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Abstract. Many real world datasets exhibit skewed class distributions in 

which almost all instances are allotted to a class and far fewer instances to a 

smaller, but more interesting class. A classifier induced from an imbalanced 

dataset has a low error rate for the majority class and an undesirable error rate 

for the minority class. Many research efforts have been made to deal with class 

noise but none of them was designed for imbalanced datasets. This paper 

provides a study on the various methodologies that have tried to handle the 

imbalanced datasets and examines their robustness in class noise.  

1 Introduction 

In many applications classifiers are faced with imbalanced data sets, which can 

cause the classifier to be biased towards one class. This bias is the result of one class 

being seriously under represented in the training data compared to the other classes. 

It can be qualified to the way in which classifiers are designed. Inductive classifiers 

are normally designed to minimize errors over the training examples. Learning 

algorithms, because of the fact that the cost of performing well on the over-

represented class outweighs the cost of poor accuracy on the smaller class, can 

ignore classes containing few examples [16]. For a number of application domains, a 

massive disproportion in the number of cases belonging to each class is common. 

For example, in detection of fraud in telephone calls [9] and credit card transactions 

the number of legitimate transactions is much higher than the number of fraudulent 

transactions. Moreover, in direct marketing [19], it is frequent to have a small 

response rate (about 1%) for most marketing campaigns. Other examples of domains 

with intrinsic imbalance can be found in the literature such as rare medical diagnoses 

[22] and oil spills in satellite images [18].  

The machine learning community has mostly addressed the issue of class 

imbalance in two ways. One is to give distinct costs to training instances [8]. The 
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other is to re-sample the original dataset, either by oversampling the minority class 

and/or under-sampling the majority class [17], [12]. Thus, existing research 

endeavors have made significant progress in exploring techniques for handling 

imbalanced datasets with assumptions that the input data are noise-free or noise in 

the data sets is not significant. However, real-world data are rarely perfect and can 

often suffer from corruptions that may impact interpretations of the data, models 

created from the data, and decisions made on the data.  

Many research efforts have been made to deal with class noise [14], [23], [4], 

[11], [24], and have suggested that in many situations, eliminating instances that 

contain class noise will improve the classification accuracy. Although, many 

research efforts have focused on noise identification and data cleansing, none of 

them was originally designed for imbalanced datasets. In this study, the effectiveness 

of techniques for handling imbalanced datasets in class noise is evaluated over 7 

imbalanced datasets using the C4.5 [20], Naive Bayes [6] and 5NN [1] as classifiers 

and the geometric mean of accuracies as performance measure [17]. 

Section 2 reviews the attempts for handling imbalanced datasets, while section 3 

presents experimental results of the techniques for handling imbalanced datasets in 

class noise. Finally, section 4 discusses the results and suggests directions. 

2 Review of existing techniques for handling imbalanced datasets 

A simple method that can be used to imbalanced data sets is to reweigh training 

examples according to the total cost assigned to each class [6]. The idea is to change 

the class distributions in the training set towards the most costly class. The effect of 

imbalance in a dataset is also discussed in [12]. Japkowicz mainly evaluated two 

strategies: under-sampling and resampling. She noted that both the sampling 

approaches were helpful. In [17] the researchers selectively under-sampled the 

majority class while keeping the original population of the minority class with 

satisfied results. Batista et al. [2] used a more sophisticated under-sampling 

technique in order to reduce the amount of potentially useful data. Another approach 

is that of [19]. They combined over-sampling of the minority class with under-

sampling of the majority class. However, the over-sampling and under-sampling 

combination did not provide significant improvement. In [5] they recommend an 

over-sampling approach in which the minority class is over-sampled by creating 

“synthetic” instances rather than by over-sampling with replacement with better 

results. 

Changing the class distribution is not the only technique to improve classifier 

performance when learning from imbalanced data sets. A different approach to 

incorporating costs in decision-making is to define fixed and unequal 

misclassification costs between classes. Cost model takes the form of a cost matrix, 

where the cost of classifying a sample from a true class j to class i corresponds to the 

matrix entry λij. This matrix is usually expressed in terms of average 

misclassification costs for the problem. The diagonal elements are usually set to 

zero, meaning correct classification has no cost. We define conditional risk for 

making a decision αi as: ( | ) ( | )i ij j

i

R a x P v x!=" . The equation states that the 
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risk of choosing class i is defined by fixed misclassification costs and the uncertainty 

of our knowledge about the true class of x expressed by the posterior probabilities. 

The goal in cost-sensitive classification is to minimize the cost of misclassification, 

which can be realized by choosing the class (vj) with the minimum conditional risk. 

An alternative to balancing the classes is to develop a learning algorithm that is 

intrinsically insensitive to class distribution in the training set. An example of this 

kind of algorithm is the SHRINK algorithm [17] that finds only rules that best 

summarize the positive instances (of the small class), but makes use of the 

information from the negative instances. MetaCost [6] is another method for making 

a classifier cost-sensitive. The procedure begins to learn an internal cost-sensitive 

model by applying a cost-sensitive procedure, which employs a base learning 

algorithm. Then, MetaCost procedure estimates class probabilities using bagging and 

then re-labels the training instances with their minimum expected cost classes, and 

finally relearns a model using the modified training set. 

3 Experiments 

For the aim of our study the most well-known decision tree algorithm - C4.5 [20] 

– was used. One of the latest researches that compare decision trees and other 

learning algorithms is made in [21] and shows that the mean error rates of most 

algorithms are similar and that their differences are statistically insignificant. But, 

unlike error rates, there are huge differences between the training times of the 

algorithms. C4.5 has one of the best combinations of error rate and speed. Decision 

tree classifiers, regularly, employ post-pruning techniques that evaluate the 

performance of decision trees as they are pruned using a validation set. Any node can 

be removed and assigned the most common class of the training examples that are 

sorted to the node in question. As a result, if a class is rare, decision tree algorithms 

often prune the tree down to a single node that classifies all instances as members of 

the common class leading to poor accuracy on the examples of minority class. The 

extreme skewness in class distribution is problematic for Naïve Bayes [7]. The prior 

probability of the majority class overshadows the differences in the attribute 

conditional probability terms. Instance-based learning algorithms belong to the 

category of lazy-learning algorithms, as they delay the induction until classification 

is performed. One of the most straightforward instance-based learning algorithms is 

the nearest neighbour algorithm [1]. In our study, we made use of the commonly 

used 5-NN algorithm. In imbalanced data sets as the number of the instances of the 

majority class grows, so does the likelihood that the nearest neighbour of any 

instance will belong to the majority class. This leads to the problem that many 

instances of the minority class will be misclassified. 

In Table 1, there is a brief description of the data sets that we used for our 

experiments. Except for the “eap” data set, all were drawn from the UC Irvine 

Repository [3]. Eap data is from Hellenic Open University and was used in order to 

determine whether a student is about to drop-out or not [15].  
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Table 1. Description of the data sets  

Data sets Instances Categorical 

Features 

Numerical 

Features 

Instances of minority 

class 

Classes 

breast-cancer 286 9 0 85 2 

credit-g 1000 13 7 300 2 

Diabetes 768 0 8 268 2 

Haberman 306 0 3 81 2 

Hepatitis 155 13 6 32 2 

Ionosphere 351 34 0 126 2 

Eap 344 11 0 122 2 

 

For most of the datasets we used, they don’t actually contain noise, so we use 

manual mechanisms to add class noise. For class noise, we adopt a pairwise scheme 

[24]: given a pair of classes (X, Y) and a noise level x, an instance with its label X 

has an x*100% chance to be corrupted and mislabeled as Y, so does an instance of 

class Y. Meanwhile, we only report the value x of class noise (which is not the actual 

class noise level in the dataset) in all tables below. 

When comparing the performance of different classifiers in imbalanced data sets, 

accuracy as a measure is not enough. A classifier’s performance of two class 

problems can be separately calculated for its performance over the positive instances 

(denoted as α
+
) and over the negative instances (denoted as α

-
). The true positive rate 

(α
+
) or sensitivity is the fraction of positive instances predicted correctly by the 

model. Similarly, the true negative rate (α
-
) or specificity is the fraction of negative 

instances predicted correctly by the classifier. In [17] they propose the geometric 

mean of the accuracies: a ag
+ !

= "  for imbalanced data sets. The basic idea behind 

this measure is to maximize the accuracy on both classes. Classification ability of the 

learning methods in our experiments was measured with geometric mean of the 

accuracies. For the examined models, the relationship between false negative and 

false positive costs was chosen to be the inverse of the assumed prior to compensate 

for the imbalanced priors.  

In Table 2, one can see the comparisons with class noise of the attempts that have 

tried to obtain the best performance of a given imbalance data set using Naive Bayes 

(NB) as base classifier. Three well-known algorithms were used for the comparison: 

Reweighing and Cost Sensitive method [6] and Metacost algorithm [8]. We also 

present the accuracy of the simple Bayes algorithm as borderline. It must be 

mentioned that we used the free available source code for these methods [22] for our 

experiments. In Table 2 and Table 3 except for geometric mean we also present the 

true-positive rate, and true-negative rate. It must be mentioned that positive class is 

the majority class for our experiments. In the last row of Table 2, the average value 

of the geometric means is also calculated in all data sets. It must be mentioned that 

for Naïve Bayes classifier, modifying the decision boundary (Cost Sensitive method) 

is equivalent to reweighing training instances so as the relationship between false 

negative and false positive costs to be the inverse of the imbalanced priors. All the 

tested techniques give better results than the single Naive Bayes in class noise. The 

Reweighing and Cost Sensitive method gave better results with little class noise; 

however Metacost can handle better more class noise.  
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Table 2. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with NB as base classifier  

Datasets  

ReWNB 

or 

CostNB 

Without 

Noise 

ReWNB 

or 

CostNB 

With 

10% 

Noise 

ReWNB 

or CostNB 

With 20% 

Noise 

Meta-cost 

NB 

Without 

Noise 

Meta-

cost 

NB 

With 

10% 

Noise 

Meta-

cost 

NB 

With 

20% 

Noise 

NB 

Without 

Noise 

NB 

With 

10% 

Noise 

NB 

With 

20% 

Noise 

breast- g 0.66 0.65 0.54 0.65 0.67 0.63 0.6 0.62 0.61 

cancer α+ 0.74  0.65 0.43 0.79  0.72 0.59 0.85 0.84 0.8 

 α- 0.58  0.66 0.69 0.54  0.62 0.67 0.43 0.46 0.46 

credit g 0.72 0.72 0.7 0.66  0.69 0.7 0.65 0.68 0.68 

-g α+ 0.75  0.68 0.59 0.77  0.73 0.65 0.86 0.85 0.84 

 α- 0.69  0.77 0.82 0.57  0.65 0.75 0.49 0.54 0.55 

diabetes g 0.73 0.74 0.71 0.70  0.71 0.7 0.71 0.72 0.72 

 α+ 0.78  0.76  0.68 0.75 0.72 0.66 0.84 0.84 0.85 

 α- 0.68  0.72  0.75 0.66  0.71 0.74 0.6  0.62 0.61 

Haber- g 0.56  0.58 0.46 0.57 0.59 0.5 0.44 0.45 0.39 

man α+ 0.89  0.83 0.26 0.87  0.84 0.3 0.94 0.94 0.95 

 α- 0.35  0.4 0.83 0.38  0.42 0.82 0.21 0.22 0.16 

Heapa- g 0.8 0.79 0.78 0.81  0.8 0.8 0.78 0.79 0.8 

titis α+ 0.83  0.81  0.67 0.79  0.76 0.73 0.87 0.83 0.82 

 α- 0.78  0.78  0.91 0.84  0.84 0.88 0.7 0.75 0.78 

Iono- g 0.82  0.83 0.81 0.77 0.77 0.76 0.83 0.82 0.81 

sphere α+ 0.78  0.8 0.81 0.68  0.68  0.69 0.8 0.83 0.84 

 α- 0.87 0.86 0.81 0.88  0.88  0.84 0.86 0.81 0.79 

eap g 0.85 0.82 0.78 0.85 0.84 0.8 0.84 0.82 0.82 

 α+ 0.87 0.79 0.68 0.88 0.85 0.72 0.9  0.88 0.87 

 α- 0.83 0.85 0.89 0.83 0.83 0.88 0.78 0.76 0.78 

Average  g 0.73 0.73 0.68 0.72 0.72 0.7 0.7 0.7 0.69 

 

In Table 3, one can see the comparisons with class noise of the attempts that have 

tried to obtain the best performance of a given imbalance data set using C4.5 as base 

classifier. The same three well-known techniques for handling imbalanced data sets 

were also used for this comparison. In general, all the tested techniques give better 

results than the single C4.5 in class noise. The Reweighing method gave better 

results with little class noise, however Metacost can handle better more class noise. 

In Table 4, one can see the comparisons of the proposed technique with other 

attempts that have tried to obtain the best performance of a given imbalance data sets 

using 5NN as base classifier. The same three well-known techniques for handling 

imbalanced data sets were also used for this comparison. It must be mentioned that 

for 5NN classifier, modifying the decision boundary (Cost Sensitive method) is 

equivalent to reweighing training instances so as the relationship between false 

negative and false positive costs to be the inverse of the imbalanced priors. In 

general, all the tested techniques give similar better results than the single 5NN in 

class noise and there was no difference between them.  
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Table 3. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with C4.5 as base classifier 

Data-

sets 
 

ReW-

C4.5 

With-

out 

Noise 

ReW-

C4.5 

With 

10% 

Noise 

ReW-

C4.5 

With 

20% 

Noise 

Cost-

C4.5 

With-

out 

Noise 

Cost-

C4.5 

With 

10% 

Noise 

Cost-

C4.5 

With 

20% 

Noise 

Meta-

cost 

C4.5 

With-

out 

Noise 

Meta-

cost 

C4.5 

With 

10% 

Noise 

Meta-

cost 

C4.5 

With 

20% 

Noise 

C4.5 

With-

out 

Noise 

C4.5 

With 

10% 

Noise 

C4.5 

With 

20% 

Noise 

breast- g 0.57 0.58 0.47 0.5  0.52 0.44 0.55  0.61 0.53 0.5  0.46 0.46 

cancer α+ 0.72  0.56 0.29 0.85  0.84 0.73 0.84  0.78 0.39 0.95  0.9 0.85 

 α- 0.45  0.6 0.77 0.3  0.32 0.27 0.36  0.48 0.72 0.26  0.24 0.25 

credit g 0.66  0.63 0.6 0.61 0.63 0.64 0.64 0.65 0.66 0.58  0.6 0.61 

-g α+ 0.67  0.57 0.47 0.82  0.76 0.68 0.76  0.71 0.65 0.85  0.83 0.79 

 α- 0.65  0.69 0.76 0.46  0.52 0.6 0.54  0.6 0.68 0.4  0.44 0.47 

Diabe- g 0.72 0.69 0.63 0.72 0.66 0.65 0.73 0.7 0.65 0.7 0.67 0.65 

tes α+ 0.72  0.66 0.47 0.78  0.79 0.63 0.78 0.73 0.59 0.82  0.8 0.87 

 α- 0.73  0.72 0.84 0.67  0.56 0.68 0.67  0.68 0.71 0.6  0.56 0.49 

Haber- g 0.63 0.59 0.42 0.58  0.58 0.4 0.62  0.59 0.38 0.52  0.56 0.43 

man α+ 0.68  0.56 0.19 0.66  0.81 0.19 0.76  0.61 0.16 0.85  0.83 0.9 

 α- 0.58  0.62 0.95 0.51  0.41 0.83 0.52  0.58 0.91 0.32  0.38 0.21 

Heapa- g 0.73  0.72 0.59 0.64  0.54 0.51 0.68  0.67 0.71 0.58  0.52 0.51 

titis α+ 0.62  0.69 0.55 0.86  0.77 0.47 0.83  0.76 0.63 0.9  0.87 0.84 

 α- 0.85  0.75 0.63 0.48  0.38 0.56 0.56  0.59 0.81 0.37  0.31 0.31 

Iono- g 0.89 0.83 0.8 0.88  0.82 0.77 0.9  0.85 0.78 0.88  0.82 0.77 

sphere α+ 0.94  0.88 0.91 0.94  0.94  0.92 0.98   0.92 0.86 0.94  0.94 0.92 

 α- 0.85 0.79 0.7 0.82  0.71 0.64 0.82  0.78 0.71 0.82  0.71 0.64 

eap g 0.81  0.78 0.71 0.83  0.8 0.79 0.82 0.79 0.76 0.83  0.83  0.86 

 α+ 0.86  0.76 0.57 0.94   0.84 0.75 0.89  0.78 0.69 0.94  0.94  0.92 

 α- 0.77  0.8 0.89 0.74  0.76 0.84 0.76 0.8 0.84 0.74  0.74  0.8 

Ave-

rage 
g 0.72 0.69 0.6 0.68 0.65 0.6 0.71 0.69 0.64 0.66 0.64 0.61 

 

As a general conclusion, the Reweighing method is a more appropriate technique 

in the presence of little class noise, however Metacost can handle better more class 

noise. 

4 Conclusion 

Existing research endeavors have made significant progress in exploring 

techniques for handling imbalanced datasets with assumptions that the input data are 

noise-free or noise in the data sets is not significant. However, real-world data are 

rarely perfect and can often suffer from corruptions that may impact interpretations 

of the data, models created from the data, and decisions made on the data. In this 

study, the effectiveness of techniques for handling imbalanced datasets in class noise 

is evaluated over 7 imbalanced datasets. Metacost seems to be more robust as the 
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class noise increased. In a following study, we will examine multi-class imbalanced 

datasets and will propose a more robust technique in the class noise. 

Table 4. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with 5NN as base classifier  

Data sets  

ReW5NN 

Or 

Cost5NN 

Without 

Noise 

ReW5NN 

Or 

Cost5NN 

With 10% 

Noise 

ReW5NN 

Or 

Cost5NN 

With 20% 

Noise 

Metacost 

5NN 

Without 

Noise 

Metacost 

5NN 

With 

10% 

Noise 

Metacost 

5NN 

With 

20% 

Noise 

5NN 

Without 

Noise 

5NN 

With 

10% 

Noise 

5NN 

With 

20% 

Noise 

g 0.62 0.6 0.59 0.51 0.59 0.58 0.45 0.44 0.47 

α+ 0.73  0.6 0.47 0.86 0.67 0.51 0.96 0.95 0.92 
breast-

cancer 
α- 0.52  0.61 0.73 0.3 0.52 0.67 0.21 0.2 0.24 

g 0.66  0.63 0.58 0.63 0.66 0.59 0.57 0.58 0.59 

α+ 0.69  0.58 0.44 0.73 0.64 0.45 0.89 0.85 0.76 credit-g 

α- 0.63  0.69 0.77 0.55 0.67 0.78 0.37 0.39 0.46 

g 0.71 0.67 0.62 0.71 0.69 0.64 0.68 0.65 0.59 

α+ 0.69  0.61 0.51 0.75 0.69 0.58 0.83 0.84 0.78 diabetes 

α- 0.74  0.74 0.75 0.68 0.7 0.71 0.56 0.5 0.45 

g 0.57  0.54 0.5 0.59 0.53 0.49 0.39 0.41 0.44 

α+ 0.68  0.55 0.41 0.66 0.53 0.62 0.9 0.84 0.76 haberman 

α- 0.47  0.53 0.61 0.52 0.53 0.39 0.17 0.2 0.25 

g 0.69  0.68 0.6 0.8 0.7 0.6 0.66 0.6 0.64 

α+ 0.79  0.73 0.55 0.84 0.62 0.41 0.94 0.93 0.83 hepatitis 

α- 0.6  0.63 0.66 0.76 0.78 0.88 0.46 0.41 0.5 

g 0.83  0.83 0.76 0.79 0.78 0.75 0.78 0.76 0.73 

α+ 0.97 0.88 0.7 0.98 0.94 0.85 0.98 0.95 0.9 ionosphere 

α- 0.71  0.78 0.83 0.63 0.64 0.67 0.62 0.61 0.6 

g 0.8  0.75 0.62 0.77 0.75 0.59 0.78 0.76 0.73 

α+ 0.84  0.64 0.44 0.87 0.7 0.4 0.9 0.89 0.88 eap 

α- 0.76  0.87 0.88 0.69 0.8 0.88 0.68 0.65 0.61 

Average  g 0.7 0.67 0.61 0.69 0.67 0.61 0.62 0.6 0.6 
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