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Abstract. Content Management Systems in the field of content production and 
publishing need to monitor the progress of large numbers of simultaneously 
evolving workflows. In order to make such systems adaptive to the varying 
needs of their organizations, the utilization of a graphical editor for workflows 
has been proposed, thus generating the hazard of the specification of erroneous 
and invalid workflows. In this paper we provide a formal modeling for 
workflows and then, based on it, we explain how the validity of a simple 
workflow can be evaluated through the examination of the transitive closure of 
its graph. Continuing to the more general case, we develop a problem 
transformation methodology that allows for all workflows to be validated 
using a transitive closure examination approach. The Python implementation 
of our methodology is provided as is freely to all interested parties. 

1 Introduction 

Living in the information age, we are constantly faced with the need to be able to 
handle large amounts of content. Especially with the constant expansion of Web 2.0 
type websites which are becoming increasingly popular along with which the content 
handled by such websites grows also.  
In this direction, content management systems (CMSs) have been developed that 
undertake the burden of online monitoring of the managing process for large 
numbers of elements. Of course, in order for this managment to take place, detailed 
production workflows need to be defined in a formal and machine understandable 
way [1]. 
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Manually editing a workflow can become a cumbersome task and often the source of 
operational errors; it is not always easy for a human user to detect all possible 
deficiencies associated with a complex graphical workflow description and, 
consequently, problems in the specification of the workflow will reflect in the 
operation of the overall system. Therefore, what is needed is an automated tool that 
is able to inspect the manually provided workflow specifications and assess their 
validity [2,3]. 
In this paper, utilizing a graph-based model for workflows, we propose a transitivity 
based methodology for the validation of workflows. The structure of the paper is as 
follows: In section “Workflow graph model” we discuss workflows and present our 
graph based workflow model. In section “Workflow Validation” we present our 
methodology for automated validation of workflows and in section “Experimental 
results” we provide results from the experimental application of our approach. 
Finally, section “Conclusions” lists our concluding remarks. 

2 Workflow graph model 

A workflow can best be described as an outline of the path that needs to be followed 
in order for a task to be successfully completed. The specific path that is followed 
often determines not just the quality of the results, but also whether the task is ever 
completed or not [4,5]. 

 
Fig. 1. An example of a workflow 

Visually, a workflow can be thought of as a flowchart. From a mathematical point of 
view, it can be thought of as a Finite State Machine. But neither of these two views 
can exactly represent the complicated conditions a workflow requires, such as 
handling different and multiple inputs and outputs. Also, where in programming we 
consider the termination problem unsolvable, we wish to have an automated 
methodology that is able to determine whether a workflow specification will lead to 
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successful completion of the task which it describes. Therefore, an alternative model 
is required for the representation of the workflow. 
The following is a simplified real world graphical example of a workflow: in a 
moderated news portal environment that publishes edited versions of articles 
provided by users, each article submitted needs to be tracked though the process 
displayed in Fig 1. The article is first forwarded for both text proofs and graphics 
touch up. Either of these two sub-processes could develop into a longer sequence of 
edit-review iterations, until the desired quality has been reached. Finally, when the 
editor has approved both the textual and graphical part of the article, it can be 
published. Clearly, the real life version of this workflow is even more complex, also 
describing the editor’s ability to totally reject the article, re-assign it to different 
proofreaders or graphics artists, merging it with other articles, associating it with a 
specific section of the portal, requesting changes to its length and so on.  

 
Fig. 2. The start node 

 
Fig. 3. The end node 

 
Fig. 4. SINGLE_IN/SINGLE_OUT node 

 
Fig. 5. SINGLE_IN/ALL_OUT node 

 
Fig. 6. ALL_IN/SINGLE_OUT node 

 
Fig. 7. ALL_IN/ALL_OUT node 

 
In order to construct a formal model for the workflow presented above we will 
extend on the notion of a graph by providing definitions for six different types of 
graph vertices, as explained in the following: 
x The start of the process is a special node in the graph, as all paths originate there. 

We depict the start using the type of node presented in Fig. 2. 
x The end of the process is also important as it automatically signifies the end of 

the task. This is depicted with the type of node presented in Fig. 3. 
x Proof readers, right after the article has been assigned to them, as well as when 

the editor returns the article for further proofing, need to work on the document. 
Therefore we have a node with multiple inputs either of which may activate the 
node. This is called a SINGLE_IN node and is depicted with a rectangle in the 
input area, as shown in Fig. 4 and Fig 5. 

x The editor, when receiving proofs from the proof readers, has the option to either 
accept the proofed article or return it for further proofing. Therefore we have a 
node with multiple outputs only one of which is activated in each case. This is 
called a SINGLE_OUT node and is depicted with a rectangle in the output area, 
as shown in Fig. 4 and Fig. 6. 
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x In order for the overall article to be accepted, both the text and the graphics need 
to be approved by the editor. This operation corresponds to a multiple input node 
for which all of the inputs are required for activation. This is called an ALL_IN 
node and is depicted with an oval in the input area, as shown in Fig. 6 and Fig. 7. 

x When an article has been received it needs to be forwarded to both proof readers 
and graphics artists. This corresponds to a multiple output node that activates all 
of its outputs concurrently. This is called an ALL_OUT node and is depicted 
with an oval in the output area, as shown in Fig. 5 and Fig. 7. 

 
Fig. 8. The graph for the workflow of the example 

Using the above, the workflow of the example is modeled as shown in Fig. 8. Of 
course, in cases where only one input or only one output is connected to a node, 
there is more than one type of node that can be utilized. For reasons that will become 
obvious in the following section where the workflow validation methodology will be 
presented, SINGLE_IN and ALL_OUT are preferred options for the nodes and are 
always preferred when it does not make any difference. 

3 Workflow validation 

When a user is allowed to specify workflows in a graphical manner, by providing 
graphs such as the one depicted in Fig. 8 (or much more complex) using a graphical 
editing tool, there is always the possibility of a logical error. Therefore, a 
methodology needs to be developed for the identification of such erroneous cases. In 
the following we explain how the inspection of the transitive closure of workflow 
graphs can be utilized to automate the process. 
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2.1 SINGLE_IN/ALL_OUT case 

Having a workflow consisting of nodes of which any input can activate a node and 
nodes that activate all of their outputs, a simple connectivity test can assure that the 
workflow is correct. Since the mathematical counterpart of network connectivity is 
transitivity of relations, we will utilize the operation of transitive closure in order to 
evaluate the validity of workflows. 
In order to best demonstrate this we present the example workflows of Fig 9. In 
Table 1 we present the matrix representations of the graphs of Fig. 9. The transitive 
closure of these matrices is presented in Table 2. The connectivity checks that need 
to be made are: 
x do all states lead to successful completion of the task? 
x are all states meaningful? 
In order to assess whether a state leads to the completion of the task we need to 
assess whether it leads to the end state. Therefore, we require that all nodes lead to 
the end node, i.e. that the last column in the transitive closure matrix is filled with 
ones except for the last row For example, we can see in the transitive closure of the 
first graph that node C does not lead to completion. 
In order to assess whether a state is meaningful we need to assess whether it can be 
reached. Therefore, we require that all nodes are subsquent to the start node, i.e. that 
the first row in the transitive closure matrix is filled with ones (first position 
excluded). For example, we can see in the transitive closure of the second graph that 
node C is not reachable. 

Table 1. Matrix representations of Fig 9. graphs 

 START A B C END   START A B C END 
START 0 1 0 0 0  START 0 1 0 0 0 
A 0 0 1 1 0  A 0 0 1 0 0 
B 0 0 0 0 1  B 0 0 0 0 1 
C 0 0 0 0 0  C 0 0 0 0 1 
END 0 0 0 0 0  END 0 0 0 0 0 

 
Fig. 9. SINGLE_IN/ALL_OUT checks 
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Table 2. Transitive closure of the two matrices 

 START A B C END   START A B C END 
START 0 1 1 1 1  START 0 1 1  0 1 
A 0 0 1 1 1  A 0 0 1 0 1 
B 0 0 0 0 1  B 0 0 0 0 1 
C 0 0 0 0 0  C 0 0 0 0 1 
END 0 0 0 0 0  END 0 0 0 0 0 

 
Fig. 10. An example including SINGLE_OUT and ALL_IN graphs 

2.2 SINGLE_OUT and ALL_IN cases 

When not all nodes in the workflow are of the SINGLE_IN/ALL_OUT type a simple 
transitive closure is not enough to ensure validity.  See for example the workflow 
graph of Fig. 10. Although a transitivity check would indicate that there is nothing 
wrong with this workflow, a more careful examination reveals that this workflow 
will never lead to a successful completion of its task. Due to the fact that both nodes 
B and C are required for the activation of node D but only one of them may be 
activated by node A. 

Since the transitive closure methodology can only handle correctly the case of 
SINGLE_IN/ALL_OUT nodes, we need to transform the workflow graphs of the 
more general cases to graphs comprising only SINGLE_IN/ALL_OUT nodes, so that 
the methodology can be applied. 

As far as the SINGLE_OUT nodes are concerned, these are handled by creating 
multiple copies of the graph; one for each activated output. In order for the workflow 
to be validated, each node needs to be found to be meaningful on at least one graph 
and leading to the end on at least one graph; there is no need for these to happen on 
the same graph.  
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Fig. 11. The transformed multiple graph problem 

When it comes to ALL_IN nodes, we need to have a means of making sure that 
all possible inputs are activated at the same time. In order to avoid confusions in the 
case of multiple output and multiple input nodes that are linked together in more than 
one ways, we utilize the following approach: Extra “dummy” nodes are added to the 
graph, one for each required input of an ALL_IN node. The node is found to be 
meaningful only if all of the dummy nodes associated with it are activated at the 
same time, i.e. in the same transitive closure graph.  

The validation of the workflow presented in Fig. 10 is transformed into the 
multiple graph validation problem presented in Fig 11. In the transitive closure of the 
two graphs (Table 3) we can see that although all nodes are found to be reasonable 
and terminating in at least one of the two matrices, the two dummy nodes are not 
activated simultaneously on either of the two examined instances of the problem. 
Therefore, we correctly conclude that there is a problem with the activation of node 
D, and thus the workflow of our example is not validated. 

4 Experimental results 

The methodology presented in this paper has been coded using the Python 
programming language.Input, in the current stage of the implementation, is provided 
in the form of text files, such as the one presented bellow: 
 

name=S;connections=A;intype=none;outype=ALL_OUT; 
name=A;connections=B,C;intype=SINGLE_IN;outype=SINGLE_OUT; 
name=B;connections=D;intype=SINGLE_IN;outype=ALL_OUT; 
name=C;connections=D;intype=SINGLE_IN;outype=ALL_OUT; 
name=D;connections=nE;intype=ALL_IN;outype=ALL_OUT;  
name=E;connections=none;intype=SINGLE_IN;outype=null; 
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Table 3. Transitive closures for the multiple graph problem 

 START A B C _D1 _D2 D END 
START 0 1 1 0 1 0 1 1 
A 0 0 1 0 1 0 1 1 
B 0 0 0 0 1 0 1 1 
C 0 0 0 0 0 1 1 1 
_D1 0 0 0 0 0 0 1 1 
_D2 0 0 0 0 0 0 1 1 
D 0 0 0 0 0 0 0 1 
END 0 0 0 0 0 0 0 0 
         
 START A B C _D1 _D2 D END 
START 0 1 0 1 0 1 1 1 
A 0 0 0 1 0 1 1 1 
B 0 0 0 0 1 0 1 1 
C 0 0 0 0 0 1 1 1 
_D1 0 0 0 0 0 0 1 1 
_D2 0 0 0 0 0 0 1 1 
D 0 0 0 0 0 0 0 1 
END 0 0 0 0 0 0 0 0 

 
The workflow described in this example is actually the workflow presented in Fig. 
10. The output of the module for this example is provided bellow. 
 

@!ERROR: ALL_IN check failed for D 
@!The Workflow is not Valid 

 
Using another sample workflow with the following properties our validator produces 
correct results 
 

name=S;connections=A;intype=none;outype=ALL_OUT; 
name=A;connections=B,C;intype=SINGLE_IN;outype=ALL_OUT; 
name=B;connections=D,E;intype=SINGLE_IN;outype=SINGLE_OUT; 
name=C;connections=F;intype=SINGLE_IN;outype=ALL_OUT; 
name=D;connections=H;intype=SINGLE_IN;outype=ALL_OUT; 
name=H;connections=G;intype=SINGLE_IN;outype=SINGLE_OUT; 
name=F;connections=G,E;intype=ALL_IN;outype=SINGLE_OUT; 
name=G;connections=E;intype=ALL_IN;outype=SINGLE_OUT; 
name=E;connections=none;intype=SINGLE_IN;outype=ALL_OUT; 

 
Producing the following output 

 
@!ERROR: ALL_IN check failed for G Possible Workflow #0 
@! Workflow is not valid 

 
By changing the output type of nodes F and B to ALL_OUT, eliminating the 
problem of G not being activated in the previous cases, the validator produces the 
following result guarantying us a valid workflow. 
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@! Workflow is valid 

5 Conclusions 

In this paper we have focused on the problem of automatic workflow validation. As 
we have explained, the validation of workflows can be a tricky task, due to the fact 
that different types of nodes can be associated with a workflow, some of which are 
quite difficult to handle.  

After providing a formal model for workflows and following a transitive closure 
based approach, we have provided a methodology for the automated validation of 
workflows comprising SINGLE_IN/ALL_OUT nodes. Then, through problem 
transformation, we explained how the same methodology can be utilized to also treat 
the more general cases. The proposed methodology has been tested theoretically, but 
also practically through implementation into a working stand-alone module. 

What remains to be done is the integration of the developed module and 
methodology with the graphical workflow editor. This will also open the way for real 
life application and testing under heavier loads. One point that is expected to be of 
augmented interest is that of the operation of transitive closure, as the complexity of 
the conventional approach is too high to consider for real time operation under heavy 
load. In this direction, novel transitive closure approaches can be applied [6,7], 
taking advantage the sparse nature of the workflow graphs. 
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