inside 7(7) [2].
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Algorithm 4: Function InstantiateNode

Data: n (generic node), m, 7

Result: n™ (instantiated node)

begin
it n=v"™" then n — y ™,
else n” «— n;
return n”;

end

The probabilities of obtaining the different values of any state variable may
depend on the local policy probability distribution. These state variable prob-
abilities are stored in the leafs of their probability trees. We suppose that they
can be expressed as functions of 2 abstract local policy probabilities:

()

— p”™): probability of staying in the region 7(mw)
— p¢(™): if the reduced post-action state variable (X,) is a parent node, proba-
bility of going to the value of the parent reduced state variable

An example of abstract probability leaf and one of its possible instantiations
are shown in Figure 5. The abstract leaf is a formal algebraic expression of
p™™ and p¢(™) . Given the abstract probability transition distribution P™ over
the partitioned subspace Vp for the local policy 7, Algorithm 5 computes the
probability of an instantiated leaf. It calls the function Evaluate from the
computer algebra library to assess the leaf. If f); # —1, it means that X;D is a

parent node of the leaf /, and [ belongs to the -subtree of the Xz/) parent node.

//'\ /~\\
2 @ AUTOMATIC @ \
RS INSTANTIATION ST
CI(W) m = #og
A Y loca‘l policy - J ) ‘o
V\\\ of Figure 1.b /,{\\ /‘vl\\

Fig. 5. Generic probability leaf example and one of its instantiations

3.4 Abstract leafs of the generic reward tree

Local policy transition probabilities are associated with local policy transition
rewards. Let R™ be the transition rewards defined for the local policy 7 over
the reduced state variable subspace. These reward transitions can be computed
on the basis of the local policy transition probabilities just defined.
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Algorithm 5: Function InstantiateLeaf

Data: [ (generic leaf), 7, 7, ¢, [0, = —1]
Result: [™ (instantiated leaf)

p " — P (r(m), 7(m));

if @), # —1 then p*™ «— P™(7(n),7});

[ «+ Evaluate(l, pm(m) = (), [‘pC(W)7 = pC(Tr)])§

As for the local policy transition probabilities, we suppose that the local
policy transition rewards are formal algebraic expressions of:

— r7(7): average reward obtained if staying in T(7r)~
— r$(M): if the reduced post-action state variable (Xl’j) is a parent node, average
reward if going to the value of the parent reduced state variable

Figure 5 still is a good example of a generic reward tree and its instantiation for
the local policy of Figure 1.b, with the proviso of replacing p* by r'. In the same
way, Algorithm 5 presents the automatic reward leaf instantiation algorithm,
with the proviso of replacing p by r* and P by R.

3.5 Main automatic DBN instantiation algorithm

Algorithm 6 automatically instantiates a decision tree for a given local policy.
The version of our algorithm presented in this paper is recursive. It is called
from functions InstantiateXpSubtrees and InstantiateXppSubtrees, when
instantiating the subtrees of the nodes X,, and XZ', (see Algorithms 1 and 2). No-
tice that the optional argument @, is not an input of InstantiateXppSubtrees:

otherwise, it would mean that XZ') is a parent node of itself, what is impossible.

4 Application to a search and rescue mission

We applied our generic MDP model to search and rescue missions described in
section 1.1. We tested our generic model with 4 state variables (see Figure 6):

~ R : regions of the environment (stands for X,,)

— O. : person to rescue in the region where the unknown local policy is defined
(stands for Y'7(m)")

— O : persons to rescue in the other regions (stands for Y 7(7)")

— A : rotorcraft’s autonomy (binary variable, full or empty)

In ‘0.’ probability tree leafs, Lp. stands for ‘p™(™’ and Lp.=1— Lp. = p™(™,
Table 1 shows the elapsed time comparison between automatic instantiation

and optimization stages, when increasing the sizes of both the state and action

spaces. Note that the same generic DBN was used to model all of the tested
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Algorithm 6: Function InstantiateTree (recursive)

Data: 7 (generic decision tree), , 7, ¢, [0, = —1]

Result: 77 (instantiated decision tree)

begin
if T.root().type() = leaf then T™ «— InstantiateLeaf (7 .root(), ,,(,vp);
else

T™ «— InstantiateNode(7 .root(),m,7);
switch 7 .root() do
case X,: T™ — InstantiateXpSubtrees(7 .root(), 7", m, 7, ¢, Up);
case XI', : T7™ «— InstantiateXppSubtrees(7.root(), 7", m,T,();
otherwise
for subtree € T .root().sons() do
L | 77.sons().push(InstantiateTree(subtree,m,7,(, ¥y));

return 77;
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Fig. 6. (a) Generic DBN and (b) O. generic probability tree (software screenshot)

Nb of enume-| Nb of regions |Nb of generated DBNs instan-|{MDP optimi-
rated states |(states per region)| local policies | tiation time | zation time
82944 9(9) 21 0.01 0.12
746496 9 (81) 61 0.01 16.77
58982400 17 (9) 69 0.03 1621.62
530841600 17 (81) 117 0.06 > 1 hour

Table 1. Elapsed time comparison between instantiation and optimization stages, for
growing size search and rescue missions (in seconds, with a P4-2.8GHz processor)
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instances. First, it appears that the number of states exponentially grows with
number of regions, so that unstructured enumerated models of MDP would
have been very tedious and quite impossible to model. Second, the number of
generated local policies (automatic generation algorithm of [4]) is round 100,
what means that usual factored MDP models would have required to manually
input a hundred or even more DBNs, in order to define our real search and
rescue missions. On the contrary, our generic hierarchical DBN model enables
to define only one DBN for the whole mission. Third, the automatic DBNs
intanciation time is insignificant compared to the optimization time (< 1%): it
confirms the modeling and effectiveness benefits of our approach.

5 Conclusion

In this paper, we proposed an original generic hierarchical framework for mod-
eling large factored Markov Decision Processes. Our approach is based on a
decomposition into regions of the state subspaces engendered by the state vari-
ables with large arity. The regions are macro-states of the thus abstracted MDP.
Local policies can then be computed (or defined by other means) in each region
of the decomposition and taken as macro-action of the abstract MDP. The fac-
tored MDP model is then defined at the abstract level. A generic DBN template
can be defined, symbolically parametrized by the local policies. We illustrated
and showed the significance of our method on real instances of search and res-
cue aerial robotics missions (within the RESSAC project) where the navigation
subspace can easily be decomposed into regions: the use of classical unstruc-
tured MDP models would have been very tedious and perhaps impossible for
the kind of real planning missions we tackle.
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Abstract. In the past, numerous approaches have been formulated ei-
ther for approximating Pareto-optimal alternatives or supporting the
decision making process with an interactive multi criteria decision aid-
ing methodology. The article on the other hand presents an integrated
system for the resolution of problems under multiple objectives, com-
bining both aspects. A method base of metaheuristics is made available
for the identification of optimal alternatives of machine scheduling prob-
lems, and the selection of a most preferred solution is supported in an
interactive decision making procedure.

As the system is aimed at end users, a graphical interface allows the
easy adaptation of metaheuristic techniques. Contrary to existing soft-
ware class libraries, the system therefore enables users with little or
no knowledge in the mentioned areas to successfully solve scheduling
problems and customize and test metaheuristics.

After successfully competing in the finals in Ronneby (Sweden), the
software has been awarded the FEuropean Academic Software Award
2002 (http://wuw.easa-award.net/, http://www.bth.se/1lab/easa_
2002.nsf).

Key words: Multi-Objective Optimization, Multi-Objective Metaheuristics,
Decision Support System, Scheduling

1 Introduction

In general, the resolution of multi-objective problems is twofold. First, optimal
solutions need to be identified by means of some algorithmic approach. For
a given problem II having a set of feasible alternatives A and a set of opti-
mality criteria G(z) = (¢1(x),...,gx(z)),x € X, optimality of alternatives is
in the light of conflicting optimality criteria here understood in the sense of
Pareto-optimality [20] as further described in Definition 1 and 2. Without loss
of generality, a minimization of the objective function values is assumed here.

Definition 1 (Dominance). An objective vector G(x),x € X is said to dom-
inate a vector G(a'),x’ € X if and only if g;(x) < gi(z')Vi=1,...,kANTi|
gi(x) < gi(z"). The dominance of G(x) over G(z') is denoted with G(x) <
G(z').
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Definition 2 (Efficiency, Pareto-optimality, Pareto set). An objective
vector G(z),x € X is said to be efficient, if and only if =32’ € X | G(«') <
G(z). The corresponding alternative x is called Pareto-optimal, the set of all
Pareto-optimal alternatives the Pareto set P.

The second step of the resolution of multi-objective problems is the selection
of a most preferred alternative * € P, involving a single human decision maker
or even a group of people.

Search and decision making can be combined in three general ways [6].

1. A priori: The decision maker states his/her preferences allowing the con-
struction of a utility function and the successive resolution of the resulting
mono-criterion problem of maximizing the overall utility.

2. Interactive: The resolution of the problem alternates between search and de-
cision making, successively revealing the preferences of the decision maker.

3. A posteriori: The choice of a most preferred alternative is performed after
the determination of all optimal solutions.

Over the years, numerous concepts have been proposed to support both
aspects of search and decision making. Most interactive methods are based
on goal programming [13] or reference point approaches [23] and allow the
successive refinement of the decision makers’ preferences. An overview is e. g.
given by VINCKE [21].

Besides methodological progress, implementations of algorithms have been
made freely available on the world wide web. For genetic algorithms for example,
an archive is maintained under http://www.aic.nrl.navy.mil/galist/src/.
The particular case of multi-objective optimization has been addressed by sev-
eral researchers, and an overview about implemented source code is main-
tained by COELLO COELLO on the EMOO webpage, http://www.lania.mx/
“ccoello/EM0O0/EMO0software.html. Unfortunately however, most implemen-
tations require a throughout understanding of the underlying methodologies
and techniques in order to be reused and adapted to particular problem do-
mains. This can impose a problem in teaching and demonstration work, when
non-experts are required to interact with the computer programs. Here, imple-
mentations are required similar to established computer user interfaces with
which the users are familiar. Only very recently, components are being devel-
oped that allow the visualization of the outcomes of multi-objective optimiza-
tion problems, one example being GUIMOO by CAHON, VAN DEN HEKKE and
SEYNHAEVE. Integrated systems however, combining both search and decision
making are to our knowledge not freely available yet.

The paper is organized as follows. Section 2 presents an integrated sys-
tem for multi-objective optimization and decision making, using the example
of scheduling under multiple objectives. The problem is well-known from oper-
ations research and computer science and is of high practical value with appli-
cations in many areas [15]. Results obtained with the system are presented in
Section 3, and conclusions and discussion are given in Section 4.
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2 A metaheuristic system for multi-objective scheduling

2.1 The addressed problem

Machine scheduling considers in general the assignment of a set of resources
(machines) M = {My,...,M,,} to a set of jobs J = {Ji,...,J,}, each of
which consists of a set of operations J; = {Oj1,...,0;j,,} [4]. The operations
Oj, typically may be processed on a single machine M; € M involving a non-
negative processing time ¢;5. Usually, precedence constraints are defined among
the operations of a job, reflecting its technical nature of processing. Other im-
portant aspects that frequently have to be taken into consideration are release
dates and due dates of jobs.

A solution x € X to the problem, a so called schedule, assigns start and end
times for the operations with respect to the defined constraints of the problem.

While first approaches to machine scheduling consider optimality of sched-
ules for a single objective function, multi-objective formulations of the problem
have become increasingly of importance in the last years [18]. As these criteria
are often conflicting, not a single but a whole set of solutions may be regarded
as optimal in the sense of Pareto-optimality, introduced earlier in Definition 2,
and the resolution of the problem lies in the identification of all x € P.

Various optimality criteria are based on the completion times C; of the jobs
J; in the schedule. The most prominent to mention is the minimization of the
maximum completion time (makespan) Ci,q = max{C1,...,Cy,}. Another ob-
jective is the minimization of the sum of the completion times Cyy,y, = Z?Zl Cj.
Both measures implicitly try to optimize cost of production by minimizing the
production time of the jobs.

In many situations, due dates d; are present for each job J; which define
a preferable or required time of job completion. It is here possible to com-
pute due date violations in the form of tardiness values T; = max{C; — d;,0}.
Usual optimality criteria based on this consideration are the minimization of
the maximum tardiness T4 = max{T1,...,T};}, the minimization of the total
tardiness Tsym = Z;-lzl Tj, and the minimization of the number of tardy jobs
U =3"7_, Uj where U; = 1 if Tj > 0, 0 otherwise.

In terms of machine efficiency, idle times I; of the machines M; may be
considered up to the completion of the last job on M;. Possible optimality
criteria are therefore the minimization of the maximum machine idleness I,,,,; =
max{ly,..., I}, and the minimization of the total machine idleness Iy, =
2111 1.

An important factor for the resolution of the scheduling problem is the
regularity of the functions [5]. It is here possible to represent an optimal schedule
as a permutation of operations, corresponding to the position of the job in the
sequence of production. An interpretation of the permutations is possible by
computing a schedule with respect to the given job sequence, assuming earliest
possible execution of the operations [7].
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2.2 Components

For the resolution of multi-objective production scheduling problems, the inte-
grated system MOOPPS has been implemented. As illustrated in Figure 1, the
system consists of different components for the resolution of the problem.

| User Interface |

\4
Solver |-—

storage

———————— >

PEIaES
-=" linking T~

Solutions

Model Methods
instances

Fig. 1. System architecture.

A method database contains a set of heuristics approaches for solving multi-

objective scheduling problems:

1.

Priority rules [12], based on the early work of GIFFLER and THOMPSON [11]
for generating active schedules.

. Local search neighborhoods [16] within a multi-point hillclimber.
. Multi-objective evolutionary algorithms [1], incorporating elitist strategies

and a variety of crossover neighborhoods like e.g. uniform order based
crossover, order based crossover, two point order crossover, and partially
mapped crossover.

. The ‘MOSA’ multi-objective simulated annealing algorithm of TEGHEM et

al. [19].

. A module based on the ‘AIM’ aspiration interactive method [14] for an

interactive search in the obtained results.

The model instance database stores the data of the problem instances that

have to be solved. General job shop as well as flow shop scheduling problems
can be formulated. Besides newly generated data sets, well-known test instances
from literature [3] have been included. Solutions are obtained by linking model
instances with methods and stored in a solution database. This allows the reuse
of specific metaheuristics for a range of problem instances as well as the com-
parison of results obtained from different heuristic approaches.

A graphical user interface links the modules described above into a single

system. Besides the construction of model instances and the definition of meta-
heuristic search algorithms, an interactive decision making procedure enables
the user to select a most preferred schedule. Visualization of alternatives is
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available in alternative space and in outcome space. The alternatives as such
are presented as Gantt charts [10], their outcomes as plotted Pareto fronts.

2.3 Visual interface

The user interface is a key aspect of the implemented system as it is designed
for end users. It brings together visual components to store, retrieve and modify
problem instances, configure metaheuristic methods, execute them and manage
the obtained results. All components like for example crossover/mutation oper-
ators and their corresponding application probabilities are available. New con-
figurations of metaheuristics can be derived from predefined and implemented
techniques by simply changing the attribute values of the methods. Also, the
progress of the metaheuristics while optimizing a particular problem instance
can be monitored by storing the currently best alternatives after definable in-
tervals of evaluations.

After executing methods on problem instances, solutions are obtained that
need to be further investigated. As mentioned above, two visualizations are of
importance. First, a two-dimensional outcome space plot visualizing the Pareto
front. Here, a direct interaction is possible by allowing the user to select alter-
natives. Second, a visualization of the alternatives as such using job-oriented or
machine-oriented Gantt charts [24]. The detailed starting times of the opera-
tions can be monitored here, and an indication whether a job is tardy or not is
easily available.

In order to allow a widespread use of the software, the graphical user in-
terface is available in English, French, German, Hungarian, Italian, Polish, and
Spanish language. Also, a 103-pages printed documentation is available.

2.4 Optimization and decision making

The resolution of multi-objective scheduling problems is supported by a two-
stage a posteriori procedure as described in Section 1. First, Pareto-optimal
alternatives or an approximation P, of the Pareto set P are computed using
the chosen metaheuristics. Second, an interactive search in the obtained results
is performed by the decision maker.

During this interactive decision making procedure, aspiration levels A =
{ag,,...,aq,} for each of the optimized objective functions G(x) = (¢1(x),. ..,
gr(x)) are chosen. As shown in Figure 2, the elements of the approximation P,
of the Pareto set P are accordingly divided into two subsets, the subset P,
of the alternatives fulfilling the aspiration levels (g;(z) < aq,Vi =1,...,k) and
the subset P-,; of the alternatives that do not meet the aspiration levels. It is
obvious that P,; U P_4s = P, and P, N P, = 0.

The initial values of the aspiration levels a4, are set to the worst values
in P,: ag, = maxzep, (9i(z))Vi = 1,...,k and as a consequence, P,s = P,.
The decision maker is allowed to modify the values of the aspiration levels
and successively reduce the number of elements in P, until |P,s| = 1. The
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Fig. 2. Decision making component. A cone in outcome space divides the set of
alternatives into alternatives fulfilling the aspiration levels (grey background) and
alternatives outside the cone (white background).

remaining alternative in P, is the desired compromising solution z* as the
fixed aspiration levels are met by this alternative.

Another interpretation of the method can be seen in a moving cone in out-
come space that contains all alternatives fulfilling the current aspiration levels.
While the visualization of the outcome space provided by the system is lim-
ited to two dimensions at a time, the decision making procedure as such can
accommodate higher dimensions without any further problems. The procedure
here allows the arbitrary change of the aspiration levels a4, in any direction,
enlarging or reducing them. This is important as the situation in which P, = ()
appears, an adjustment of at least one aspiration level ag4, is necessary in order
to allow the identification of a most preferred alternative x*.

3 Computational results

Different configurations of the implemented metaheuristics have been tested
on benchmark instances of multi-objective machine scheduling problems taken
from literature [1, 2], ranging from n = 20 jobs on m = 5 machines up to
n = 100 jobs on m = 20 machines. Using various configurations of evolutionary
algorithms, close approximations of the true Pareto fronts or the best known
solutions could have been obtained.

Algorithm 1 gives the pseudo-code of the applied evolutionary method. It
can be seen, that two sets are maintained during search. First, a population
POP; of nyp,p, individuals, and second, an archive P, of alternatives which are
currently not dominated by any other known alternative. After termination of
the optimization runs, P, is returned as an approximation of the true Pareto set
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P. This strategy allows the evolvement of the population POP; while keeping
the best found alternatives in P,, implicitly implementing an elitist strategy.

Algorithm 1 Multi-objective evolutionary algorithm
: Seti=1
: Set P, =
: Initialize: Compute starting population POP; with np.p individuals
: Update P, with POP;
repeat
repeat
Select alternatives x1,x2 € POP, U P,
Compute z', x5 using crossover neighborhood N (z1, T2, 2)
Apply mutation N,,(x, z) with probability pmu:
Test new alternatives x, 25 for acceptance in POP; 1
until number of elements in P11 = npop
12: Update Pa Wlth Pi+1
13: Seti=i+1
14: until termination criterion has been met

15: Return P,

— =
oY

When selecting two alternatives x1, xo for reproduction, the union of both
sets POP; and P, forms a mating pool. Selection is done with respect to the
Pareto-ranking-based approach of FONSECA and FLEMING [8]. Crossover op-
erators tested include partially mapped crossover PMX, order based crossover
OBX, uniform order based crossover UOBX, and two-point crossover TPOX
[22]. New alternatives are generated until a new population POP; 1 has been
formed which replaces the old population POP;. Step 10 of Algorithm 1 ensures
that no duplicates are added to the succeeding population POP;, .

The length of the test runs has to be chosen depending on the size of the
problem instances. Good termination criteria turned out to be 1,000,000 evalu-
ated alternatives for instances with n = 20, 5,000,000 evaluations for instances
with n = 50, and 10,000,000 for n = 100.

For the instances proposed by BASSEUR et al. [2] on the basis of TAILLARD
[17], the approximations came close to the best known alternatives of which
most have been identified. Unfortunately it was not possible to improve any of
them. It may be mentioned however, that for the smaller instances the known
results are already proven to be optimal and therefor not further improvable.

New alternatives have been identified dominating the previously reported
best known solutions for the instance of BAGCHI [1] with n = 49 jobs on m = 15
machines. The considered objective functions of this instance are the minimiza-
tion of the maximum completion time C},q., the minimization of the average
completion time of all jobs %Csum, and the minimization of the average tardi-
ness of all jobs %Tsum.

Figure 3 gives a plot of the results in outcome space. The best solutions
obtained with a multi-objective evolutionary algorithms using the fitness as-



8 Martin Josef Geiger

Bagchi x
EA-UOBX e
1/nT,

sum

650 - o
600 - o
550
500
450
400
350

Fig. 3. Comparison of obtained approximation for the problem instance from [1] with
previously known best solutions.

signment of FONSECA and FLEMING [8] and a uniform order based crossover
UOBX are compared with the results reported by BAGCHI. It can be seen, that
all alternatives of [1] are dominated. In particular with respect to the objective
of minimizing the average tardiness of jobs, significant improvements have been
obtained.

When closer investigating the results, it can be observed that the obtained
alternatives are in rather close proximity to each other. The schedules share
significant similarities both in outcome space, see Figure 3, and in alternative
space. This indicates that Pareto optimal alternatives are closely concentrated
in the search space of feasible alternatives X and helps to explain to some
extend how metaheuristic search may work. As qualitatively good alternatives
are typically close to other alternatives of high quality, this information may be
exploited when computing neighboring alternatives using crossover or mutation
operators.

4 Conclusions and discussion

A decision support system for multiple objective scheduling problems has been
presented. It incorporates a set of metaheuristics that can be adapted to specific
problem instances. As the user interface is highly visual, non-experienced users
are able to solve scheduling problems under multiple objectives with comparably
little knowledge.

Computational results have been gathered for benchmark instances taken
from literature. It has been possible to observe the effectiveness of the im-
plemented methods, even in comparison to the best known results of the test
instances. While the results are satisfying with respect to that aspect, a further
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development and improvement of the methods is unfortunately not permitted
to the end user as the source code is not accessible.

After an approximation of Pareto-optimal alternatives has been obtained, an
interactive decision making module based on the aspiration interactive method
allows the identification of a most preferred schedule. The system may also
be used to compare different approximation results of various metaheuristic
approaches in terms of their approximation quality. It is therefore suitable
for demonstrating the use, adaptation and effectiveness of metaheuristics to
complex combinatorial optimization problems using the example of machine
scheduling under multiple objectives.

The system successfully competed in the FEuropean Academic Software
Award, a biannual contest of academic software in research and higher educa-
tion. In this context, it has been evaluated by an international panel of experts.
As it is aimed at end users who are not necessarily experts in the relevant field
of metaheuristics or scheduling, its’ realized concept differs from existing im-
plementations. Rather than being generic like know software class libraries, it
is specific. This bears the disadvantage of a potentially difficult adaptation to
other problems than scheduling. On the other hand however, as it presents a
closed system with no need of adapting and recompiling source code, it may
also be used as a demonstration and learning tool in higher education. Based on
the experiences gathered, we believe that it is able to stipulate the understand-
ing and use of modern metaheuristics in research and higher education, and
contribute to the further development and distribution of modern heuristics.
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