

Solving Traveling Salesman Problem Using

Combinational Evolutionary Algorithm

Mohammad Reza Bonyadi
1
, S.Mostafa Rahimi Azghadi

1
 and Hamed Shah

Hosseini
2

1 Department of Electrical & Computer Engineering, Shahid Beheshti

University, Tehran, Iran

{m_bonyadi, m_rahimi} @std.sbu.ac.ir

2 Department of Electrical & Computer Engineering, Shahid Beheshti

University, Tehran, Iran

h_shahhosseini@sbu.ac.ir

Abstract. In this paper, we proposed a new method to solve TSP (Traveling

Salesman Problem) based on evolutionary algorithms. This method can be

used for related problems and we found out the new method can works

properly in problems based on permutation. We compare our results by the

previous algorithms and show that our algorithm needs less time in

comparison with known algorithms and so efficient for such problems.

1 Introduction

It is natural to wonder whether all problems can be solved in polynomial time. The

answer is no. For example, there are problems, such as Turing's famous "Halting

Problem," that cannot be solved by any computer, no matter how much time is

provided. There are also problems that can be solved, but not in time O() for any

constant k. Generally, we think of problems that are solvable by polynomial-time

algorithms as being tractable, or easy, and problems that require super-polynomial

time as being intractable, or hard.

There is an interesting class of problems, called the "NP-complete" problems, whose

status is unknown. No polynomial-time algorithm has yet been discovered for an NP-

complete problem, nor has anyone yet been able to prove that no polynomial-time

algorithm can exist for any one of them. This so-called P ≠ NP question has been one

of the deepest, most perplexing open research problems in theoretical computer

science since it was first posed in 1971[1]. TSP is the problem in this class.

38 Mohammad Reza Bonyadi1, S.Mostafa Rahimi Azghadi1 and Hamed Shah

Hosseini2

In other hand, in recent years, AI (artificial intelligent) and its searching algorithms

becomes attracted. As an example, one approach that has been used in searching

problems is Genetic Algorithm to search the space of problems and finding solutions.

Nevertheless, these solutions have no guarantee to be the best [6].
Therefore, in this paper we attempt to use a combinational evolutionary algorithm to

find the solutions of the TSP and show our algorithm can be used for finding better

minimum cycles in the graph, in comparison to preceding algorithms.

2 Background Material

2.1 Traveling Salesman Problem (TSP)

Traveling sales man, is a famous problem that in this problem a person wants to visit

all the cities exactly once in his region and back to the first city that ha started his

traveling from, assumes that, he wants to minimize his tour value. This problem is a

combinational minimization problem and has so many utilizations. The problem

been analyzed using many algorithms like branch-and-bound, greedy searching

algorithms etc. In recent years, the genetic algorithms been used for analyzing this

problem widely [1].

We can assume this problem as an undirected graph problem. In this problem, we are

searching for minimum path where visits all the nodes exactly once and finishes at

the node start from that. Fig1 indicates an example with its optimal solution. A, B,

C… are the cities and the numbers on the edges are the cost of links [1].

Fig 1 :The tour with A=>B =>C =>E =>D => (A) optimal tour

One way to indicate the solution of the problem is the sequence of the city names.

We have to remove the last city from the sequence because it must be same as the

first one. Note that for calculating the path value, we do not forget the last city. With

indicating the solutions as the permutation of the cities, every city will come exactly

once in the sequence. However, some permutations might not be the solution

because the graph might not be the complete graph. We can solve this problem by

 39

assuming two nodes that not connected to each other, are connected by the edge that

its value is infinite.

We can use a scale function to reach that. As an example consider the whole path

value to be S, so we can use the simple function f(S) =S for minimization problem.

We can use so many functions like f(S) =1/S or f(S) =1/(S^2) as the functions for

maximization [2].

In the condition that our solutions are the permutation of integers, the simple

crossover might cause the creating of invalid solutions, too. For example, the one

point crossover in 4th place of two follows solutions:

ADEBC, AECDB

Can lead to create these two invalid solutions:

ADEDB, AECBC

We have to use the crossover that always leads to a permutation for solving this

problem.

2.2 Partially Matched Crossover

We can use the modified crossover that always leads to a permutation of genes. This

modified crossover called partially matched (PMX) crossover. All the problems that

their solutions must be the permutations can use this crossover method. We introduce

this operation in the following example:

Let

ADEBC, AECDB

be two solutions of the problem and we use the two point crossover in 3rd and 4th

indices in the sequence. We call the substrings between crossover points as matching

sections. The crossover operation have to change the substrings in the sequences (In

this example (EB) from the first sequence and (CD) from second one). Symbol (E,

C) shows Replacing E from the first sequence by C. Therefore, the symbol (B, D)

shows replacing of fourth index from the first sequence with fourth of the second

sequence. The next step of the PMX operation is replacing the elements of these

pairs in each sequence. In this example, we have to change the place of E with C and

B with D in each sequence. The result of (E, C) in first sequence is ADCBE and the

result of (B, D) is ABCDE and the second sequence changes from AECDB to

ABCDE and then to ACEBD. As it seems, the results are permutations and have no

repetition. Fig 2 can help to understanding the PMX crossover.

A D E B C

(E, C)

A E C D B

(E, C)

(E, C)

A D C B E

(B, D)

A C E D B

(B, D)

(B, D)

A B C D E

A C E B D

Fig 2: The PMX Crossover

The other GA operations don’t need to change and can be used as the standard GA.

Using the GA in combination with the local search algorithms can work better than

standard algorithms.

40 Mohammad Reza Bonyadi1, S.Mostafa Rahimi Azghadi1 and Hamed Shah

Hosseini2

2.3 Introduction to Swap Sequence

We show the swap operator as SO (i1, i2) and define it as follow:

In solution S, we change the place of i1 & i2 and we write as:

S'=S+SO (i1, i2)

As an example, consider S is a solution of a problem and:

S= (1, 3, 5, 2, 4)

So:

S'=S+SO(1,2)=(1,3,5,2,4)+SO(1,2)=(3,1,5,2,4)

2.4 Swap Sequence

The swap sequence is consisting of one or more swap operators.

SS = (SO1, SO2, SO3… SOn)

By applying SS to the solution, SO1 will works first, SO2 will work second and so

on.

The different swap sequences might have the same effect on different solutions. We

know these sequences as set of equivalent swap sequences. In this set, the basic swap

operator is the element that has the minimum swap operators [5].

2.5 Creation of the basic Swap Sequences

Consider we have two solutions named A, B and we want to change B to A using

some swap sequences:

SS=A-B -> A=B+SS

Consider:

A= (1, 2, 3, 4, 5), B = (2, 3, 1, 5, 4)

The first swap operator is:

SO1 (1, 3) -> B1 =B+SO1 = (1, 3, 2, 5, 4)

The next one is:

SO2 (2, 3) -> B2 =B1+SO2 = (1, 2, 3, 4, 5)

And the last one is SO (4, 5) and we reach A.

We can define the Move function as follow: with finding difference between two

points A, B, we apply some swap operators of swap sequence on B randomly to

reach the new solution [5].

3 Proposed algorithm

The proposed algorithm is an evolutionary algorithm where combined from GA idea

and Shuffled Frog Leaping (SFL), Civilization and Society algorithms [4].

In each loop, like GA, the elements of production group perform the mutation or

crossover in random order. Then for every element of the group, we call a local

searching algorithm. Fig 3 indicates its pseudo code [1, 3].

 41

The local search algorithm is the combinational algorithm from SFL and Civilization

and Society algorithm. In this phase (Local search), first of all we create the

population consisting of P elements. All P elements are same as each other. This is

one of the main differences between the proposed algorithm and the SFL algorithm.

In SFL, the elements that we perform searching on them are same as the reference

set but in proposed algorithm, a population will consist of the same elements and

after several loops, the element that has the best fitness, will be replaced by the main

element and back to the reference population [4]. Fig.3 shows the local search

pseudo code.

Pseudo code for a GA procedure

Begin;

 Generate random population of P solutions

(chromosomes);

 For each individual iЄP: calculate fitness (i);

 For i=1 to number of generations;

 Randomly select an operation

 (crossover or mutation);

 If crossover

 Select two parents at random ia and ib;

 Generate an offspring ic=crossover(ia and ib);

 Else If mutation;

 Select one chromosome I at random;

 Generate an offspring ic=mutate(i);

 End if;

 Local Search(ic);

 Calculate the fitness of the offspring ic;

 If ic is better than the worst chromosome then

 replace the worst chromosome by ic;

 Next i;

 Check if termination = true;

End;

Fig 3: Genetic Algorithm pseudo code

Here we will have a glance look at the meaning of memeplexes. According to

memetic theory, a meme (a unit of cultural information, cultural evolution or

diffusion) propagates from one mind to another analogously to the way in which a

gene propagates from one organism to another as a unit of genetic information and of

biological evolution. Multiple memes may propagate as cooperative groups called

memeplexes (meme complexes). For more information, see [7].

Pseudo code for local Search procedure

local Search(solution S)

Begin;

 Generate a population of P solutions equal to S;

 For each individual iЄP

 Assign a random swap sequence to i;

42 Mohammad Reza Bonyadi1, S.Mostafa Rahimi Azghadi1 and Hamed Shah

Hosseini2

 calculate fitness (i);

 Divide P into m memeplexes at random;

 For k=1 to number of iterations

 For each memeplexes, set best solution as leader

of memeplexes;

 Set best solution of community as community

leader;

 For each individual iЄP

 if i is not a leader

 Move i → its group leader

 if i is a group leader

 Move i → the community leader

 End;

 Next k;

End;

Fig 4: Local search pseudo code

As an another difference between the proposed algorithm and SFL, we can say that

in each loop in SFL, only the worst element in each group will be moved to its group

leader. Therefore, if the solution, which implemented by that element, gave better

result, the changes will be applied, and in other case, the solution will be moved to

the best global solution. If the solution did not change or became worst, we apply a

random solution. Nevertheless, in Civilization and Society Algorithm, in each loop,

all the elements in similar groups, will move to their group leaders and the leaders

will move to the population leader. We use the latter in our proposed approach.

Because the elements, which have been selected by local search, are same as each

other, the convergence of population elements differs from the SFL and Civilization

and society algorithms. Note that in Traveling Salesman Problem, it is not possible to

choose a point as the solution on the line between two known solutions. Because it is

not guaranteed that, the new solutions will have any link and relation to their parents.

For simulation of moving the solutions close to each other, we use the swap

sequence idea.

Pseudo code for a SFL procedure

Begin;

 Generate random population of P

solutions(frogs);

 For each individual iЄP: calculate fitness (i);

 Sort the population P in descending order of their

fitness;

 Divide P into m memeplexes;

 For each memeplexes;

 Determine the best and worst frogs;

 Improve the worst frog position to its best

element;

 43

 Repeat for a specific number of iterations;

 End;

 Combine the evolved memeplexes;

 Sort the population P in descending order of their

fitness;

 Check if termination = true;

End;

Fig 5: SFL Algorithm pseudo code

Pseudo code for Civilization and Society

Algorithm

Begin;

 Generate N individuals representing civilization

 Compute fitness;

 Create m clusters based on Euclidean distance

 Identify leader for each cluster

 For each cluster

 For each member I in cluster

 Move I → its leader

 Move leader of cluster → global leader

 End;

End;

Fig 6: CS Algorithm pseudo code

4 Experimental Results
The algorithms have tested on three inputs with 30, 89, and 929 points for 50 times.

For the first case input, all the algorithms found the optimum solution and we

perform our experiments on these algorithms in limited time (60 sec.). As we can see

in Table1, in the TSP solved using standard GA with 30 cities, the average time for

the implementations was 36 seconds and in 35 times the algorithm found the

optimum path. We use our proposed combinational algorithm for solving the

problem and the average time for the implementations was 2 seconds. Moreover, in

85% of solving the problems, our algorithm found the optimum path.

Table 1 : The results of 30 point graph for TSP

Algorithm Time(Sec) Success percentage

GA 36 70%

GA using SFL method 2 60%

GA using Proposed approach 2 85%

44 Mohammad Reza Bonyadi1, S.Mostafa Rahimi Azghadi1 and Hamed Shah

Hosseini2

We authorized the algorithm to function in 10 min, then the inputs were 89 points for

the first time and 929 points for the second time applied to algorithms and the results

are listed in Table 2.

According to the explained algorithms, it seems that each of them have their

advantages and disadvantages. Our proposed approach converges faster than the two

other algorithms but it seems the local search in complex spaces may not be very

efficient and its effects must be reduced proportional to time elapsing.

Table 1

Algorithm
Average path value for 80 point

input(million)

Average path value for second

input(million)

GA 26 19

GA using SFL method 19 20

GA using Proposed approach 14 18

Exact solution 10 13

References
1. Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest ,"Introduction to Algorithms, "

Second Edition Clifford Stein The MIT Press Cambridge , Massachusetts London, England

McGraw-Hill Book Company
2. Mitchell Melanie , "An Introduction to Genetic Algorithms, " A Bradford Book The MIT

Press, Cambridge, Massachusetts • London, England, fifth printing 1999
3. J.H. Holland, “Adaption in Natural and Artificial Systems, ” University of Michigan Press,

Ann Arbor (USA), 1975
4. Eusuff, M.M. and Lansey, K.E.,(2003). “Optimization of Water Distribution Network Design

Using the Shuffled Frog Leaping Algorithm.” Journal of Water Resources Planning and
Management, ASCE, Vol. 129, No. 3, pp. 210-225

5. D.E.Knuth, "The Art of Computer Programming," Vol.3:sorting and Serching. Addison-
Wesley, reading, MA, Second Edition, 1998, pp. 222-223

6. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach, " 1995 by
Prentice-Hall, Inc.

7. Richard Dawkins, "The Selfish Gene, " 1989 Oxford: Oxford University Press, ISBN 0-19-
217773-7 page 192

