

Performance Evaluation of TreeQ and LVQ
Classifiers for Music Information Retrieval

Matina Charami, Rami Halloush, Sofia Tsekeridou
 Athens Information Technology (AIT)

 0.8 km Markopoulo Ave.
GR - 19002 Peania, Athens, Greece

{scha, raha, sots}@ait.edu.gr

Abstract. Classification algorithms are gaining more and more importance in
many fields such as Artificial Intelligence, Information Retrieval, Data Mining
and Machine Vision. Many classification algorithms have emerged, belonging
to different families, among which the tree-based and the clustering-based
ones. Such extensive availability of classifiers makes the selection of the
optimal one per case a rather complex task. In this paper, we aim to address
this issue by conducting extensive experiments in a music information
retrieval application, specifically with respect to music genre queries, in order
to compare the performance of two state-of-the-art classifiers belonging to the
formerly mentioned two classes of classification algorithms, namely, TreeQ
and LVQ, respectively, using a variety of music features for such a task. The
deployed performance metrics are extensive: accuracy, precision, recall, F-
measure, confidence. Conclusions on the best performance of either classifier
to support music genre queries are finally drawn.

1 Introduction

With the explosive amount of music data available on the Internet in recent years,
there has been much interest in developing new ways to search and retrieve such data
effectively. Most on-line music databases today, such as Napster and mp3.com, rely
on file names or text labels to do searching and indexing, using traditional text
searching techniques. Although this approach has proven to be useful and widely
accepted in the past, there are many reasons this is not enough nowadays. As the
amount of musical content increases and the Web becomes an important mechanism
for distributing music, we expect to see a rising demand for music search services. It
would be nice to have more sophisticated search capabilities, namely, searching by
content.

Music Information Retrieval Systems can be classified into two types: i) systems
that depend on human generated annotations and decisions (textual-based), and ii)

332 Matina Charami, Rami Halloush, Sofia Tsekeridou

systems that depend on extracting information from the audio signal (content-based).
The first type is manual and hence demands a lot of effort, it is time consuming and
susceptible to errors. We will concentrate on content-based music information
retrieval in the rest of the paper.

Content-based music information retrieval involves processes such as
representative music feature extraction, classification in apriori known classes,
usually deploying training and testing (supervised classification) and similarity-
based querying. Thus, the challenging aspects of setting up an efficient music
information retrieval are: i) what features to select as most representative on the
types of similarity-based queries (e.g. music genre queries), ii) which classifiers will
perform optimally for the application and types of queries at hand.

In this paper, we aim to address the issue of selecting the optimal combination of
representative features and classifiers to address queries on music genre, by
conducting extensive experiments in a music information retrieval application. The
aim is to compare the performance of two state-of-the-art classifiers, namely, TreeQ
[1] and LVQ [2] (Learning Vector Quantization), described briefly in the sequel,
using a variety of music features for such a task. The deployed performance metrics
are extensive: accuracy, precision, recall, F-measure, confidence. Conclusions on the
best performance of either classifier combined with specific music feature vectors
are finally drawn.

2 LVQ Classifier: a short overview

In general, LVQ [6] is a supervised version of vector quantization, which is
applicable to pattern recognition, multi-class classification and data compression.
LVQ algorithms directly define class boundaries based on prototypes, a nearest-
neighbour rule and a winner-takes-it-all paradigm. The main idea, as shown in
Figure 1, is to cover the input space of samples with ‘codebook vectors’ (CVs), each
representing a region labeled with a class. A CV is localized in the centre of a
decision region, called ‘Voronoi cell’, in the input space.

Fig. 1. LVQ space partitioning into decision regions by codebook vectors [2].

For the purpose of undertaken experiments, the LVQ software package of [7] has
been used, which implements all algorithms necessary for statistical classification

Performance Evaluation of TreeQ and LVQ Classifiers for Music Information
Retrieval

333

� � � �
� � � �11

1
��

�

tats
tata
c

c
c

and pattern recognition. The performance of LVQ depends on the algorithm
implementation, as well as the data used for training and testing, in terms of size and
the degree of representative features extracted from such data. The basic three
implementations of LVQ are LVQ1, LVQ2 and LVQ3. In our experiments, we have
used the optimized OLVQ1 implementation [1], an enhanced version of LVQ1.

The basic idea behind this algorithm is that each class is represented in terms of a
set of codevectors im , each of which is a point in the D-Dimensional feature space.
This set is called codebook. Several codebook vectors are assigned to each class. A
feature vector x is then assigned to the same class to which the nearest im belongs:

arg min{|| ||}c ii

m x m � , where cm is the nearest im to x

Values for im that approximately minimize the misclassification errors in the

above nearest neighbour classification can be found as asymptotic values in the
following learning process. Let � �tx be a sample of input and let � �tmi represent
sequences of im in the discrete time domain. Starting with properly defined initial
values, the following equations define the basic LVQ1 process, where

� � 10 �� ta and t is the iteration step:

x � � � � � � � � � �> @tmtxtatmtm cccc �� �1 , if x is classified correctly
x � � � � � � � � � �> @tmtxtatmtm cccc �� �1 , if x is classified incorrectly
x � � � �tmtm ii �1 , for i cz

OLVQ1 extends LVQ1 by modifying the latter so that an individual learning rate
� �tai is assigned to each im . Again, the discrete time learning process is given from

above equations. For their fastest convergence, � �tai is optimally determined by:

3 TreeQ Classifier: a short overview

For the purposes of the undertaken experiments, the TreeQ software package [3], [4],
[5] has been considered, implementing the TreeQ machine learning algorithm. TreeQ
is data-driven and therefore it can be used for any kind of data to find similarities by
learning their differences. Especially for the case of audio data, the algorithm may be
applied for speaker identification, speech and music classification, music and audio
retrieval by similarity, audio segmentation.

Given labeled training data, the algorithm constructs templates that characterize
these data, utilizing three main steps. First, it calculates spectral parameters for the
audio data. Second, it grows a quantization tree from labeled parameterized data.
This step learns those features that best characterize a class, i.e. given adequate
training data, it learns the salient differences amongst classes and learns to ignore
other insignificant differences. Third, the produced tree is used to construct the

334 Matina Charami, Rami Halloush, Sofia Tsekeridou

templates. As soon as the templates are constructed (class models), similarities can
be measured by calculating distances between them and test data.

The basic operation of the system is illustrated in Figure 2. A suitable corpus of
audio examples must be accumulated and parameterized into feature vectors. The
corpus must contain examples of the classes of audio to be discriminated. Next, a
tree-based quantizer is constructed. This is a “supervised” operation and requires the
training data to be labeled with a class. The tree automatically partitions the feature
space into regions, called ‘cells’, which have maximally different class populations.

To generate an audio template, represented by a histogram, for subsequent
retrieval, parameterized data are quantized using the tree. An audio file can be
characterized by finding into which cells the input data vectors are most likely to
fall. A template is an estimate of the vector counts for each cell, which captures the
salient characteristics of the input audio, since sounds from different classes will
have very different counts in the various histogram bins, while similar audio data
should have similar counts. To retrieve audio by similarity, a histogram is further
constructed for the query audio. The query histogram is compared to the corpus
histograms, a similarity measure is calculated for each audio file in the corpus, and
finally the query template is associated with a corpus template.

Fig. 2. An overview of the basic operations of the TreeQ algorithm [1].

4 Music Information Retrieval based on Genre Queries

It is a fact that the rapid development of technology continuously realizes scenarios
that previously seemed science fiction. Web-based music stations like pandora.com
give each user the opportunity to specify the kind of music he wants to listen to, and

Performance Evaluation of TreeQ and LVQ Classifiers for Music Information
Retrieval

335

� �
¦

�

 p

i

i
i za

zH

0

1

in the context of ambient intelligence, pervasive systems will dress the surroundings
with music based on the human’s mood. Given the above and a number of other
emerging applications of music, classification and information retrieval based on
music genres becomes not only important, but essential and fundamental.

Our work addresses this problem and aims to provide extended experiments in
order to push TreeQ and LVQ to their limits and decide which gives the best results
under what contexts of use. Before presenting our experimental results, we
considered it necessary to briefly describe the music features used to parameterize
the audio data, i.e. the input to the previously presented classifiers.

4.1 Music Feature Extraction

Few classifiers directly operate on raw data such as pixels of an image or samples of
speech waveforms. Most pattern recognition tasks are preceded by a pre-processing
transformation that extracts invariant features from raw data, such as spectral
components of acoustical signals. Thus, in our case, decisions need to be made on
the types of representative features to be used by classifiers to achieve optimal music
classification based on genres. Such feature extraction task parameterizes the raw
music data into sequences of representative feature vectors.

It is evident that the selection of the adequate pre-processing method is equally
vital as to the selection of the proper classifier for optimal performance, thus, it
requires careful consideration. For this task, we have used the HTK Toolkit [8],
which supports Hidden Markov Models (HMMs) using both Fast Fourier
Transformation (FFT) and Linear Predictive Coding (LPC). The feature extraction
process is controlled by a customizable configuration file that specifies all the
conversion parameters towards extracting the desirable feature vectors.

In the current investigation, we have considered widely known and used features,
namely the mel-frequency cepstral coefficients (MFCCs) and the linear prediction
coding coefficients (LPCs). Both are, in general, the parameterisation of choice for
many speech recognition applications, since they attain good discrimination
capabilities and are flexible towards a number of manipulations.

In linear prediction analysis [9], the following transfer function is considered:

where the filter coefficients ^ `ia are chosen so as to minimize the mean square filter
prediction error summed over the analysis window.

On the other hand, cepstral parameters are calculated from the log filter-bank
amplitudes ^ `jm using the Discrete Cosine Transform (DCT), where N is the
number of filter-bank channels [9]:

� �¸
¹
·

¨
©
§ � ¦

5.0cos2
1

j
N
im

N
c

N

j
ji

S

336 Matina Charami, Rami Halloush, Sofia Tsekeridou

5 Experimental Setup and Performance Evaluation

In order to evaluate the performance of the two classifiers, namely, TreeQ and LVQ,
in music genre classification and retrieval, we performed a set of experiments that
are described in the sequel.

Initially, the experimental corpus has been created carefully. Five music genres
have been considered, namely, jazz, reggae, pop, post rock and electro techno. For
each genre, the corpus contains twenty music pieces, summing up to a total of one
hundred pieces for all genres. Each music clip is about ten seconds long and has been
selected as the most representative part of the entire music file. We have used the
holdout sampling method in order to split the corpus into training and test data. Thus,
seventy five of the music clips were used for training (the first fifteen of each genre)
while the remaining twenty five were used for testing. All music pieces were later
parameterized using the HTK toolkit, in MFCC and LPC feature vectors.

Experimentation on the classifiers (TreeQ, OLVQ1) performance followed using
the extracted feature vectors in different combinations of features-classifiers. For the
TreeQ experiments, we first obtained the optimal window size and the target rate of
the algorithm. This was achieved by measuring the performance with varying values
and combinations for these two parameters. An iterative procedure was used during
which a new parameter was added, tested and decided to be maintained only if the
acquired performance was no worse than the best performance achieved that far.
This was done for both MFCC and LPC features with or without using quantization
into histograms. Due to lack of time, the OLVQ1 experiments were performed using
only MFCCs, without histogram quantization. LVQ involved only two parameters, n
(number of codebook vectors) and k (kNN parameter), whose optimal values were
obtained in a similar manner as the optimal window size and target rate for TreeQ. In
all the experiments, the classifier performance was measured using Precision, Recall,
Accuracy, F1 on precision and recall, and Confidence measures. Results are
summarized in Table 1. We observe that TreeQ outperforms OLVQ1, when LPC
features are used, with histogram quantization, for all considered measures.

Table 1. Optimal performance achieved by TreeQ and OLVQ1.

Classifier
TreeQ LVQ

Performance Metric

MFCC LPC - Histograms MFCC
Overall Accuracy(%) 68.00 68.00 52.00
Average Accuracy (%) 86.00 87.00 79.00
Average Precision (%) 71.13 75.00 58.75
Average Recall (%) 65.00 70.00 55.00
Average F-1 (%) 66.10 69.99 52.36

Having obtained the optimal setup for each classifier, we created learning curves

as shown in Figures 3, 4 and 5. From these curves, we cannot extract valid
conclusions about the learning capability of the two algorithms. For instance, for
TreeQ with MFCCs, the curve is still increasing at the final steps which might
indicate that a larger training set could help us achieve better performance. On the

Performance Evaluation of TreeQ and LVQ Classifiers for Music Information
Retrieval

337

OVERALL LEARNING CURVE

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8

0,9
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

step

% Overall
Accuracy

OVERALL LEARNING CURVE

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

step

% Overall
Accuracy

other hand, at these final steps, the curve also seems to smoothen, so the
improvement of the performance using more training data might be insignificant.
Finally, comparing the two TreeQ curves with the OLVQ1 curve, we may say that
TreeQ seems to better learn that OLVQ1. However, this is only an indication. More
extensive experiments with a much larger dataset (and thus bigger test and training
data sets) need to be undertaken to draw validated conclusions.

Fig. 3. Overall learning curve using MFCCs with TreeQ

Fig. 4. Overall learning curve using LPCs with TreeQ

338 Matina Charami, Rami Halloush, Sofia Tsekeridou

Fig. 5. Overall learning curve using MFCCs with LVQ

6 Conclusions and Future Work

In this paper, we have underlined the importance of content-based retrieval, which
we addressed by conducting extensive experiments for music information retrieval,
based on music genre queries, in order to compare the performance of two state-of-
the-art classifiers, TreeQ and LVQ. From the performance evaluation, we could not
reach valid conclusions, however, we have identified performance hints to extend the
work further towards a certain direction. The learning capability of both algorithms
needs to be further explored and hence we intend to undertake more experiments
with a larger dataset as continuation of the currently reported work.

References

1. Jonathan T. Foote, TreeQ Manual V0.8, September, 2003
2. T. Kohonen, H. Hynninen, J. Kangas, H. Laaksonen, and K. Torkkola. LVQ-PAK: The

learning vector quantization program package, Technical Report A30, Helsinki
University of Technology, Laboratory of Computer and Information Science, FIN-02150
Espoo, Finland, 1996

3. Jonathan T. Foote, Content-based retrieval of music and audio, Multimedia Storage and
Archiving Systems II, Proceedings of SPIE, 1997

4. Jonathan T. Foote, An overview of audio information retrieval, Multimedia Syst.,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999

5. Music retrieval demo using open-source software package TreeQ by Jonathan T. Foote,
http://www.rotorbrain.com/foote/musicr/doc16.html

6. Forecasting with artificial neural networks, http://www.neural-forecasting.com
7. Helsinki University of Technology – Neural Networks Research Centre,

http://www.cis.hut.fi/research/som_lvq_pak.shtml
8. The HTK Toolkit, http://htk.eng.cam.ac.uk/
9. Steve Young et al., The HTK Book (1995-1999 Microsoft Corporation, 2001-2006

Cambridge University Engineering Department)

OVERALL LEARNING CURVE

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

step
% Overall

Accuracy

