

A Web Based System Enabling Distributed

Access and Intelligent Processing of

Bioinformatics Data in Grid Environments

Ilias Maglogiannis
1
, John Soldatos

2
, Aristotelis Chatzioannou

1
,

Vasilis Milonakis
2
, Yiannis Kanaris

1

1
University of the Aegean,

2
Athens Information Technology,

e-mail: {imaglo@aegean.gr, achatzi@eie.gr, jsol@ait.edu.gr,

vmil@ait.edu.gr, icsdm05004@icsd.aegean.gr}

Abstract This paper presents a Web based portal, which

enables intelligent processing of biological data in Grid

environments. The deployed software aims at creation of

tools for processing data from microarray experiments over

the Hellenic Grid infrastructure. Emphasis is given on user

interface and access issues, while the paper describes also

the data parsing and parallelization of the microarray data

processing. The description of the system is oriented to Grid

developers and users, since it focuses on the customization

and use of the microarray applications over the Grid. Apart

from supporting the high performance and economical

execution of microarray experiments, the proposed system

endeavors to provide access to a distributed repository of

experiments information and results.

1 Introduction

The completion of the Human Genome Project and the emergence of high-

throughput technologies at the dawn of the new millennium, are rapidly

changing the way biomedical research is performed. Microarray experiments

permit a genome-scale evaluation of gene functions and are therefore among the

most topical and prominent developments of biomedical research. A microarray

118 Ilias Maglogiannis, John Soldatos, Aristotelis Chatzioannou, Vasilis Milonakis,

Yiannis Kanaris

experiment may produce great amounts of biological digital data that require further

processing towards their exploitation. To alleviate the high cost of computing

equipment required to support microarray experiments, researchers can leverage the

computing power and the quality of service provided by Grid computing

infrastructures. The amount of power offered by Grid infrastructures has been

already exploited in the scope of a significant number of e-science applications, in

particular applications with stringent computational and storage requirements.

Bioinformatics applications in general and microarray experiments in particular are

perfectly tailored to Grid infrastructures due to the need for high computing power

and storage capacity [1]. Motivated by this fact, the aim of this research is to

‘Gridify’ and put on the Grid a selected number of microarray analysis,

normalization and processing applications for cDNA arrays. The target Grid

infrastructure is the Hellenic portion of the pan-European Grid infrastructure

developed for e-science in the scope of the EGEE (Enabling Grids for E-Science in

Europe) project and its successors [2]. The proposed platform is called hereafter

HECTOR or EKTORAS in Greek, since it is funded by the Greek Secretariat of

Research and Technology under a project named EKTORAS [9].

Figure 1 provides an overview of the application components comprising the

EKTORAS application environment. At a high level the microarray experiments are

conducted, processed and analyzed based on the following steps:

− Selecting a particular experiment among the pool of available normalization and

clustering methods for cDNA microarrays. This selection task is performed by

end users.

− Providing the microarray input files, which are usually structured according to

formats that are standard for the microarray bioinformatics community.

Microarray input files are specified by the end user and can be either files

provided by the researchers themselves or even files residing in microarray

public databases (i.e. European Bioinformatics Institute Database

http://www.ebi.ac.uk/).

− Pre-processing the input files as so to render them usable by the range of

algorithms available. The results of this pre-processing will be directed to the

Grid’s storage elements (SE).

− Parallelizing the application and distributing the parallel chunks & jobs to

various nodes-processors of the Grid. Accumulating, storing and post-

processing the results. This step contributes to create a large-scale virtualized

database of microarray experiments.

The architecture presented in Figure 1 supports the above steps through a

variety of software elements that are placed either within the Grid

infrastructure, or as part of the access portal supporting interaction with the

end users as described in the remainder sections.

A Web Based System Enabling Distributed Access and Intelligent Processing of

Bioinformatics Data in Grid Environments

119

End -User

Researchers , Doctors ,

Practioners

Access Portal , User

Interface

End -User

End -User

User Input Datasets

(Flat Files)

DataSet Parser
EKTORAS

Storage

Element

J
D

L
J
D

L

EKTORAS

Storage

Element

Hellas Grid Middleware

Infrastructure

EBI

Database

EBI Query

and Parsing

Module

EBI Input Datasets (Flat

Files)

Parallel

Clustering

Instance

EKTORAS

Storage

Element

Parallel

Clustering

Instance
Parallel

Clustering

Instance

Parallel

Normalization

InstanceParallel

Normalization
Instance

Parallel

Normalization

Instance

MPI

Programming

MPI

Programming

J
D

L

XML /

MIAME FILE

Processing

Module

EKTORAS

Storage

Element

EKTORAS

Storage
Element

EKTORAS Access

Portal

Fig.1. Overview of the HECTOR application architecture

2 User Interface - Access Portal

Users accessing the Web Interface through the implemented portal are given the

ability to submit their experiments, retrieve their results and also compare them with

formerly submitted experiments. Since the portal is set up on Hellas Grid User

Interface (HG-UI), users have the ability to actually access the whole Grid

infrastructure, consisting of many grid nodes. Access to services is enabled by

parsing input files and accordingly activating the ‘gridified’ algorithms for

processing the microarray experiments. Both data parsing operations and launching

of experiments are specified as Grid jobs, using the Job Description Language (JDL).

JDL is a high-level language, which is used to describe jobs and to aggregate jobs

with arbitrary dependency relations. In the scope of the Grid, JDL is used to specify

the desired job characteristics and constraints, which are used by the match-making

process to select the best resource to execute the job. A job description is a file

(called JDL file) consisting of lines having the format: attribute = expression; and

terminated by a semicolon. Expressions can span several lines, but only the last one

must be terminated by a semicolon.

Users of the EKTORAS portal are not required to be familiar with the procedure

of creating the JDL files. They just have to set up a few parameters from the Web

Portal that describes their experiment as shown in Figure 2, and to either upload their

input files consisting of gene description, or even select them from a third party

library-database of microarray files (e.g., the EBI Database). Accordingly the portal

dynamically produces a JDL file specifying:

120 Ilias Maglogiannis, John Soldatos, Aristotelis Chatzioannou, Vasilis Milonakis,

Yiannis Kanaris

o Commands for parsing the inputs files and producing output files enabling

the execution of the experiments. The parsing process is illustrated in the

following section 3.

o Commands for activating the experiments over the Grid infrastructure. The

later commands exploit the MPI capabilities of the Grid [3-4], while also

leveraging appropriate data files produced after the parsing process.

Fig. 2. Some steps from the input of parameters for the Experiment in the EKTORAS Portal

Following the dynamic production of the JDL file based on input files and

configuration parameters, the portal submits this file to the Workload Management

System (WMS) of the Grid for execution. The EKTORAS portal is accessible over

the World Wide Web, through the URL http://www.icsd.aegean.gr/ektoras/. From an

implementation perspective the portal is implemented using JSP (Java Server Pages)

technology over a Tomcat/Jakarta infrastructure. The Jakarta infrastructure is hosted

in a machine that is owned by the University of Aegean. Nevertheless, this machine
becomes part of the Grid, in the form of a Grid UI. Implementing the portal
within a Grid UI ensures that the access part of the EKTORAS application can

directly leverage middleware services (e.g., security, reliability, resource

management) of the underlying Grid infrastructure.

3 Input Data Parsing and Storage

Input data parsing constitutes an expedient pre-processing step to running

microarray experiments. As outlined in the previous section and depicted in Figure 3,

a data set parser module undertakes the transformation of input data files to other

data storage structures (e.g., Matlab/Octave project files) that can be executed in

conjunction with the gridified application. In order to maximize the impact and

utility of EKTORAS services, we have tried to support a broad range of input files

A Web Based System Enabling Distributed Access and Intelligent Processing of

Bioinformatics Data in Grid Environments

121

formats. The development of the EKTORAS data parsing functionality supports the

most popular formats, starting with the Imagene format [5-6]. The ImaGene format

is the format specified and used within the ImaGene microarray image analysis

software; a popular software for quick, automated measurement and visualization of

gene expression data from spotted arrays. The ImaGene software extracts and

quantifies spotted data from any 16-bit TIFF image file, and exports processed data

in either text or XML files. In addition to Imagene other popular software tools are

supported including QuantArray, GenePix, TIGR Spotfinder and the generic tab-

delimited format used by EBI for storing data. By supporting these entire different

formats EKTORAS platform is compliant with the vast majority of experiment data

produced. Parsers are implemented in Python scripts, and manage to convert any of

these aforementioned formats to Octave ASCII workspace files, storing the data into

certain structures needed by the Octave code to run.

Poor Quality Spots

Elimination

-
Normalization

Filtering

MA Statistical Test

Nod

e0

Nod

e n

Nod

e1

MPI (Multiple Nodes)

Nod

e0

Single Node
Storing information in replicated storage elements

Nod

e0

Nod

e n

Nod

e1

MPI (Multiple Nodes)

Convert Input Data

Nod

e0
Nod

e n

Nod

e1

Retrieve Information from SE
Parallel Conversion (MPI)

Python Converter

octave Findbadpoints

octave Normalization

octave Filtering

ocatve MA _STAT

octave Clustering

MPI_Gather

For data Aggregation

Clustering

Fig. 3. Graphical representation of code parallelization

The parsing process produces a set of output files, which accordingly are stored

within the Grid. Storage of output files is implemented using the Storage Elements

(SEs) of the EGEE. SEs are services which allow a user or an application to store

data for future retrieval. Currently, data storage within SEs is not subject to policies

for space quota management. Moreover, all data in a SE are considered permanent

and it is user responsibility to manage the available space in a SE (e.g., removing

unnecessary data, moving files to mass storage systems etc.). As a result, the

EKTORAS system stores outputs of the parsing process to one or more storage

elements that are allocated to the project. These files are therefore available to the

122 Ilias Maglogiannis, John Soldatos, Aristotelis Chatzioannou, Vasilis Milonakis,

Yiannis Kanaris

experiments code, which also manages these files based on commands of the LCG

File Catalog (LFC) and using the following abstractions:

o Logical File Name (LFN), which is an alias created by a user to refer to some

item of data, e.g. “lfn:cms/20030203/run2/track1”

o Globally Unique Identifier (GUID), which is a non-human-readable unique

identifier for an item of data, e.g., “guid:f81d4fae-7dec-11d0-a765-

00a0c91e6bf6”

o Site URL (SURL) (or Physical File Name (PFN) or Site FN), which represents

the location of an actual piece of data on a storage system, e.g.,

“srm://pcrd24.cern.ch/flatfiles/cms/output10_1” (SRM) and

“sfn://lxshare0209.cern.ch/data/alice/ntuples.dat” (Classic SE)

o Transport URL (TURL), which corresponds to the temporary locator of a replica

along with its access protocol: understood by a SE, e.g.,

rfio://lxshare0209.cern.ch//data/alice/ntuples.dat.

4 Grid Enabling Applications

The EKTORAS microarray processing algorithms have been initially provided by

NHRF (National Hellenic Research Foundation) as a set of MATLAB libraries.

However, no nodes of the Hellenic Grid Infrastructure provide support for MATLAB

execution. Furthermore MATLAB is a commercial product, which raises intricate

licensing issues when it comes to installing it in the Grid and makes it unlikely to

become available in the near future. Therefore, we have investigated possible

alternatives, the most prominent being the use of Octave Forge, which is the GNU

open-source alternative to MATLAB. As a result, the first Grid application

development step involved the conversion of the MATLAB code to (results)

equivalent Octave Forge code.

Accordingly, we dealt with the task of parallelizing the (Octave Forge)

microarray application and accordingly making it appropriate for use over the Grid.

Initially, emphasis was given in placing the existing system into the grid

environment. This task can be generally achieved through “wrapping” the existing

code. The wrapping process has to audit the existing applications for their

appropriateness for the Grid based on their following characteristics [7]:

o Their inter-process communications between jobs, without high speed switch

connection (for example, MPI). In general, multi-threaded applications need

to be checked for their need of inter-process communication.

o Their level of job scheduling requirements depending on data provisioning by

uncontrolled data producers

o Unresolved obstacles to establish sufficient bandwidth on the network.

o Strongly limiting system environment dependencies for the jobs.

o Requirements for safe business transactions (commit and roll-back). At the

moment, there are no standards for transaction processing on grids.

o High interdependencies between the jobs, which expose complex job flow

management to the grid server and cause high rates of inter-process

communication.

A Web Based System Enabling Distributed Access and Intelligent Processing of

Bioinformatics Data in Grid Environments

123

o Unsupported network protocols used by jobs, which may be prohibited to

perform their tasks due to firewall rules.

Accordingly, we examined the application and job flows. Application flows is

the flow of work between the jobs that make up the grid application. The internal

flow of work within a job itself is called the job flow. During the grid enablement of

the microarray processing algorithms we classified application flows into the

following three basic types:

o Parallel flow: If an application consists of several jobs that can all be executed in

parallel, a grid may be very suitable for effective execution on dedicated nodes,

especially in the case when there is no (or a very limited) exchange of data

among the jobs. From an initial job, a number of jobs are launched to execute on

pre-selected or dynamically assigned nodes within the grid. Each job may

receive a discrete set of data, fulfill its computational task independently and

deliver its output. The output is collected by a final job or stored in a defined

data store. For a given problem or application, it would be necessary to break it

down into independent units. To take advantage of parallel execution of the

microarray application in a grid, it is important to analyze tasks within an

application to determine whether they can be broken down into individual and

atomic units of work that can be run as individual jobs. This parallel application

flow type is well suited for deployment on the EGEE grid. Significantly, this

type of flow can occur when there are separate data sets per job and none of the

jobs need result from another job as input. Classical examples of parallel flows

are mathematical calculations, where the commutative and associative laws can

be exploited.

o Serial flow: In contrast to the parallel flow is the serial application flow. In this

case, there is a single thread of job execution where each of the subsequent jobs

has to wait for its predecessor to end and deliver output data as input to the next

job. This means that any job is a consumer of its predecessor, the data producer.

In this case, the advantages of running in a grid environment are not based on

access to multiple systems in parallel, but rather on the ability to use any of

several appropriate and available resources. Note that each job does not

necessarily have to run on the same resource, so if a particular job require

specialized resources, this can be accommodated, while the other jobs may run

on more standard and inexpensive resources. The ability for the jobs to run on

any of a number of resources also increases the application's availability and

reliability. In addition, it may make the application inherently scalable through

the ability to utilize larger and faster resources at any particular point in time.

Nevertheless, when encountering such a situation, it may be worthwhile to

check whether the single jobs are really dependent on each other, or whether,

due to their nature, they can be split into parallel executable units for submission

on a grid. A prominent example of serial application flows are iterative

scenarios (for example, convergent approximation calculations) where the

output of one job is required as input to the next job of the same kind, a serial

job flow is required to reach the desired result.

o Networked flow: In this case certain jobs within the application are executable

in parallel, but there are inter-dependencies between them. In the scope of

application with a networked flow we will exploit loose coupling, which implies

a need for a job flow management service to handle the synchronization of the

124 Ilias Maglogiannis, John Soldatos, Aristotelis Chatzioannou, Vasilis Milonakis,

Yiannis Kanaris

individual results. Loose coupling between the jobs avoids high inter-process

communication and reduces overhead in the grid. In the case of such

experiments we will analyze how to best split the application into individual

jobs, with a view to maximizing parallelism.

During grid programming we also introduced a hierarchical system of sub-jobs.

Specifically, it is likely that a job could utilize the services of the grid environment to

launch one or more sub-jobs. For this kind of environment, an application can be

partitioned and designed in such a way that the higher-level jobs could include the

logic to obtain resources and launch sub-jobs. This can facilitate large applications to

isolate and pass the control and management of certain tasks to the individual

components. Since the microarray processing algorithms deal with multiple

replicates of data and the main process is independent for each replicate, they are

highly parallelizable. So the elimination of poor quality spots and the normalization

process can be executed in parallel. This parallel flow makes them appropriate for

execution over a grid environment, towards meeting the economic goals set in the

introductory paragraph of this report. In implementing the parallelization and

exploiting multiple processors within the Grid, we exploited the MPI programming

model. The following table provides pseudo code illustrating the use of MPI to

launch parallel Octave forge instances executing normalization-related functions for

the microarray instances.

Table 1. Sample MPI Pseudo code

#include <mpi.h>
int main(int argc, char *argv[])
{
... //----initializing MPI
MPI_Init(&argc, &argv);
//----learn node number
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// load files (in parallel for each file)
// Start Find Bad Points (in parallel for each experiment)
[exptab,TotalBadpoints]=FindBadpoints(datstruct,t,exprp,imgsw);
// Normalize Data (in parallel for each experiment)
[DataCellNormLo]=NormalizationLO(exptab,exprp,t,gnID);
 Gather processed data (On node 0)
for (i=1;i<NumOfExperiments;i++)
 MPI_Recv(rcvbuf,count,datatype,i,tag,MPI_INT, MPI_COMM_WORLD,
&status);
/* MPI shutdown MPI */
MPI_Finalize();
//Filter Replicates
[DataCellFiltered]=FilterReplicates2(DataCellNormLo);
//Statitical Test
[DataCellStat]=MA_StaTestExp_New_total(DataCellFiltered,DataCellNormLo)
;
//CLUSTERING
………………………..
}

Table 1 refers to a simple parallelization of the microarray processing

application, based on the number of input files/slides and their subsequent

normalization processes. This is the most straightforward and simplistic

A Web Based System Enabling Distributed Access and Intelligent Processing of

Bioinformatics Data in Grid Environments

125

parallelization approach for the available microarray applications. A thorough

analysis and structuring based on the above-mentioned jobs-subjobs hierarchical

approach can in a later stage boost the application to much better performance levels.

Figure 3 shows a more detailed view of the steps executed by our code and how it is

parallelized in more nodes.

The aggregation of the results as it is depicted in Figure 3 runs in single node

since it requires information from all experiments and it is not heavy

computationally. Finally the clustering of the results runs in parallel on many nodes

since it can run independently for each experiment and has increased computation

complexity. Following the initial interaction of the end user with the access portal,

there are is virtually no essential on-going interaction between user and grid

application. During the course of the application’s execution users limit themselves

to monitoring the status of their job submissions.

5 Distributed Elements for Experiments Storage and

Virtualization

Apart from supporting the high performance and economical execution of

microarray experiments, the EKTORAS system endeavors to provide access to a

repository of experiments information and results. Specifically, following the

completion of an experiment over the EKTORAS application infrastructure, the

experimental results are stored within appropriate SEs. These results are provided to

the SE along with experiment meta-data specified according to MIAME (Minimum

Information About a Microarray Experiment) XML format [8]. These metadata are

requested by end-user through the access portal, prior to the execution of the

experiment. Accordingly the portal structures a MIAME XML file. During

implementation we tried to conform to microarray data standards, which are

developed by the Microarray Gene Expression Data (MGED) Society

(http://www.mged.org/). MIAME (www.mged.org/miame) is a prominent such

standard, which outlines the minimum information that should be reported about a

microarray experiment to enable its unambiguous interpretation and reproduction.

Following the structuring of experiment meta-data as MIAME files, and their storage

in SEs, we also developed a browsing mechanism that navigates across all the

distributed SEs that contain experiments’ information. This mechanism exports a

browsing interface, along with a query/search interface to the access portal, in order

to allow the end user query, search and access experiments’ information and results.

The distributed browsing mechanism is implemented as a C wrapper over the Grid

data management functions and APIs. The latter APIs are exploited to deal with:

o Heterogeneity, since experiments’ data will be stored on different storage

systems using different access technologies

o Distribution, since experiments’ data is likely to be stored in different

locations, while also data needs to be moved between different locations.

o Different Administrative Domains, since data is likely to be stored at places

where different access policies are applied and hence the browsing

126 Ilias Maglogiannis, John Soldatos, Aristotelis Chatzioannou, Vasilis Milonakis,

Yiannis Kanaris

mechanism will have to deal with the relevant security and auditing

implications.

The EKTORAS access portal allows end-users to retrieve experiment files from

the EBI microarray library. To this end the access portal provides an adapter to the

EBI database system, which allows EKTORAS user to view, browse and select EBI

files.

6 Conclusions

In this paper we strived to underpin the importance of grid computing for DNA

microarray experiments. Accordingly, we have described the main components

comprising the proposed ‘gridification’ of EKTORAS microarray data processing

applications, along with the key technologies that support the implementation and

integration of these components. We have also elaborated on a set of structuring

principles for building the EKTORAS Grid Portal. This work serves as a starting

point for building a more complete and integrated Grid enabled microarray

experimentation environment.

Acknowledgment: This Research work is funded by the Greek Secretariat of

Research and Technology under the Grant "Distributed Biological Data Processing

of existing Open Public Databases (EKTORAS)".

References

1. I. Foster, ‘What is the Grid? A Three Point Checklist’, GRIDToday
(http://www.gridtoday.com), July 20, 2002.

2. I. Foster, C. Kesselman, S. Tuecke, ‘The Anatomy of the Grid: Enabling Scalable Virtual
Organizations’, International Journal of Supercomputer Applications, Vol.15, No.3,
2001.

3. Yukiya Aoyama et. al. ‘RS/6000 SP: Practical MPI Programming’, IBM redbook, August
1999.

4. Hellas Grid Training Material, available at: http://grid-training.ekt.gr/

5. http://www.biodiscovery.com/index/imagene

6. M. Kapushesky, P. Kemmeren, A.C. Culhane, S. Durinck, J. Ihmels, C. Kr, M. Kull, A.
Torrente, U. Sarkans, J. Vilo and A. Brazma, 'Expression Profiler: next generation-an
online platform for analysis of microarray data', Nucleic Acids Research, July 2004,
Volume: 32: 1362-4962.

7. Luis Ferreira et al. ‘Introduction to Grid Computing with Globus’, IBM redpaper,
December 2002.

8. A Brazma et al, ‘Minimum information about a microarray experiment (MIAME)-toward
standards for microarray data’, in the Proc. Nat Genet. 2001 Dec;29(4):365-71.

9. I. Maglogiannis et al., "An Application Platform Enabling High Performance Grid
Processing of Microarray Experiments", 20th IEEE Conf on Computer Based Medical
Systems CBMS2007, Slovenia

