
  

An Evolving Oblique Decision Tree 
Ensemble Architecture for Continuous 

Learning Applications 

Ioannis T. Christou1, and Sofoklis Efremidis1  
1   Athens Information Technology 

 19 Markopoulou Ave P.O. Box 68 Paiania 19002 GREECE 
{itc,sefr}@ait.edu.gr, 

WWW home page: http://www.ait.edu.gr/faculty/I_Christou.asp 

Abstract. We present a system architecture for evolving classifier ensembles 
of oblique decision trees for continuous or online learning applications. In 
continuous learning, the classification system classifies new instances for 
which after a short while the true class label becomes known and the system 
then receives this feedback control to improve its future predictions. We 
propose oblique decision trees as base classifiers using Support Vector 
Machines in order to compute the optimal separating hyper-plane for 
branching tests using subsets of the numerical attributes of the problem. The 
resulting decision trees maintain their diversity through the inherent instability 
of the decision tree induction process. We then describe an evolutionary 
process by which the population of base classifiers evolves during run-time to 
adapt to the newly seen instances. A latent set of base-classifiers is maintained 
as a secondary classifier pool, and an instance from the latent set replaces the 
currently active classifier whenever certain criteria are met. We discuss 
motivation behind this architecture, algorithmic details and future directions 
for this research. 

1 Introduction 

Classifier ensembles were first proposed a long time ago, but recently they have 
received a lot of attention in the machine learning community [1] because of their 
potential to overcome difficulties associated with any single algorithm’s capabilities 
for a learning task. Classifier ensembles can be considered as meta-classifiers in that 
after the base classifiers reach their decisions, a final decision combining the various 
classifiers’ results must be made. For this reason, the theoretical analysis of the 
power of classifier ensembles has been in general more difficult than that of 
individual learning algorithms. Nevertheless, classifier ensembles have been 

lrt0
PLease use the following FORMAT when citing all the chapters:

Author(s)[Insert LAST NAME, First-name INITIAL(s)], 2007, in IFIP International Federation for Information Processing Volume 247, Artificial Intelligence and Innovations 2007: From Theory to Applications, eds. C. Boukis, A. Pnevmatikakis, and L. Polymenakos, (Boston: Springer), pp. [insert page numbers] . 



4 Ioannis T. Christou1, and Sofoklis Efremidis1 
 

successfully applied in many diverse areas ranging from multimedia and musical 
Information Retrieval [2] to Intrusion Detection [3] to recommender systems [4], etc. 

One of the most important design decisions to be made in combining pattern 
classifiers is the choice of the base-classifier. In order to benefit the most from the 
combination of multiple classifiers, the ensemble should have sufficient diversity [1], 
for otherwise the decisions reached by the individual classifiers will be highly 
correlated and the probability that the performance of the overall system will be 
better than that of a single classifier will be slim. For this reason, unstable classifiers 
such as neural net-works and decision trees are often preferred as the base 
classification algorithms of a classifier ensemble. 

In this paper we propose a classifier ensemble architecture suitable for online 
learning tasks in mixed-attribute domains where some attributes in the feature space 
are nominal whereas others are continuous-valued. We propose a modification of the 
classical C4.5 system architecture resulting in an oblique decision tree that branches 
on tests involving more than one continuous attribute using Support Vector 
Machines [5], and we present the details of the hybrid algorithm called SVM-ODT. 
We then propose new adaptive ensemble architecture for online learning applications 
using two evolving and alternating populations of SVM-ODT classifiers. 

2 Building Oblique Decision Trees via Support Vector Machines 

2.1 Decision Trees Overview 

Tree classifiers work by constructing a decision tree for distinguishing data points 
between a finite set of classes. Starting from the root, decision tree construction 
proceeds by selecting an attribute from the feature space of the problem and splitting 
the data among two or more data sets depending on the values the selected attribute 
may take (Fig. 1). 

r 

t > 10 5 < t < 10 

play don’t play don’t 

true 

true true 

false 

false false 

 
Fig. 1. A Decision Tree 

Each “split” subset of the data set becomes a new node in the tree, under the 
current node. A node is considered a leaf node of the tree, and no further splitting 
occurs from this node on if the data set of this node is sufficiently “pure”, for 

lrt0


lrt0




An Evolving Oblique Decision Tree Ensemble Architecture for Continuous Learning
Applications

5

 
example all data points in this data set belong to the same class. Selecting the 
attribute to split on can be done in many different ways reflecting different objective 
criteria that the method is supposed to optimize. The entropy-based measure of 
impurity dictates that the at-tribute to split on is the one providing maximum 
information gain: it is the attribute on which, if we split, the resulting children nodes 
maximize their “purity”; the split is locally optimal in dichotomizing the data set. 
The ID3 system, in particular [6], which is designed to work with nominal attributes 
only, works by producing splits on a node that completely use up the attribute 
selected. For example if an attribute can take on four different values in the data set, 
splitting on this attribute will result in four different children, one for each different 
value the attribute can take on. Since ID3 cannot work with continuous attributes, 
such attributes need to be discretized first. This discretization process can easily lead 
to low-performing classifiers. C4.5 extends the ID3 algorithm by allowing 
continuous variables to be split without completely consuming the attribute, and in 
most cases this results in serious performance gains. 

Because decision trees have the ability to classify all data points in the training 
set with zero classification error, they belong to the category of “unstable” 
classifiers, meaning that small perturbations in the data set may lead to drastically 
different decision trees produced. This phenomenon is closely related to the 
generalization ability of a classifier to correctly classify previously unseen instances. 
Decision trees that obtain zero classification errors on the training set are more liable 
to overtraining, meaning the classifier has essentially “memorized” the training set 
instead of having “learned” concepts underlying the classification problem at hand. 
To improve the generalization capabilities of the classifier, pruning methods attempt 
to prune the decision tree after its initial construction so as to maintain small 
classification errors on the training set, but with expected enhanced accuracy of 
classification in new unseen instances. On the other hand, this inherent instability of 
decision trees makes them perfect candidates for the base classifiers of an ensemble 
classification scheme.  

2.2 Oblique Decision Trees via Support Vector Machine 

It is clear from the discussion above that in C4.5 and all standard decision tree classi-
fiers the split of the feature space at each branching node occurs along axis-parallel 
hyper-planes, since every branching test involves only a single attribute (Fig. 2) 

 



6 Ioannis T. Christou1, and Sofoklis Efremidis1 
 

 

 

 

 

 

 

 

Fig. 2. Decision Trees split the data set of each node along axis-parallel hyper-planes 

Quinlan [7] argues that for many application domains this restriction on the 
directions the splitting hyper-planes may take is not a problem, as evidenced by 
performance tests on a number of test-domains. Nevertheless, there are many 
application domains (especially ones where many of the domain attributes are 
continuous-valued) where decision trees are outperformed by more robust 
optimization methods such as Support Vector Machines (SVM). 

SVM-based classifiers use rigorous mathematical programming theory to 
formulate the classification problem as an optimization problem in a vector space: 
the problem becomes that of finding the optimal separating hyper-plane that best 
separates the training set instances among the problem classes. SVM classifiers 
obviously work with data points belonging to Rn. Problems involving attributes that 
are not continuous-valued must then be mapped somehow into a vector space and 
back. A popular technique for converting such problem sets into formats suitable for 
SVM optimization requires that each nominal attribute attr taking, say, m distinct 
values, be mapped into a set of m new {0,1} variables e1...em. A data point in the 
original space having for the nominal attribute attr the i-th discrete value, will be 
transformed into a point in an expanded vector space where the ei variable for this 
point will take the value 1, and all the other ej, j z  i variables for this attribute will be 
0. There is a problem though with this technique. The data set corresponding to the 
problem for which the decision tree in Fig. 1 has been constructed is transformed in 
the vector space shown in Fig. 2. As can be seen, there is no single hyper-plane that 
will optimally decide which class a data point belongs to. 

 
 
 

lrt0


lrt0




An Evolving Oblique Decision Tree Ensemble Architecture for Continuous Learning
Applications

7

 
 

 

 

 

 

 

 

 

Fig. 3. Embedding a mixed-attribute space (t,r) into a higher (3) dimensional vector space 

In general, trying to tweak a problem to fit into a domain that does not naturally 
fit in, is a practice that should be done with extreme care and only if there are no 
other tools available that can work directly with the problem domain. 

Oblique Decision Trees are trees that branch using tests involving more than one 
at-tribute at any node. Many techniques for constructing oblique trees have been pro-
posed in the past (see [8] for an approach building oblique trees using a random 
search procedure to combine attributes in each branching node). We propose to 
combine the strength of SVM in the continuous domain with that of decision trees in 
the discrete domain in an easy fusion. 

In the following we discuss the 2-class classification problem, but it is easy to 
generalize the algorithm to deal with multiple classes. In particular, we propose an 
algorithm that is identical to ID3 except that its branching strategy is as follows: At 
every node, all the free continuous attributes of the problem are used to build a new 
problem set in the sub-space spanning all the continuous problem attributes. An 
SVM classifier is then built on the reduced continuous subspace, and an optimal 
hyper-plane separating the points of the current node’s subset is constructed. The 
Information Gain of this split is then computed, along with the gains of the splits 
produced by the branching on each of the remaining non-continuous attributes. In the 
usual decision tree greedy manner, the split resulting in the highest gain is then 
selected and forms the test of the current node. The procedure is shown in detail in 
Fig. 4. 

 
 



8 Ioannis T. Christou1, and Sofoklis Efremidis1 
 

Algorithm ODT-SVM 
Input: a labeled training set 
Output: an Oblique Decision Tree for Classifying New 

Instances 
1. Begin with the root node t, having X(t) = X 
2. For each new node t do 

2.1. For each non-continuous feature xk k=1,…,l do 
2.1.1. For each value akn of the feature xk do 

2.1.1.1. Generate X(t)Yes and X(t)No according to the 
answer in the question: is xk(i)=akn, 
i=1,2,…,Nt 

2.1.1.2. Compute the Impurity decrease 
2.1.2. End-for 
2.1.3. Choose the akn’ leading to the maximum 

decrease with respect to xk 
2.2. End-for 
2.3. Compute the optimal SVM separating the points 

in X(t) into two sets X(t)1 and X(t)2 
projected to the subspace spanned by all the 
free (i.e. not currently constrained) 
continuous features xk, k=l+1,…,m 

2.4. Compute the impurity decrease associated with 
the split of X(t) into X(t)1 and X(t)2 

2.5. Choose as test for node t, the test among 2.1 
– 2.4 leading to the highest impurity 
decrease 

2.6. If stop-splitting rule is met declare node t 
as leaf and designate it with a class label; 
else generate 2 descendant nodes t1 and t2 
according to the test chosen in step 2.5 

3. End-for 
4. End 

Fig. 4. ODT-SVM algorithm  
 
In fact, the algorithm is a template, defining a family of algorithms, in that 

different choices for measuring the impurity of a set or different stopping-splitting 
rules will lead to different algorithms. Moreover, step 2.3 can easily be modified so 
that instead of computing the optimal hyper-plane separating the data X(t) in node t 
projected in the subspace spanned by all the continuous features of the problem (thus 
likely consuming all continuous attributes in one test node) the test may select a 
subset of the set of continuous features –randomly or not– and compute the optimal 
SVM that separates the points of the node in that reduced subspace. 



An Evolving Oblique Decision Tree Ensemble Architecture for Continuous Learning
Applications

9

 
3 Evolving ODT-SVM Ensembles 

Recently, classifier ensembles using pairs of classifiers trained of randomly chosen 
complementary sub-sets of the training set have been proposed in the literature as a 
means to improve both the stability as well as the diversity of the ensemble [9]. This 
approach leads to a pair of ensembles operating statically on the problem domain in 
that the population does not evolve after it has been trained on the training set. Simi-
larly, evolving classifiers using Genetic Algorithms ideas has been proposed in [10] 
but the approach is not intended for online learning tasks. 

For applications in online or continuous learning, we propose to use evolutionary 
methodology to evolve pairs of ODT-SVM ensembles, in the following way. A set S 
= {(c1, c1'), (c2, c2') ... (cL, cL')} of L classifier pairs is first trained on the initially 
available training set T  as follows: the first classifier of each pair i is trained on a 
randomly chosen subset of the training set Ti � T and the second classifier of the pair 
is trained using the points xj �Ti that were misclassified by the first classifier (the 
hard instances for the first classifier of the pair). The classifiers in each pair swap 
positions if the performance of the second classifier in the initial testing set is better 
than the performance of the first on the testing set. 

During the online operation of the system (the continuous learning mode) new 
instances are given to the ensemble for classification. The system uses only the votes 
of the first classifier in each pair to reach a decision using any fusion or consensus 
strategy 1. However, all 2L classifiers classify the new instance, and when the true 
label for that instance becomes known (since the application is an online application) 
the classification accuracy of each classifier is updated to take into account the 
performance in the last received instance. When the performance of any of the top 
classifiers on a given number of the last arrived instances drops below the 
performance of its pair or some other criterion is met, the second and dormant 
classifier in the pair becomes the first active classifier and the original first is 
discarded. A new classifier is then trained on the instances the previously dormant 
classifier had missed and assumes the role of the dormant classifier of the pair. 

The process is an evolving process with new classifiers being created and 
replacing old ones when those old classifiers’ performance degrades. The system 
essentially remains static for as long as the ensemble’s “knowledge” is adequate for 
the instances continuously arriving, but starts adapting itself to the new environment 
by modifying its population as soon as performance deteriorates enough. The process 
is depicted in Fig. 5. The decision maker could implement the Hedge(ȕ) algorithm 
[1], as has been done successfully in [4] 
 
 
 
 
 
 
 
 
 



10 Ioannis T. Christou1, and Sofoklis Efremidis1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Ensemble of ODT-SVM classifier pairs for online learning 

4 Conclusions and Future Directions 

We have presented an adaptive ensemble architecture for online learning tasks in 
changing environments. The architecture is based on Oblique Decision Trees using a 
modified C4.5 algorithm that treats the continuous attributes of a problem using 
Support Vector Machine technology while allowing for the discrete attributes of the 
same problem to be treated in the more natural decision tree philosophy. The 
Decision Tree philosophy of the base classifiers allows for more variety in the 
ensemble due to its inherent instability, variety which also comes from the fact that 
each base classifier in the ensemble is trained on a randomly selected subset of the 
training set. 

For applications such as monitoring user profiles in the context of TV-program 
watching or movie-going recommendations, etc., the architecture has great promise 
in that it can follow the user’s changing habits and adapt to them quickly enough so 
as to be very accurate most of the time. We plan to apply the system to the task of 
Anomaly Detection in surveillance systems using CCTV or other multi-media 
sources to reduce the number of false alarms while maintaining high accuracy rates. 

References 

1. Kuncheva, L. I. “Combining Pattern Classifiers – Methods and Algorithms”, 
Wiley, Hoboken, NJ, 2004. 

2. McKay C., et al: “ACE: A General Purpose Ensemble Classification 
Framework”. Proceedings of the ICMC 05, 2005. 



An Evolving Oblique Decision Tree Ensemble Architecture for Continuous Learning
Applications

11

 
3. Koutsoutos S., Christou I.T. and Efremidis S.: “A Classifier Ensemble Approach 

to Intrusion Detection for Network-Initiated Attacks” - invited contributed 
chapter in Emerging Artificial Intelligence Applications in Computer 
Engineering, eds. John Soldatos et al, IOS Press, 2007. 

4. Chistou I.T., Gkekas G., and Kyrikou, A.: “A Machine Learning Approach to the 
TV-Viewer Profile Adaptation Problem”, submitted for publication, Dec. 2006. 

5. Theodoridis, S. and Koutroumbas, K.: “Pattern Recognition”, 3rd ed. Academic 
Press, San Diego, CA, 2006. 

6. Quinlan, R.: “Induction on decision trees”. Machine Learning, 1:1, 1986. 
7. Quinlan, R.: “C4.5 Programs for Machine Learning”. Morgan Kaufmann 

Publishers, San Francisco, CA, 1993. 
8. Heath, D., Kasif, S., and Salzberg, S.: “Induction of Oblique Trees”, IJCAI, 

1993. 
9. Kuncheva, L.I. and Rodriguez, J.J.: “Classifier Ensembles with a Random Linear 

Oracle”, IEEE Transactions on Knowledge and Data Engineering, 19:4, 2007. 
10. Ko, A. H.-R., Sabourin, R., and de Souza Britto, A. Jr.: “Evolving Ensemble of 

Classifiers in Random Subspace”, Proc. Genetic and Evolutionary Computation 
Conf., GECCO 06, Seattle, WA, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


