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Abstract This paper presents a Web based portal, which 

enables intelligent processing of biological data in Grid 

environments. The deployed software aims at creation of 

tools for processing data from microarray experiments over 

the Hellenic Grid infrastructure. Emphasis is given on user 

interface and access issues, while the paper describes also 

the data parsing and parallelization of the microarray data 

processing. The description of the system is oriented to Grid 

developers and users, since it focuses on the customization 

and use of the microarray applications over the Grid. Apart 

from supporting the high performance and economical 

execution of microarray experiments, the proposed system 

endeavors to provide access to a distributed repository of 

experiments information and results. 

 

1  Introduction  

The completion of the Human Genome Project and the emergence of high-

throughput technologies at the dawn of the new millennium, are rapidly 

changing the way biomedical research is performed. Microarray experiments 

permit a genome-scale evaluation of gene functions and are therefore among the 

most topical and prominent developments of biomedical research. A microarray 
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experiment may produce great amounts of biological digital data that require further 

processing towards their exploitation. To alleviate the high cost of computing 

equipment required to support microarray experiments, researchers can leverage the 

computing power and the quality of service provided by Grid computing 

infrastructures. The amount of power offered by Grid infrastructures has been 

already exploited in the scope of a significant number of e-science applications, in 

particular applications with stringent computational and storage requirements. 

Bioinformatics applications in general and microarray experiments in particular are 

perfectly tailored to Grid infrastructures due to the need for high computing power 

and storage capacity [1]. Motivated by this fact, the aim of this research is to 

‘Gridify’ and put on the Grid a selected number of microarray analysis, 

normalization and processing applications for cDNA arrays. The target Grid 

infrastructure is the Hellenic portion of the pan-European Grid infrastructure 

developed for e-science in the scope of the EGEE (Enabling Grids for E-Science in 

Europe) project and its successors [2]. The proposed platform is called hereafter 

HECTOR or EKTORAS in Greek, since it is funded by the Greek Secretariat of 

Research and Technology under a project named EKTORAS [9].  

Figure 1 provides an overview of the application components comprising the 

EKTORAS application environment. At a high level the microarray experiments are 

conducted, processed and analyzed based on the following steps: 

− Selecting a particular experiment among the pool of available normalization and 

clustering methods for cDNA microarrays. This selection task is performed by 

end users. 

− Providing the microarray input files, which are usually structured according to 

formats that are standard for the microarray bioinformatics community. 

Microarray input files are specified by the end user and can be either files 

provided by the researchers themselves or even files residing in microarray 

public databases (i.e. European Bioinformatics Institute Database 

http://www.ebi.ac.uk/). 

− Pre-processing the input files as so to render them usable by the range of 

algorithms available. The results of this pre-processing will be directed to the 

Grid’s storage elements (SE). 

− Parallelizing the application and distributing the parallel chunks & jobs to 

various nodes-processors of the Grid. Accumulating, storing and post-

processing the results. This step contributes to create a large-scale virtualized 

database of microarray experiments. 

The architecture presented in Figure 1 supports the above steps through a 

variety of software elements that are placed either within the Grid 

infrastructure, or as part of the access portal supporting interaction with the 

end users as described in the remainder sections.  
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Fig.1. Overview of the HECTOR application architecture 

 

2  User Interface - Access Portal 

Users accessing the Web Interface through the implemented portal are given the 

ability to submit their experiments, retrieve their results and also compare them with 

formerly submitted experiments. Since the portal is set up on Hellas Grid User 

Interface (HG-UI), users have the ability to actually access the whole Grid 

infrastructure, consisting of many grid nodes. Access to services is enabled by 

parsing input files and accordingly activating the ‘gridified’ algorithms for 

processing the microarray experiments. Both data parsing operations and launching 

of experiments are specified as Grid jobs, using the Job Description Language (JDL). 

JDL is a high-level language, which is used to describe jobs and to aggregate jobs 

with arbitrary dependency relations. In the scope of the Grid, JDL is used to specify 

the desired job characteristics and constraints, which are used by the match-making 

process to select the best resource to execute the job. A job description is a file 

(called JDL file) consisting of lines having the format: attribute = expression; and 

terminated by a semicolon. Expressions can span several lines, but only the last one 

must be terminated by a semicolon.  

Users of the EKTORAS portal are not required to be familiar with the procedure 

of creating the JDL files. They just have to set up a few parameters from the Web 

Portal that describes their experiment as shown in Figure 2, and to either upload their 

input files consisting of gene description, or even select them from a third party 

library-database of microarray files (e.g., the EBI Database). Accordingly the portal 

dynamically produces a JDL file specifying: 
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o Commands for parsing the inputs files and producing output files enabling 

the execution of the experiments. The parsing process is illustrated in the 

following section 3. 

o Commands for activating the experiments over the Grid infrastructure. The 

later commands exploit the MPI capabilities of the Grid [3-4], while also 

leveraging appropriate data files produced after the parsing process. 

 

 

 
Fig. 2. Some steps from the input of parameters for the Experiment in the EKTORAS Portal 

 
Following the dynamic production of the JDL file based on input files and 

configuration parameters, the portal submits this file to the Workload Management 

System (WMS) of the Grid for execution. The EKTORAS portal is accessible over 

the World Wide Web, through the URL http://www.icsd.aegean.gr/ektoras/. From an 

implementation perspective the portal is implemented using JSP (Java Server Pages) 

technology over a Tomcat/Jakarta infrastructure. The Jakarta infrastructure is hosted 

in a machine that is owned by the University of Aegean. Nevertheless, this machine 
becomes part of the Grid, in the form of a Grid UI. Implementing the portal 
within a Grid UI ensures that the access part of the EKTORAS application can 

directly leverage middleware services (e.g., security, reliability, resource 

management) of the underlying Grid infrastructure.   

3  Input Data Parsing and Storage 

Input data parsing constitutes an expedient pre-processing step to running 

microarray experiments. As outlined in the previous section and depicted in Figure 3, 

a data set parser module undertakes the transformation of input data files to other 

data storage structures (e.g., Matlab/Octave project files) that can be executed in 

conjunction with the gridified application. In order to maximize the impact and 

utility of EKTORAS services, we have tried to support a broad range of input files 
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formats. The development of the EKTORAS data parsing functionality supports the 

most popular formats, starting with the Imagene format [5-6]. The ImaGene format 

is the format specified and used within the ImaGene microarray image analysis 

software; a popular software for quick, automated measurement and visualization of 

gene expression data from spotted arrays. The ImaGene software extracts and 

quantifies spotted data from any 16-bit TIFF image file, and exports processed data 

in either text or XML files.  In addition to Imagene other popular software tools are 

supported including QuantArray, GenePix, TIGR Spotfinder and the generic tab-

delimited format used by EBI for storing data. By supporting these entire different 

formats EKTORAS platform is compliant with the vast majority of experiment data 

produced. Parsers are implemented in Python scripts, and manage to convert any of 

these aforementioned formats to Octave ASCII workspace files, storing the data into 

certain structures needed by the Octave code to run. 
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Fig. 3. Graphical representation of code parallelization  

 

The parsing process produces a set of output files, which accordingly are stored 

within the Grid. Storage of output files is implemented using the Storage Elements 

(SEs) of the EGEE. SEs are services which allow a user or an application to store 

data for future retrieval. Currently, data storage within SEs is not subject to policies 

for space quota management. Moreover, all data in a SE are considered permanent 

and it is user responsibility to manage the available space in a SE (e.g., removing 

unnecessary data, moving files to mass storage systems etc.). As a result, the 

EKTORAS system stores outputs of the parsing process to one or more storage 

elements that are allocated to the project. These files are therefore available to the 
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experiments code, which also manages these files based on commands of the LCG 

File Catalog (LFC) and using the following abstractions: 

o Logical File Name (LFN), which is an alias created by a user to refer to some 

item of data, e.g. “lfn:cms/20030203/run2/track1” 

o Globally Unique Identifier (GUID), which is a non-human-readable unique 

identifier for an item of data, e.g., “guid:f81d4fae-7dec-11d0-a765-

00a0c91e6bf6” 

o Site URL (SURL)  (or Physical File Name (PFN) or Site FN), which represents 

the location of an actual piece of data on a storage system, e.g., 

“srm://pcrd24.cern.ch/flatfiles/cms/output10_1” (SRM) and   

“sfn://lxshare0209.cern.ch/data/alice/ntuples.dat” (Classic SE) 

o Transport URL (TURL), which corresponds to the temporary locator of a replica 

along with its access protocol: understood by a SE, e.g., 

rfio://lxshare0209.cern.ch//data/alice/ntuples.dat. 

 

4  Grid Enabling Applications 

The EKTORAS microarray processing algorithms have been initially provided by 

NHRF (National Hellenic Research Foundation) as a set of MATLAB libraries. 

However, no nodes of the Hellenic Grid Infrastructure provide support for MATLAB 

execution. Furthermore MATLAB is a commercial product, which raises intricate 

licensing issues when it comes to installing it in the Grid and makes it unlikely to 

become available in the near future. Therefore, we have investigated possible 

alternatives, the most prominent being the use of Octave Forge, which is the GNU 

open-source alternative to MATLAB. As a result, the first Grid application 

development step involved the conversion of the MATLAB code to (results) 

equivalent Octave Forge code.  

Accordingly, we dealt with the task of parallelizing the (Octave Forge) 

microarray application and accordingly making it appropriate for use over the Grid. 

Initially, emphasis was given in placing the existing system into the grid 

environment. This task can be generally achieved through “wrapping” the existing 

code. The wrapping process has to audit the existing applications for their 

appropriateness for the Grid based on their following characteristics [7]: 

o Their inter-process communications between jobs, without high speed switch 

connection (for example, MPI). In general, multi-threaded applications need 

to be checked for their need of inter-process communication. 

o Their level of job scheduling requirements depending on data provisioning by 

uncontrolled data producers 

o Unresolved obstacles to establish sufficient bandwidth on the network. 

o Strongly limiting system environment dependencies for the jobs. 

o Requirements for safe business transactions (commit and roll-back). At the 

moment, there are no standards for transaction processing on grids. 

o High interdependencies between the jobs, which expose complex job flow 

management to the grid server and cause high rates of inter-process 

communication. 
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o Unsupported network protocols used by jobs, which may be prohibited to 

perform their tasks due to firewall rules. 

Accordingly, we examined the application and job flows. Application flows is 

the flow of work between the jobs that make up the grid application. The internal 

flow of work within a job itself is called the job flow. During the grid enablement of 

the microarray processing algorithms we classified application flows into the 

following three basic types: 

o Parallel flow: If an application consists of several jobs that can all be executed in 

parallel, a grid may be very suitable for effective execution on dedicated nodes, 

especially in the case when there is no (or a very limited) exchange of data 

among the jobs. From an initial job, a number of jobs are launched to execute on 

pre-selected or dynamically assigned nodes within the grid. Each job may 

receive a discrete set of data, fulfill its computational task independently and 

deliver its output. The output is collected by a final job or stored in a defined 

data store. For a given problem or application, it would be necessary to break it 

down into independent units. To take advantage of parallel execution of the 

microarray application in a grid, it is important to analyze tasks within an 

application to determine whether they can be broken down into individual and 

atomic units of work that can be run as individual jobs. This parallel application 

flow type is well suited for deployment on the EGEE grid. Significantly, this 

type of flow can occur when there are separate data sets per job and none of the 

jobs need result from another job as input. Classical examples of parallel flows 

are mathematical calculations, where the commutative and associative laws can 

be exploited. 

o Serial flow: In contrast to the parallel flow is the serial application flow. In this 

case, there is a single thread of job execution where each of the subsequent jobs 

has to wait for its predecessor to end and deliver output data as input to the next 

job. This means that any job is a consumer of its predecessor, the data producer. 

In this case, the advantages of running in a grid environment are not based on 

access to multiple systems in parallel, but rather on the ability to use any of 

several appropriate and available resources. Note that each job does not 

necessarily have to run on the same resource, so if a particular job require 

specialized resources, this can be accommodated, while the other jobs may run 

on more standard and inexpensive resources. The ability for the jobs to run on 

any of a number of resources also increases the application's availability and 

reliability. In addition, it may make the application inherently scalable through 

the ability to utilize larger and faster resources at any particular point in time. 

Nevertheless, when encountering such a situation, it may be worthwhile to 

check whether the single jobs are really dependent on each other, or whether, 

due to their nature, they can be split into parallel executable units for submission 

on a grid. A prominent example of serial application flows are iterative 

scenarios (for example, convergent approximation calculations) where the 

output of one job is required as input to the next job of the same kind, a serial 

job flow is required to reach the desired result.  

o Networked flow: In this case certain jobs within the application are executable 

in parallel, but there are inter-dependencies between them. In the scope of 

application with a networked flow we will exploit loose coupling, which implies 

a need for a job flow management service to handle the synchronization of the 
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individual results. Loose coupling between the jobs avoids high inter-process 

communication and reduces overhead in the grid. In the case of such 

experiments we will analyze how to best split the application into individual 

jobs, with a view to maximizing parallelism.  

During grid programming we also introduced a hierarchical system of sub-jobs. 

Specifically, it is likely that a job could utilize the services of the grid environment to 

launch one or more sub-jobs. For this kind of environment, an application can be 

partitioned and designed in such a way that the higher-level jobs could include the 

logic to obtain resources and launch sub-jobs. This can facilitate large applications to 

isolate and pass the control and management of certain tasks to the individual 

components. Since the microarray processing algorithms deal with multiple 

replicates of data and the main process is independent for each replicate, they are 

highly parallelizable. So the elimination of poor quality spots and the normalization 

process can be executed in parallel. This parallel flow makes them appropriate for 

execution over a grid environment, towards meeting the economic goals set in the 

introductory paragraph of this report. In implementing the parallelization and 

exploiting multiple processors within the Grid, we exploited the MPI programming 

model. The following table provides pseudo code illustrating the use of MPI to 

launch parallel Octave forge instances executing normalization-related functions for 

the microarray instances. 
 

Table 1. Sample MPI Pseudo code 

#include <mpi.h> 
int main(int argc, char *argv[]) 
{ 
... //----initializing MPI 
MPI_Init(&argc, &argv); 
//----learn node number 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
// load files   (in parallel for each file) 
// Start Find Bad Points  (in parallel for each experiment) 
[exptab,TotalBadpoints]=FindBadpoints(datstruct,t,exprp,imgsw); 
// Normalize Data  (in parallel for each experiment) 
[DataCellNormLo]=NormalizationLO(exptab,exprp,t,gnID); 
 Gather processed data (On node 0) 
for (i=1;i<NumOfExperiments;i++) 
 MPI_Recv(rcvbuf,count,datatype,i,tag,MPI_INT, MPI_COMM_WORLD, 
&status); 
/* MPI shutdown MPI */ 
MPI_Finalize(); 
//Filter Replicates 
[DataCellFiltered]=FilterReplicates2(DataCellNormLo); 
//Statitical Test 
[DataCellStat]=MA_StaTestExp_New_total(DataCellFiltered,DataCellNormLo)
; 
//CLUSTERING 
……………………….. 
} 

 

Table 1 refers to a simple parallelization of the microarray processing 

application, based on the number of input files/slides and their subsequent 

normalization processes. This is the most straightforward and simplistic 
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parallelization approach for the available microarray applications. A thorough 

analysis and structuring based on the above-mentioned jobs-subjobs hierarchical 

approach can in a later stage boost the application to much better performance levels. 

Figure 3 shows a more detailed view of the steps executed by our code and how it is 

parallelized in more nodes. 

The aggregation of the results as it is depicted in Figure 3 runs in single node 

since it requires information from all experiments and it is not heavy 

computationally. Finally the clustering of the results runs in parallel on many nodes 

since it can run independently for each experiment and has increased computation 

complexity. Following the initial interaction of the end user with the access portal, 

there are is virtually no essential on-going interaction between user and grid 

application. During the course of the application’s execution users limit themselves 

to monitoring the status of their job submissions. 

 

5  Distributed Elements for Experiments Storage and 

Virtualization  

Apart from supporting the high performance and economical execution of 

microarray experiments, the EKTORAS system endeavors to provide access to a 

repository of experiments information and results. Specifically, following the 

completion of an experiment over the EKTORAS application infrastructure, the 

experimental results are stored within appropriate SEs. These results are provided to 

the SE along with experiment meta-data specified according to MIAME (Minimum 

Information About a Microarray Experiment) XML format [8]. These metadata are 

requested by end-user through the access portal, prior to the execution of the 

experiment. Accordingly the portal structures a MIAME XML file. During 

implementation we tried to conform to microarray data standards, which are 

developed by the Microarray Gene Expression Data (MGED) Society 

(http://www.mged.org/).  MIAME (www.mged.org/miame) is a prominent such 

standard, which outlines the minimum information that should be reported about a 

microarray experiment to enable its unambiguous interpretation and reproduction. 

Following the structuring of experiment meta-data as MIAME files, and their storage 

in SEs, we also developed a browsing mechanism that navigates across all the 

distributed SEs that contain experiments’ information. This mechanism exports a 

browsing interface, along with a query/search interface to the access portal, in order 

to allow the end user query, search and access experiments’ information and results. 

The distributed browsing mechanism is implemented as a C wrapper over the Grid 

data management functions and APIs. The latter APIs are exploited to deal with: 

o Heterogeneity, since experiments’ data will be stored on different storage 

systems using different access technologies 

o Distribution, since experiments’ data is likely to be stored in different 

locations, while also data needs to be moved between different locations. 

o Different Administrative Domains, since data is likely to be stored at places 

where different access policies are applied and hence the browsing 
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mechanism will have to deal with the relevant security and auditing 

implications. 

The EKTORAS access portal allows end-users to retrieve experiment files from 

the EBI microarray library. To this end the access portal provides an adapter to the 

EBI database system, which allows EKTORAS user to view, browse and select EBI 

files. 

6  Conclusions 

In this paper we strived to underpin the importance of grid computing for DNA 

microarray experiments. Accordingly, we have described the main components 

comprising the proposed ‘gridification’ of EKTORAS microarray data processing 

applications, along with the key technologies that support the implementation and 

integration of these components. We have also elaborated on a set of structuring 

principles for building the EKTORAS Grid Portal. This work serves as a starting 

point for building a more complete and integrated Grid enabled microarray 

experimentation environment.  
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