

Graph Based Workflow Validation

Anastasios Giouris and Manolis Wallace
Department of Computer Science,
University of Indianapolis Athens,

Ipitou 9, Syntagma, 10557, GREECE
http://cs.uindy.gr

cs@uindy.gr

Abstract. Content Management Systems in the field of content production and
publishing need to monitor the progress of large numbers of simultaneously
evolving workflows. In order to make such systems adaptive to the varying
needs of their organizations, the utilization of a graphical editor for workflows
has been proposed, thus generating the hazard of the specification of erroneous
and invalid workflows. In this paper we provide a formal modeling for
workflows and then, based on it, we explain how the validity of a simple
workflow can be evaluated through the examination of the transitive closure of
its graph. Continuing to the more general case, we develop a problem
transformation methodology that allows for all workflows to be validated
using a transitive closure examination approach. The Python implementation
of our methodology is provided as is freely to all interested parties.

1 Introduction

Living in the information age, we are constantly faced with the need to be able to
handle large amounts of content. Especially with the constant expansion of Web 2.0
type websites which are becoming increasingly popular along with which the content
handled by such websites grows also.
In this direction, content management systems (CMSs) have been developed that
undertake the burden of online monitoring of the managing process for large
numbers of elements. Of course, in order for this managment to take place, detailed
production workflows need to be defined in a formal and machine understandable
way [1].

46 Anastasios Giouris and Manolis Wallace

Manually editing a workflow can become a cumbersome task and often the source of
operational errors; it is not always easy for a human user to detect all possible
deficiencies associated with a complex graphical workflow description and,
consequently, problems in the specification of the workflow will reflect in the
operation of the overall system. Therefore, what is needed is an automated tool that
is able to inspect the manually provided workflow specifications and assess their
validity [2,3].
In this paper, utilizing a graph-based model for workflows, we propose a transitivity
based methodology for the validation of workflows. The structure of the paper is as
follows: In section “Workflow graph model” we discuss workflows and present our
graph based workflow model. In section “Workflow Validation” we present our
methodology for automated validation of workflows and in section “Experimental
results” we provide results from the experimental application of our approach.
Finally, section “Conclusions” lists our concluding remarks.

2 Workflow graph model

A workflow can best be described as an outline of the path that needs to be followed
in order for a task to be successfully completed. The specific path that is followed
often determines not just the quality of the results, but also whether the task is ever
completed or not [4,5].

Fig. 1. An example of a workflow

Visually, a workflow can be thought of as a flowchart. From a mathematical point of
view, it can be thought of as a Finite State Machine. But neither of these two views
can exactly represent the complicated conditions a workflow requires, such as
handling different and multiple inputs and outputs. Also, where in programming we
consider the termination problem unsolvable, we wish to have an automated
methodology that is able to determine whether a workflow specification will lead to

Graph Based Workflow Validation 47

successful completion of the task which it describes. Therefore, an alternative model
is required for the representation of the workflow.
The following is a simplified real world graphical example of a workflow: in a
moderated news portal environment that publishes edited versions of articles
provided by users, each article submitted needs to be tracked though the process
displayed in Fig 1. The article is first forwarded for both text proofs and graphics
touch up. Either of these two sub-processes could develop into a longer sequence of
edit-review iterations, until the desired quality has been reached. Finally, when the
editor has approved both the textual and graphical part of the article, it can be
published. Clearly, the real life version of this workflow is even more complex, also
describing the editor’s ability to totally reject the article, re-assign it to different
proofreaders or graphics artists, merging it with other articles, associating it with a
specific section of the portal, requesting changes to its length and so on.

Fig. 2. The start node

Fig. 3. The end node

Fig. 4. SINGLE_IN/SINGLE_OUT node

Fig. 5. SINGLE_IN/ALL_OUT node

Fig. 6. ALL_IN/SINGLE_OUT node

Fig. 7. ALL_IN/ALL_OUT node

In order to construct a formal model for the workflow presented above we will
extend on the notion of a graph by providing definitions for six different types of
graph vertices, as explained in the following:
x The start of the process is a special node in the graph, as all paths originate there.

We depict the start using the type of node presented in Fig. 2.
x The end of the process is also important as it automatically signifies the end of

the task. This is depicted with the type of node presented in Fig. 3.
x Proof readers, right after the article has been assigned to them, as well as when

the editor returns the article for further proofing, need to work on the document.
Therefore we have a node with multiple inputs either of which may activate the
node. This is called a SINGLE_IN node and is depicted with a rectangle in the
input area, as shown in Fig. 4 and Fig 5.

x The editor, when receiving proofs from the proof readers, has the option to either
accept the proofed article or return it for further proofing. Therefore we have a
node with multiple outputs only one of which is activated in each case. This is
called a SINGLE_OUT node and is depicted with a rectangle in the output area,
as shown in Fig. 4 and Fig. 6.

48 Anastasios Giouris and Manolis Wallace

x In order for the overall article to be accepted, both the text and the graphics need
to be approved by the editor. This operation corresponds to a multiple input node
for which all of the inputs are required for activation. This is called an ALL_IN
node and is depicted with an oval in the input area, as shown in Fig. 6 and Fig. 7.

x When an article has been received it needs to be forwarded to both proof readers
and graphics artists. This corresponds to a multiple output node that activates all
of its outputs concurrently. This is called an ALL_OUT node and is depicted
with an oval in the output area, as shown in Fig. 5 and Fig. 7.

Fig. 8. The graph for the workflow of the example

Using the above, the workflow of the example is modeled as shown in Fig. 8. Of
course, in cases where only one input or only one output is connected to a node,
there is more than one type of node that can be utilized. For reasons that will become
obvious in the following section where the workflow validation methodology will be
presented, SINGLE_IN and ALL_OUT are preferred options for the nodes and are
always preferred when it does not make any difference.

3 Workflow validation

When a user is allowed to specify workflows in a graphical manner, by providing
graphs such as the one depicted in Fig. 8 (or much more complex) using a graphical
editing tool, there is always the possibility of a logical error. Therefore, a
methodology needs to be developed for the identification of such erroneous cases. In
the following we explain how the inspection of the transitive closure of workflow
graphs can be utilized to automate the process.

Graph Based Workflow Validation 49

2.1 SINGLE_IN/ALL_OUT case

Having a workflow consisting of nodes of which any input can activate a node and
nodes that activate all of their outputs, a simple connectivity test can assure that the
workflow is correct. Since the mathematical counterpart of network connectivity is
transitivity of relations, we will utilize the operation of transitive closure in order to
evaluate the validity of workflows.
In order to best demonstrate this we present the example workflows of Fig 9. In
Table 1 we present the matrix representations of the graphs of Fig. 9. The transitive
closure of these matrices is presented in Table 2. The connectivity checks that need
to be made are:
x do all states lead to successful completion of the task?
x are all states meaningful?
In order to assess whether a state leads to the completion of the task we need to
assess whether it leads to the end state. Therefore, we require that all nodes lead to
the end node, i.e. that the last column in the transitive closure matrix is filled with
ones except for the last row For example, we can see in the transitive closure of the
first graph that node C does not lead to completion.
In order to assess whether a state is meaningful we need to assess whether it can be
reached. Therefore, we require that all nodes are subsquent to the start node, i.e. that
the first row in the transitive closure matrix is filled with ones (first position
excluded). For example, we can see in the transitive closure of the second graph that
node C is not reachable.

Table 1. Matrix representations of Fig 9. graphs

 START A B C END START A B C END
START 0 1 0 0 0 START 0 1 0 0 0
A 0 0 1 1 0 A 0 0 1 0 0
B 0 0 0 0 1 B 0 0 0 0 1
C 0 0 0 0 0 C 0 0 0 0 1
END 0 0 0 0 0 END 0 0 0 0 0

Fig. 9. SINGLE_IN/ALL_OUT checks

50 Anastasios Giouris and Manolis Wallace

Table 2. Transitive closure of the two matrices

 START A B C END START A B C END
START 0 1 1 1 1 START 0 1 1 0 1
A 0 0 1 1 1 A 0 0 1 0 1
B 0 0 0 0 1 B 0 0 0 0 1
C 0 0 0 0 0 C 0 0 0 0 1
END 0 0 0 0 0 END 0 0 0 0 0

Fig. 10. An example including SINGLE_OUT and ALL_IN graphs

2.2 SINGLE_OUT and ALL_IN cases

When not all nodes in the workflow are of the SINGLE_IN/ALL_OUT type a simple
transitive closure is not enough to ensure validity. See for example the workflow
graph of Fig. 10. Although a transitivity check would indicate that there is nothing
wrong with this workflow, a more careful examination reveals that this workflow
will never lead to a successful completion of its task. Due to the fact that both nodes
B and C are required for the activation of node D but only one of them may be
activated by node A.

Since the transitive closure methodology can only handle correctly the case of
SINGLE_IN/ALL_OUT nodes, we need to transform the workflow graphs of the
more general cases to graphs comprising only SINGLE_IN/ALL_OUT nodes, so that
the methodology can be applied.

As far as the SINGLE_OUT nodes are concerned, these are handled by creating
multiple copies of the graph; one for each activated output. In order for the workflow
to be validated, each node needs to be found to be meaningful on at least one graph
and leading to the end on at least one graph; there is no need for these to happen on
the same graph.

Graph Based Workflow Validation 51

Fig. 11. The transformed multiple graph problem

When it comes to ALL_IN nodes, we need to have a means of making sure that
all possible inputs are activated at the same time. In order to avoid confusions in the
case of multiple output and multiple input nodes that are linked together in more than
one ways, we utilize the following approach: Extra “dummy” nodes are added to the
graph, one for each required input of an ALL_IN node. The node is found to be
meaningful only if all of the dummy nodes associated with it are activated at the
same time, i.e. in the same transitive closure graph.

The validation of the workflow presented in Fig. 10 is transformed into the
multiple graph validation problem presented in Fig 11. In the transitive closure of the
two graphs (Table 3) we can see that although all nodes are found to be reasonable
and terminating in at least one of the two matrices, the two dummy nodes are not
activated simultaneously on either of the two examined instances of the problem.
Therefore, we correctly conclude that there is a problem with the activation of node
D, and thus the workflow of our example is not validated.

4 Experimental results

The methodology presented in this paper has been coded using the Python
programming language.Input, in the current stage of the implementation, is provided
in the form of text files, such as the one presented bellow:

name=S;connections=A;intype=none;outype=ALL_OUT;
name=A;connections=B,C;intype=SINGLE_IN;outype=SINGLE_OUT;
name=B;connections=D;intype=SINGLE_IN;outype=ALL_OUT;
name=C;connections=D;intype=SINGLE_IN;outype=ALL_OUT;
name=D;connections=nE;intype=ALL_IN;outype=ALL_OUT;
name=E;connections=none;intype=SINGLE_IN;outype=null;

52 Anastasios Giouris and Manolis Wallace

Table 3. Transitive closures for the multiple graph problem

 START A B C _D1 _D2 D END
START 0 1 1 0 1 0 1 1
A 0 0 1 0 1 0 1 1
B 0 0 0 0 1 0 1 1
C 0 0 0 0 0 1 1 1
_D1 0 0 0 0 0 0 1 1
_D2 0 0 0 0 0 0 1 1
D 0 0 0 0 0 0 0 1
END 0 0 0 0 0 0 0 0

 START A B C _D1 _D2 D END
START 0 1 0 1 0 1 1 1
A 0 0 0 1 0 1 1 1
B 0 0 0 0 1 0 1 1
C 0 0 0 0 0 1 1 1
_D1 0 0 0 0 0 0 1 1
_D2 0 0 0 0 0 0 1 1
D 0 0 0 0 0 0 0 1
END 0 0 0 0 0 0 0 0

The workflow described in this example is actually the workflow presented in Fig.
10. The output of the module for this example is provided bellow.

@!ERROR: ALL_IN check failed for D
@!The Workflow is not Valid

Using another sample workflow with the following properties our validator produces
correct results

name=S;connections=A;intype=none;outype=ALL_OUT;
name=A;connections=B,C;intype=SINGLE_IN;outype=ALL_OUT;
name=B;connections=D,E;intype=SINGLE_IN;outype=SINGLE_OUT;
name=C;connections=F;intype=SINGLE_IN;outype=ALL_OUT;
name=D;connections=H;intype=SINGLE_IN;outype=ALL_OUT;
name=H;connections=G;intype=SINGLE_IN;outype=SINGLE_OUT;
name=F;connections=G,E;intype=ALL_IN;outype=SINGLE_OUT;
name=G;connections=E;intype=ALL_IN;outype=SINGLE_OUT;
name=E;connections=none;intype=SINGLE_IN;outype=ALL_OUT;

Producing the following output

@!ERROR: ALL_IN check failed for G Possible Workflow #0
@! Workflow is not valid

By changing the output type of nodes F and B to ALL_OUT, eliminating the
problem of G not being activated in the previous cases, the validator produces the
following result guarantying us a valid workflow.

Graph Based Workflow Validation 53

@! Workflow is valid

5 Conclusions

In this paper we have focused on the problem of automatic workflow validation. As
we have explained, the validation of workflows can be a tricky task, due to the fact
that different types of nodes can be associated with a workflow, some of which are
quite difficult to handle.

After providing a formal model for workflows and following a transitive closure
based approach, we have provided a methodology for the automated validation of
workflows comprising SINGLE_IN/ALL_OUT nodes. Then, through problem
transformation, we explained how the same methodology can be utilized to also treat
the more general cases. The proposed methodology has been tested theoretically, but
also practically through implementation into a working stand-alone module.

What remains to be done is the integration of the developed module and
methodology with the graphical workflow editor. This will also open the way for real
life application and testing under heavier loads. One point that is expected to be of
augmented interest is that of the operation of transitive closure, as the complexity of
the conventional approach is too high to consider for real time operation under heavy
load. In this direction, novel transitive closure approaches can be applied [6,7],
taking advantage the sparse nature of the workflow graphs.

References

1. A. P. Barros, A. H. M. ter Hofstede, Towards the construction of workflow-suitable
conceptual modelling techniques, Information Systems Journal 8 (4), 313–337, 1998.

2. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros,
Workflow Patterns, Distributed and Parallel Databases 14(1), pp. 5-51, 2004.

3. W. M. P. van der Aalst, M. Weske, G. Wirtz, Advanced topics in workflow management:
issues, requirements, and solutions, Journal of Integrated Design and Process Science
7(3), 2003.

4. M. M. Compton, S. Wolfe, Intelligent validation and routing of electronic forms in
adistributed workflow environment, Proceedings of the Tenth Conference on Artificial
Intelligence for Applications, 1994.

5. S. Sadiq, M. Orlowska, W. Sadiq, C. Foulger, Data flow and validation in workflow
modeling, Proceedings of the 15th Australasian database conference, 2004.

6. M. Wallace, S. Kollias, Two Algorithms For Fast Incremental Transitive Closure Of
Sparse Fuzzy Binary Relations, International Journal of Computational Methods, in
press.

7. M. Wallace, Y. Avrithis, S. Kollias, Computationally efficient sup-t transitive closure for
sparse fuzzy binary relations, Fuzzy Sets and Systems 157(3), pp. 341-372, 2006.

