Investigating the Predictability of Empirical
Software Failure Data with Artificial
Neural Networks and Hybrid Models

Andreas S. Andreou, Alexandros Koutsimpelas
Department of Computer Science, University of Cyprus,
75 Kallipoleos Str., P.O. Box 20537, CY 1678, Nicosia, Cyprus
aandreou@ucy.ac.cy, cs99ak2@ucy.ac.cy

Abstract. Software failure and software reliability are strongly related
concepts. Introducing a model that would perform successful failure prediction
could provide the means for achieving higher software reliability and quality.
In this context, we have employed artificial neural networks and genetic
algorithms to investigate whether software failure can be accurately modeled
and forecasted based on empirical data of real systems.

1 Introduction

One of the major demands in Software Engineering is reliability. Non-reliable
systems lead to dissatisfied customers and system users, extra human hours devoted
on testing and difficulties through the maintenance phase. High reliability ensures
that there is a small failure probability during the execution of a program [8] [9]. The
term failure defines the inability of the program to respond to user requests correctly,
that is, as prescribed in its requirements [9], caused by a programming error during
the implementation or an ill-defined user need during the analysis of the system.
Measuring the occurrences of failures in a system provides a way to determine its
reliability. These measurements reflect the system quality and can be used in
decision-making and problem solving processes. Essentially, there are four ways to
record failure occurrences [9]:

e Time of failure

Time of interval between failures

Cumulative failures expressed up to a give time t

Failures experienced in a time interval At

Software failure data is a reliability measurement but suffers many disadvantages
mainly because of its dependence to the simulation environment and user
knowledge. A system being tested in a controlled environment produces different
failure data if tested under real use and there is always an issue for the ability of the

Please use the following format when citing this chapter:

Andreou, Andreas, Koutsimpelas, Alexandros, 2006, in IFIP Intemational Federation for Information
Processing, Volume 204, Artificial Intelligence Applications and Innovations, eds. Maglogiannis, I.,
Karpouzis, K., Bramer, M., (Boston: Springer), pp. 524-532

Artificial Intelligence Applications and Innovations 525

tester. People tend to use software differently and failure data recorded from expert
users differ dramatically from failure data of naive users. This partially explains the
difficulties in modeling the behavior of software failures.

Having a model that predicts the occurrences of software failures may help
software analysts and developers produce quality and reliable systems. Knowing a
priori that a failure may occur in a specific time and monitoring thoroughly the
problematic system at that moment increases the probability of successful error
discovery. One way to achieve this is to study the behavior of empirical failure
occurrence data and investigate its predictability, building upon a previous research
that investigated the nature of software failures using a non-parametric analysis [2].
The findings of that study were quite interesting as they support a random
explanation of the behavior of empirical software failures, which resembles that of
pink noise. We will attempt to question or support those findings by utilizing several
forms of neural networks, including hybrid models (i.e. combined with genetic
algorithms) trained with the same data series to investigate their predictability level.

The rest of the paper is organized as follows: Section 2 provides an overview on
neural networks and genetic algorithms, while section 3 describes the models
proposed to produce the failure predictions. Finally, section 4 draws the concluding
remarks.

2 Theoretical Background

2.1 Artificial Neural Networks

Artificial neural networks are based on the model of the human brain neuron cells
and try to mimic their functions. The human brain contains billions of neuron cells
connected to each other through synapses. The input signals of each cell are added in
the body cell and the summation is provided to other cells through the axon. Based
on this, an artificial neuron is a mathematical model, which tries to duplicate this
function. The neuron input vector x is multiplied with the input weights vector w and
an adder sums those products. The result is passed to an activation function ¢ and its
output becomes the neuron’s output. The mathematical representation of an artificial
neuron is [6]:

m
u, =ijw,g. O
j=
Ve =9(,) @
where x is the input vector of neuron %, wy the weighs vector and u; the dot product
of those two. The neuron output y, is defined as the result of the activation function ¢
given the dot product u,.
Combining several artificial neurons and organizing them into layers sets up an
artificial neural network. By imitating the job of neuron cells the artificial neural
networks inherit advantages such as generalization, input-output mapping fault

526 Artificial Intelligence Applications and Innovations

tolerance and adaptability. When the neuron outputs of a layer are provided as inputs
to the neurons of the next layer, the neural networks are called fully connected. The
outputs of the last layer are the network’s outputs. The number of network inputs, the
number of neurons per layer, their activation function and the number of layers
define the network’s architecture. The most popular network architecture is the Multi
Layer Feed Forward Perceptrons [6]. Networks belonging in the category are
composed of many layers, more than one and their neurons are fully connected with
the neurons of the next layer.

Another category of neural network architecture is the Recurrent Networks.
Observations of the human brain show that the output of a neuron cell is often
redirected as an input to the same cell [6]. This kind of loop is implemented in the
model of the recurrent neuron. Using this type of neurons produces networks that can
solve more difficult problems. Typical examples of recurrent networks are the Elman
networks, the Hopfield networks and the Kalman Filtering [5].

In order to be able to solve a problem, neural networks have to go through a
training phase. In most cases, this training is supervised meaning that the networks
try to learn by applying changes to there synaptic weights according to the errors
computed on their outputs. The errors are the differences of the network output for a
specific input pattern from the actual values provided. There are many training
algorithms that implement this process, the most popular being the back propagation
algorithm [6] and its variations. After the training phase the network generalizes its
knowledge; it can provide satisfactory responses to unknown input patterns.

2.2 Genetic Algorithms

Genetic algorithms are stochastic, probabilistic algorithms that model natural
phenomena such as inheritance and Darwinian strife for survival [7]. They are used
to search a space of possible solutions through a process of evolving and evaluating
individuals representing solutions and selecting the best one. The evolution works by
encoding the possible solutions in a chromosome-like format, usually bit strings of
specific length. A population of these chromosomes is randomly initialized and an
evaluating loop begins. A fitness function selects the individuals with the highest
fitness values. The selected atoms are undergone genetic operators like crossover
(mating two individuals by exchanging their parts at a random position) and
mutation (flipping bits from 0 to 1 and vice versa), which alter their values and hence
their fitness [7].

3 Empirical Findings

This paper presents three attempts to find suitable neural networks for software
failure occurrence predictions. The first one combines feed-forward neural networks
trained with various algorithms and evolved by a genetic algorithm in terms of
architecture. The second one utilizes recurrent networks and the third is a variation
of the first one where the training data have been preprocessed.

Artificial Intelligence Applications and Innovations 527

3.1 Musa Dataset

In the 70s J. Musa created a dataset of software failures while working for the Bell
Telephone Laboratories. The purpose of this work was to verify the ability of SRGM
to simulate the occurrences of failures. Sixteen systems where monitored, such as
operation system, word processors and real time systems, creating datasets that
provided information about system code, day of failure and time intervals between
failures in seconds. Three of these datasets were used in this work to train neural
networks: Project 5 with 831 samples, SS1B with 375 samples and SS3 with 278
samples.

Previous research in this field [8] [9] have shown that the nature of the software
failure data is non-deterministic and random. As seen in fig. 1, time intervals may
vary as execution proceeds and it’s very difficult to locate a pattern in this series
especially with the presence of spikes adding more complexity. Furthermore, R/S
analysis performed by Andreou and Leonidou [1] concluded that the characteristics
of software failure data in Musa’s datasets are similar to that of pink noise.

x 10° Project5 Dataseries

N
o
L

N
—
1

! I

luhhh’ ,:.l‘i.i.LH. h ‘,] ‘u.mlmumn ‘ hm.ﬁhmm i

100 200 300 400 500 600 700 800 900
Failures

Intervals between failures
N
o
-
L

-
T

Fig. 1. Musa Dataset, Bell Laboratories, Project 5 interval between failures (seconds)

3.2 Feed Forward Neural Networks and Genetic Algorithms

The first attempt to locate an artificial neural network architecture that performs
software failure data prediction was made using multi-layer feed-forward
perceptrons that are trained with the Project 5, SS1B and SS1 data series. For the
investigation part of the experiment, a dedicated genetic algorithm was designed and
implemented according to the theory of evolutionary algorithms [7].

Each chromosome of the genetic algorithm represents a feed-forward neural
network. The genes of the chromosome include information about the number of
inputs, the number of nodes per layer and the activation functions per layer. Limits
were set to the number of inputs, sixteen per networks, and the number of neurons,

528 Artificial Intelligence Applications and Innovations

thirty-two per layer. The output layer is consisted of one neuron with a linear
activation function. Each network has two hidden layers by default.

Apart from information on the number of neurons and the activation function, an
extra gene is used to specify the training algorithm used to train the network
represented by the chromosome. The back propagation algorithm is used and its
variations (back propagation with momentum, back propagation with adaptive
learning rate) [5]. Furthermore, optimized algorithms that use Jacobian and Hessian
matrices were utilized to perform weight corrections, such as the Levenberg-
Marquardt back-propagation [4], the Quasi-Newton BFGS [3] and the Bayesian
regularization back-propagation [4].

3.3 Recurrent Networks and Genetic Algorithms

In the case of recurrent neural networks the chromosomes were altered to
accommodate the Multiple Extended Kalman filtering Algorithm (MEKA) [1],
which is an alternation of the Extended Kalman Filtering Algorithm [5]. The
synaptic weights wi of node i are computed by the following formulas [2]:

r(n)= A" P(n-1)q,(n) ©)
ky(n) = r(m)[1+ 7] (n)q,(m)]" @
w,(n+1) = w,(n) +e,(n)k,(n) ®)
B(n+1)=A"B(n)~k ()1 (n) ©)

where, n = 1...N the iteration number and N the total number of input patterns. The
vector g;(n) is the estimation of the activation function made with Taylor series. P;(n)
is the current estimation of the inverse of the covariance matrix of g;(n) and k;(n) the
kalman gain. The parameter 4 is a forgetting factor with values in the range [0,1] and
e;(n) is the propagated error to node i. A good estimation of the initial values of P is
¢"'I, where e real in the range [10°%, 10?] and I the eye matrix [5].

The population of the genetic algorithm is consisted by recurrent networks where
feedback loops go from each neuron to every neuron of its layer. The feedback time
delay is one step. The chromosome encloses information about the number of inputs,
the number of neurons per layer and the activation function of each layer (tansig and

logsig).

3.4 SRGM Datasets

In order to compare the findings of real datasets with SRGMs, two artificial dataset
were created based on the formulas of the Musa Basic and the logarithmic Musa-
Okumoto models [2]. Those datasets, MB and MO respectively, were used in the
same manner as real datasets searching for a network that would perform their
prediction. The idea is that by succeeding to find a neural network that perform
prediction on those artificial data and failing on real data one may argue their ability
to model real software failures occurrences.

These data set were created by solving the mean value function u(2) for ¢, for each
of the two models. The mean value function represents the number of failures
expected to occur up to time moment ¢. Those functions are [8]:

Artificial Intelligence Applications and Innovations 529

MO: u@t)=[1-e "IN @)

MB : u(f) = N In(1+ ¢t) (®)
where N is the expected number of failure in infinite time, ¢ is the failure rate per
fault, K is the fault exposure ratio, B is the fault reduction factor and f a factor
calculated as the average object instruction execution rate of the computer » divided
by the number of source code instructions of the application under testing I times
the average number of object instruction per source code instruction O [8].

Assuming discreet time, replacing u(?) with an integer positive variable i and

setting [2]:

MO :i=Nln(l+ ¢t))
MB:i=(1-e™)N (10)
we get:
MOt =l(e%"—l) an
¢
MB:, =—Lln[1—i) (12)
/KB N

Using the above formulas the times of failure occurrences were computed for
each SRGM using the values suggested by [8]: (¢, f, K, B) = (7.8, 7.4 107, 4.2 107,
0.955).

3.5 Preprocessed Datasets

It is common practice to preprocess the data prior to training neural networks so as to
remove possible biases and achieve better results. During the experiments of this
study three different preprocessing methods were used; logarithms, difference of
sequential logarithms (log (t,+)-log (t,), where t, the n™ time interval of the software
failure series) and logarithms with spikes threshold. The new data were used for
training the different networks described in section 3.1. For this experiment only the
Project 5 dataset was used because is the one with the most samples.

3.6 Results

The experiments were conducted with a population of 50 feed-forward neural
networks and a limit of 20 epochs, and a population of 100 recurrent networks and a
limit of 50 epochs for the genetic algorithm. During the evolution process the fitness
evaluation was done with the Mean Relative Error (MRE) [2] and the fitness
function:

13)

ltness =
Jiness = VRE

For each experiment two sets were created. The first one, the training set,
consisted of the first 75% of the dataset under investigation. The second set, the
remaining data of the dataset under investigation, were used to validate the neural
network with data that did not participate in the training. The optimum networks,
defined as I-H;-H,-1 (I: number of inputs, H;: number of neurons in first hidden
layer, H,: number of neurons in second hidden layer) were simulated taking as inputs

530 Artificial Intelligence Applications and Innovations

the training and testing sets, and their responses were used for statistical analysis.
The results of this analysis are presented in Table 1.

The Mean Squared Error (MSE) and the Mean Absolute Error (MAE), being data
depended criteria, may provide a view on the success to predict the time series but
for large input values they don’t supply substantial information. On the other hand,
the Mean Relative Error (MRE), by not being data depended, may offer a good
criterion about the success to predict effectively future software failure intervals. The
Normalized Root Mean Squared Error (NRMSE) examines the ability of a network
to predict compared to a mean predictor. NRMSE values greater or equal to 1 imply
that the network under verification doesn’t curry out predictions but instead
computes the mean value of its inputs. Finally, the Correlation Coefficient assess the
ability of the network to follow the trend of the time series inspected.

Table 1. Statistical results for each dataset

Dataset Algorithm Network Type NRMSE CC MSE MRE MAE
. . Train 1.2080 -0.0855 2.04x10° 0.9834 2.54x10*
Project5 traingdm 7-15-23-1 "
Test 1.1733 02076 247x10° 0.9624 2.62x10
MEKA 16-32-32-1 Train 1.2061 200196 2.06x10° 0.9967 2.54x10*
Test 1.1746 -0.0067 245x10° 09949 2.61x10*
16-17-24-1 Train 2.103 0.2395 6.23x10" 0.9984 1.49x10°
SS1B trainbfg 10 s
Test 1.7328 0.1856 3.67x10 0.9992 1.08x10
15-16-24-1 Train 1.2425 -0.088 6.19x10'° 0.9323 1.48x10°
MEKA 10 S
Test 1.1969 -0.0598 3.76x10 0.9285 1.08x10
. 16-24-7-1 Train 1.2286 0.1933 7.22x10'° 0.9949 1.57x10°
SS3 trainbfg " S
Test 1.2751 0.1257 2.4x10 0.9998 3.08x10
16-22-27-1 Train 1.2065 -0.074 7.19x10"° 9.2633 1.57x10°
MEKA " "
Test 1.2709 -0.0751 3.14x10 1.2036 3.5%x10
. 4-9-29-1 Train 9.67x10° 1 5.01x10° 2.03x10"" 0.0069
MB trainbr .
Test 291x10% 1 5.08x10° 2.03x10" 0.0069
) 15-20-30-1 Train 0.002 1 2.87x10’ 3.54x10° 4.56x10™
MO trainbr s
Test 0.0854 1 5.69x10° 521x10° 0.0067
log (P5) wain 6-28-28-1 Train 735x10% 1 2.13x10°% 1.11x10* 8.45x10*
rainim
no spikes Test 1.8568 0.017 19.7321 0.7552 3.4748
diff. trainbr 16-4-12-1 Train 0.9992 Inf' 322626 Inf 3.3908
log (P5) Test 0.974 Inf 77.6024 Inf 3.9268
. 132327-1 Train 0.0368 0.9993 0.0308 0.0085 0.077
log (P5) trainlm
Test 1.6545 -0.0048 118.77 0.7896 7.2237

Even though there were cases where the statistical criteria showed that a network

succeeded in predicting the training data set (preprocessed datasets), there was no
success in predicting the testing data. This results in the failure of the networks to
generalize and expand their knowledge. The NRMSE with values near and above 1
indicate that essentially only the mean values were actually computed. On the other
hand, feed-forward neural networks managed to predict with high accuracy the
artificial datasets created from equations (11) and (12).

! Division with zero

Artificial Intelligence Applications and Innovations 531

logfProject 5) Actusl v Predicled Traniog Set 1og(Project 5) Actual w Predicied Taating Set

Fig. 2. Log values for Project 5: Training set (left) and testing set (right), with the response of
the optimum network (actual samples are presented in solid line and predictions in dashed)

4 Conclusions

The predictability of software failure data was investigated using artificial neural
networks and hybrid modeling in an attempt to understand the nature of software
failure data with non linear (neural networks), probabilistic and stochastic (genetic
algorithms) models.

Our research focused on utilizing neural networks (feed forward and recurrent
networks) to predict empirical failure samples recorded by J. Musa for Bell
Telephone Laboratories in the *70s for software reliability verification. The findings
of our analysis come to support previous work [2] [9] on the subject stating that
software failure data are non-deterministic in nature, resembling a random series and
more specifically pink noise.

Examining the results in Table 1 and Fig. 3 it is clear that none of the networks
investigated managed to produce accurate predictions. The statistical error between
actual series values and network-simulated values exceeded the standards and the
correlation coefficient showed that the predicted data series suffer from trend
capturing and present the inability to reproduce accurate values. What the neural
networks managed to do is provide a mean value computation of their inputs, as
supported by the NRMSE, with results equal or greater than unity. On the other
hand, artificially generated failure data created using known SRGM formulas were
successfully predicted. This questions the ability of SRGMs to effectively capture
and model the behavior of software failure and hence reliability.

Future work will focus on preprocessed data and advanced recurrent neural
networks. The statistics gathered for preprocessed data indicated that the networks
used presented better results, achieving higher prediction ability. Advanced recurrent
neural networks having scaling time delays greater than one on their feedback loops
will be examined to test whether prediction accuracy may be improved. Finally, new
software failure data need to be recorded that would express failure tendency of
today’s software so as to examine possible changes in the reliability behavior of
modern software.

532 Artificial Intelligence Applications and Innovations

References

8.

9.

. Andreas, A., S., Georgopoulos, E., F., Likothanassis S., D.: Exchange-Rates Forecasting:

A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks,
Computational Economics (2002), 191-210

. Andreas, A., S., Leonidou, C.: Nonparametric Analysis of Software Reliability. Revealing

the Nature of Software Failure Dataseries. Department of Computer Science, University of
Cyprus, Cyprus (2003)

. Dennis, J., E., Schnabel, R., B.: Numerical Methods for Unconstrained Optimization and

Nonlinear Equations, Englewood Cliffs, NJ Prentice-Hall (1983)

. Hagan, M., T., Demuth, H., B., Beale, M., H.: Neural Network Design, Boston, MA: PWS
Publishing (1996)

. Haykin, S.: Kalman Filtering and Neural Networks, Wiley-Interscience (2001)

. Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice-Hall, Second
Edition (1999)

. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, Third

Edition, Springer-Verlag Berlin Heidelberg New York (1996)

Musa, J., D.: A Theory of Software Reliability and its Application, IEEE Trans. Software
Eng. 1(3) (1975), 312-327

Musa, J., D.: Software Reliability Engineering, McGraw-Hill (1999)

10.Patra, S.: A neural network approach for long-term software MTTF prediction, Fast

abstracts of 14th IEEE International Symposium on Software Reliability Engineering
(ISSRE2003), Chillarege Press (2003).

