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Abstract. We investigate systematically the impact of human intervention in 

the training of computer players in a strategy board game. In that game, com-

puter players utilise reinforcement learning with neural networks for evolving 

their playing strategies and demonstrate a slow learning speed. Human inter-

vention can significantly enhance learning performance, but carrying it out 

systematically seems to be more of a problem of an integrated game develop-

ment environment as opposed to automatic evolutionary learning. 

1   Introduction 

Several machine learning concepts have been tested in game domains, since strategic 

games offer ample opportunities to automatically explore, develop and test winning 

strategies. The most widely publicised results occurred during the 1990s, when IBM 

made strenuous efforts to develop (first with Deep Thought, later with Deep Blue) a 

chess program comparable to the best human player. 

As early as 1950, Shannon [14] studied how computers could play chess and 

proposed the idea of using a value function to compete with human players. Follow-

ing that, Samuel [13] created a checkers program that tried to find “the highest point 

in multidimensional scoring space”, only to have his research rediscovered by Sutton 

[15] who formulated the TD(λ) method for temporal difference reinforcement learn-

ing (RL). Since then, more games such as Tetris, Blackjack, Othello [10], chess [19] 

and backgammon [17, 18] were analysed by applying TD(λ) to improve their per-

formance. 

TD-Gammon [17, 18] was the most successful early application of TD(λ) for the 

game of backgammon. Using RL techniques and after training with 1.5 million self-

playing games, a performance comparable to that demonstrated by backgammon 

world champions was achieved. 

As far as strategy games are concerned, the most important and critical point of 

them is to select and implement the computer’s strategy during the game. The term 
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strategy stands for the selection of the computer’s next move considering its current 

situation, the opponent’s situation, consequences of that move and possible next 

moves of the opponent. RL helps solve this problem by formulating strategies in 

terms of policies. In theory, the advantage of RL to other learning methods is that the 

target system itself detects which actions to take via trial and error, with limited need 

for direct human involvement.  

In our research, we use a new strategy game to gain insight into the question of 

how game playing capabilities can be efficiently and automatically evolved. The 

problem that we aim to highlight in this paper is that the usual arsenal of computa-

tional techniques does not readily suffice to develop a winning policy and that one 

must couple automation with careful experimental design. Our contribution is the 

development and experimental validation of simple quantitative indices, that meas-

ure performance improvement of automatic game playing, to better support our deci-

sions about which training paths to follow. For this reason we have designed and 

carried out several experimental sessions comprising in total well over 400,000 com-

puter-vs.-computer games and over 200 human-vs.-computer games.  

The rest of this paper is organised in four sections. The next section presents the 

basic details of the game and its introductory analysis. The third section describes 

our experimentation on training. The fourth section discusses the impact and the 

limitations of human-assisted learning and states the recommended directions for 

future development. The concluding section summarises the work. 

2   A brief background on a strategy game workbench  

The game is played on a square board of size n, by two players. Two square bases of 

size a are located on opposite board corners. The lower left base belongs to the white 

player and the upper right base belongs to the black player. At game kick-off each 

player possesses β pawns. The goal is to move a pawn into the opponent’s base. 

The base is considered as a single square, therefore every pawn of the base can 

move at one step to any of the adjacent to the base free squares (see Fig. 1 for exam-

ples and counterexamples of moves). A pawn can move to an empty square that is 

vertically or horizontally adjacent, provided that the maximum distance from its base 

is not decreased (so, backward moves are not allowed). Note that the distance from 

the base is measured as the maximum of the horizontal and the vertical distance from 

the base (and not as a sum of these quantities). A pawn that cannot move is lost 

(more than one pawn may be lost in one round). If some player runs out of pawns he 

loses.  

The leftmost board in Fig. 1 demonstrates a legal and an illegal move (for the 

pawn pointed to by the arrow). The rightmost boards demonstrate the loss of pawns 

(with arrows showing pawn casualties). Such (loss incurring) moves bring about the 

direct adjustment of the moving pawn with some pawn of the opponent. In such 

cases the “trapped” pawn automatically draws away from the game. As a by-product 

of this rule, when there is no free square next to the base, the rest of the pawns of the 

base are lost. 
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Fig. 1. A sample decision tree 

2.1   The analysis context 

Past research [7] initially demonstrated that, when trained with self-playing games, 

both players had nearly equal opportunities to win and neither player enjoyed a pole 

position advantage. Follow-up research [8] furnished preliminary results that sug-

gested a computer playing against itself would achieve weaker performance when 

compared to a computer playing against a human player. 

The game is a discrete Markov procedure, since there are finite states and moves. 

Each episode terminates and the game is thus amenable to analysis by reinforcement 

learning [16]. The a priori knowledge of the system consists of the rules only. The 

agent’s goal is to learn a policy that will maximize the expected sum of rewards in a 

specific time; this is called an optimal policy. A policy determines which action 

should be taken next given the current state of the environment. As usual, at each 

move the agent balances between choosing an action that will straightforward maxi-

mize its reward or choosing an action that might prove to be better. A commonly 

used starting ε-greedy policy with ε=0.9 was adopted, i.e. the system chooses the 

best-valued action with a probability of 0.9 and a random action with a probability of 

0.1. 

At the beginning all states have the same value except for the final states. After 

each move the values are updated through TD(λ), where λ determines the reduction 

degree of assigning credit to some action and was set to λ=0.5. 

Neural networks were used to interpolate between game board situations (one for 

each player, because each player has a unique state space). The input layer nodes are 

the board positions for the next possible move, totalling n2-2a2+10. The hidden layer 

consists of half as many hidden nodes, whereas the output node has only one node, 

which can be regarded as the probability of winning when one starts from a specific 

game-board configuration and then makes a specific move. 

Note that, drawing on the above and the game description, we can conclude that 

we cannot effectively learn a deterministic optimal policy. Such a policy does exist 

for the game [11], however the use of an approximation (neural network) effectively 

rules out such learning. Of course, even if that was not the case, it does not follow 

that converging to such a policy is computationally tractable [2]. 
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3   The experimental setup  

To focus on how one could measurably detect improvement in automatic game play-

ing, we devised a set of experiments with different options in the reward policies 

while at the same time adopting a relatively narrow focus on the moves of the human 

(training player). 

Herein we report experiments with 8 game batches. Each game batch consists of 

50,000 computer-vs.-computer (CC) games, carried out in 5 stages of 10,000 games 

each. For batches that have involved human-vs.-computer (HC) games, each CC 

stage is interleaved with a HC stage of 10 games. Thus, HC batches are 50,050 

games long. In HC games, a human is always the white player. 

We now show the alternatives for the human player in Table 1. Briefly describ-

ing them, we always move from the bottom-left base to the north and then move 

right, attempting to enter the black base from its vertical edge (see Fig. 2). We ex-

plore a mix of learning scenarios, whereby at some experiments we explicitly wander 

around with the human player, allowing the black player to discover a winning path 

to the white base. Of course, if the human player wants to win, this is straightfor-

ward. 

 

 

Fig. 2. The path of a human player 

Table 1. Policies of white human player 

 White player always starts from bottom-left 

1 North, then Right, attempting to enter from vertical edge 

2 Allows Black to win 5 games, then Policy #1 

3 Allows Black to win 10 games 

 

The alternatives for the rewards are shown in Table 2. Briefly describing them, 

the first reward type assigns some credit to states that involve a pawn directly neigh-

bouring the enemy base. It also rewards captured pawns by calculating the difference 

of pawn counts and by scaling that difference to a number in [-1,1]. The other two 

polices have been developed with a view towards simplification (by dropping the 

base adjacency credit) and towards better value alignment. 
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Table 2. Reward types 

 White player always starts from bottom-left 

1 Win: 100, Loss: -100 

Win-at-next-move: 2, Loss -at-next-move: -2 

Pawn difference scaled in [-1,1] 

  

2 Win: 100, Loss: -100 

Pawn difference scaled in [-1,1] 

  

3 Win: 100, Loss: -100 

Pawn difference scaled in [-100,100] 

3.1   Varying only the white player policy (HC) 

The white player policy can be deliberately varied in HC games only, of course. We 

report below the results of three HC batches, where the reward type was set to 1. A 

short description of the batches is shown in Table 3, whereas the results are shown in 

Fig. 3, Fig. 4 and Fig. 5. 

Table 3. Description of batches 1 - 3 

 Game Type – Reward - Policy 

1 HC, 1, 1 

2 HC, 1, 2 

3 HC, 1, 3 
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Fig. 3. 1st Experimental Session. 
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Fig. 4. 2nd Experimental Session. 
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Fig. 5. 3rd Experimental Session. 

First, we observe that the white player overwhelms the black one. The black 

player’s performance can be seen to improve only in the third batch, where the white 

player aims not to win. Still, this improvement is indirect (note that the white player 

requires a larger average number of moves to win). This suggests that the number of 

CC games may be too few to allow the pole position advantage of the white player to 

diminish. In that respect, it also seems that when the white player wins, even in few 

of the games, the efficiency of the human-induced state-space exploration can be 

picked up and sustained by the subsequent exploitation of the CC stage. 

3.2   Varying only the reward 

In the next experimental round, we froze the policy type to 1. A short description of 

the batches is shown in Table 4. The results are shown in Fig. 3, Fig. 6 and Fig. 7. 

 



Measuring Expert Impact on Learning how to Play a Board Game 107 

 

Table 4. Description of batches 1, 4, 5 

 Game Type – Reward - Policy 

1 HC, 1, 1 

4 HC, 2, 1 

5 HC, 3, 1 
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Fig. 6. 4th Experimental Session. 

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 2 3 4 5

Game stages (5 x 10,000 games each)

G
a
m

e
s
 w

o
n

0

50

100

150

200

250

300

350

400

450

500

A
v
e
ra

g
e
 m

o
v
e
s
 i
n

 g
a
m

e
s
 w

o
n

W-wins

B-wins

W-moves

B-moves

 

Fig. 7. 5th Experimental Session. 

We now observe that the fifth experiment suggests a clear improvement for the 

black player, as the number of moves required by the white CC player consistently 

increases. In any case, we also observe again that as the while HC player wins, so 

does the white CC player seem able to sustain its own wins. Note also the highly 

irregular behaviour in the fourth batch, where the fourth stage witnesses a strong 

turn. It is interesting that this is associated with a superficially rewarded pawn advan-

tage. These results are an indication that pawn advantage rewards should be com-

mensurate with their expected impact in the game outcome; losing many pawns and 

not capturing any indicates that we are about to lose. 
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3.3   Interleaving CC and HC games 

The above findings lead us to experiment with the following scenario: first conduct a 

CC batch, then use its evolved neural network to spawn experimentation in two sepa-

rate batches, one CC and one HC. Note that, until now, all experiments were tabula-

rasa in the sense that each experiment started with a “clean” neural network. In all 

these experiments, we used the reward type (3) that aligns pawn advantage with 

winning a game. A short description of the batches is shown in Table 5, whereas the 

results are shown in Fig. 8, Fig. 9 and Fig. 10. 

Table 5. Description of batches 6 - 8 

 Game Type – Reward - Policy 

6 CC, 3, - 

7 CC, 3, - (based on batch 6) 

8 HC, 3, 1 (based on batch 6) 
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Fig. 8. 6th Experimental Session. 
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Fig. 9. 7th Experimental Session. 
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Fig. 10. 8th Experimental Session. 

The succession of the two CC games is quite revealing: while the white player 

does enjoy a pole position advantage, this is subsequently eroded. This is surely 

obvious if one observes the number of games won. Note that the short distance be-

tween the lines showing the average number of moves is another testimony. This 

further supports our initial experimentation that suggested both players had equal 

chances to win; our experiments now show that this equality is progressively brought 

about by the convergent behaviour of the two players. 

Quite as importantly, one can note that the introduction of human intelligence 

eventually allows the white CC player to immediately increase the performance gap. 

It is most instructive to compare the fifth and eighth batches (Fig. 7 and Fig. 10 

respectively) since their only difference is that the eighth batch is based on a previ-

ous CC batch. It seems that the CC batch has instilled some knowledge in the white 

player that stabilizes its behaviour relative to the black player. This very inefficient 

knowledge is not straightforward to “forget” in order to be replaced by human play-

ing RL values. Perhaps, it would be more precise to call it knowledge inertia since, if 

left unattended to, the two computer players will most likely reach an uninteresting 

equilibrium (as Fig. 8 and Fig. 9 show). 

4   Discussion  

We definitely need more experiments if we are to train our computer players to a 

level comparable to that of a human player. The options can be numerous, but we 

can name a few obvious ones that are also clearly independent between them: ex-

perimentation with more exploration-exploitation trade-offs or alternative RL pa-

rameters, experimentation with the learning parameters or the input-output represen-

tation of the neural network, experimentation with alternative reward types or human 

playing policies. Last but not least, any combination of the above may be a plausible 

one to investigate. In fact, we cannot directly attribute which part of the learning 

inefficiencies spotted in the long experimental runs of the above section may be due 

to the parameters of the reinforcement learning algorithm, or the parameters of the 

neural network. 
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The results we have obtained to-date clearly suggest that it is very important to 

find an efficient and effective way to achieve learning. We must optimize the use of 

expensive resources (human player) so that they are intelligently placed at critical 

points of the learning process, which will mostly be done automatically. Note that 

even though the number of HC games is relatively very small to the number of CC 

games, the impact of HC games can be clearly detected. Accurately measuring this 

impact is not straightforward, however. Therefore, it is of less importance to discuss 

how much to increase human involvement as opposed to gauging how to best spread 

a given amount of such involvement. 

The question, of course, is “which options to select for experimentation”. In an-

swering this question, there are two major directions to follow [4]. 

The first one is to devise an experimentation engine that will attempt to calculate 

the best parameters for effective and efficient learning. This option has conceptual 

simplicity, technical appeal and has delivered some interesting results [12]. How-

ever, we believe that it would be an expensive addition to an already expensive task, 

as, still more parameters must be specified (and experimented with). By deploying a 

meta-experimentation level, we practically shift the problem. Moreover, we would 

have to define the “supervision” level of the learning process and craft appropriate 

measures. Beyond the number of games won and the average number of moves in 

such games which seem to be good candidates for this task, we may also have to 

come up with measures of interestingness [5, 9]. 

The second one is to embed some ad-hoc knowledge into the learning process. 

This is not a new concept; a combination of RL and Explanation Based Learning was 

initially supposed to be able to benefit the game with faster learning and the ability to 

scale to large state spaces in a more structured manner [3]. Why, then, did it not 

materialize in published benefits? We believe that this is due to the inherent diffi-

culty of attempting to merge numeric and symbolic representation and classification 

paradigms, and especially so in the context of large experimentations, where the 

coarse or fine resolution of the merging process might result in substantially different 

outcomes. 

In retrospect, both directions seem to suggest that the numeric approach to auto-

matic learning has some very pronounced practicality limitations. Simply put, some 

domains are too premature (in how we comprehend them) to lend themselves to 

general-purpose evolutionary improvement. It is for this reason, we believe, that our 

experiments demonstrate measurable improvements when subjected to human “tutor-

ing”. Though automatic playing has long been testified to deliver good results [18, 1] 

and still is a vibrant area, we emphasize human impact in a new game (simple, yet 

state-space consuming) because we are interested precisely in exploring disturbance 

during learning, not unlike the dice in back-gammon. Note that an interesting and 

probably useful extension would be to develop a mini-max (computer) player and 

then use that player as a teacher for the learning computer [11]. 

Interactive evolution might be promising, however. In such a course, one would 

ideally switch from focused human training to autonomous crawling between prom-

ising alternatives. But, as we have discovered, during the preparation of this work, 

the interactivity requirements of the process of improving the computer player is 

very tightly linked to the availability of a computer-automated environment that 

supports this development. Such an environment was not available and was missed. 
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As a matter of fact, the above experiments may have cost in total about one month of 

computing from a relatively high-end desktop. The visualization of the intermediate 

results, the data processing and visualization, as well as the selection of which ex-

tract of the results to choose may have cost about twice as much in human resources. 

(On top of that human resources cost, it would be difficult to quantify the context 

switching effort between several other occupations.) 

This may be sustainable if we want to provide some incremental improvement to 

automatic game playing but it seems hardly sustainable if we aim to develop the 

level of automatic playing to that of the human player. In terms of the experiments 

described above, we have noticed several features of an experimentation system that 

we have deemed indispensable if one views the project from the point of system 

efficiency. Such features range from being able to easily design an experimentation 

batch, direct its results to a specially designed database (to also facilitate reproduci-

bility), automatically process the game statistics and observe correlations, link ex-

perimentation batches in terms of succession, while at the same time being able to 

pre-design a whole series of linked experiments with varying parameters of duration 

and succession and then guide the human player to play a game according to that 

design. 

As it seems, being able to provide a tool that captures the lifecycle of the devel-

opment of an AI application is a strong contributor to the success of the take-up of 

that application. Perhaps, it is not surprising that when data mining (which, in princi-

ple, is close to what this research is about) started its applied steps, it was with the 

availability of workflow-like tools that researchers and practitioners alike managed 

to navigate efficiently through the data mining process. In that sense, we aim to pur-

sue these directions towards the automatic discovery of knowledge in game playing 

as opposed to equipping the computer with more detailed domain modelling [6] or 

with standard game-tree search techniques. 

5   Conclusion  

This paper focused on the presentation of carefully designed experiments, at a large 

scale, to support the claim that human playing can measurably improve the perform-

ance of computer players in a board game. 

After describing the experimental setup, we presented the results which are cen-

tred on two key statistics: number of games won and average number of moves in 

games won. Arguably, the high level of abstraction of these statistics should render 

them (as well as the proposed process) useful in the development process and evalua-

tion of similar board games. 

The computation of these statistics is a trivial task, but the key challenge is how 

to decide the succession of experiments, taking into account that each experiment is 

specified by some parameters, so as to efficiently and effectively guide the learning 

process. The importance of such guiding is underlined by the fact that we must 

thoughtfully exploit human contribution, which will undoubtedly be a scarcely avail-

able resource.  
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We have concluded that while most of the fundamental AI arsenal needed is al-

ready available significant applied research is required for the establishment of tools 

that will streamline the experimentation process. We believe that workflow-like tools 

will first beat the path of such streamlining before we effectively address the 

autonomous management of this process. 
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