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Abstract. This paper presents the prediction propagation paths of angle of 
arrivals (AoAs) of a Smart Antenna System in an outdoor environment 
utilizing Artificial Neural Networks (ANN). The proposed models consist of a 
Multilayer Perceptron and a Generalized Regression Neural Network trained 
with measurements of an antenna system consisted of a Single Input Single 
Output (SISO) system in the millimeter wave band. For comparison purposes 
the theoretical Gaussian scatter density model was investigated for the 
derivation of the power angle profile. The proposed models utilize the 
characteristics of the environment for prediction of the angle of arrivals of 
each one of the propagation paths and can be applicable for the derivation of 
SIMO (Single Input Single Output) parameters, such as system capacity. The 
results are presented towards the average error, standard deviation and mean 
square error compared with the measurements and they are capable for the 
derivation of accurate prediction models for the case of AoA in an outdoor 
millimeter wave propagation environment. 

1 Introduction 

Smart Antenna Systems [1] and especially MISO (Multiple Input Single Output) [2] 
or SIMO (Single Input Multiple Output) [3] systems have already been evaluated for 
the optimization of wireless system performance. The prediction of the field strength 
is a very complex and difficult task. In most cases, there are no clear line-of-sight 
(LOS) conditions between the transmitter and the receiver. Generally, the prediction 
models are classified as empirical [4] or theoretical [5], or a combination of these 
two [6]. However, the main problem of the classical empirical models is the 
unsatisfactory accuracy, while the theoretical models lack in computational 
efficiency. 
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During last years, Artificial Neural Networks (ANN) have experienced a great 
development. ANN applications are already very numerous. Classificators, signal 
processors, optimizers and controllers have already been realized. Although there are 
several types of ANN’s all of them share the following features [7]: exact analytical 
formula impossible; required accuracy around some percent; medium quantity of 
data to process; environment adaptation that allows them to learn from a changing 
environment and parallel structure that allows them to achieve high computation 
speed. All these characteristics of ANN’s make them suitable for predicting field 
strength in different environments and additionally angle of arrivals (AoA). 

The prediction of field strength and AoA can be described as the transformation 
of an input vector containing topographical and morphographical information (e.g. 
path profile) to the desired output value. The unknown transformation is a scalar 
function of many variables (several inputs and a single output), because a huge 
amount of input data has to be processed. The inputs contain information about the 
transmitter and receiver locations, surrounding buildings, frequency, etc while the 
output gives the propagation loss for those inputs. From this point of view, research 
in propagation loss modeling consists in finding both the inputs and the function that 
best approximate the propagation loss. Given that ANN’s are capable of function 
approximation, they are useful for the propagation loss and angle of arrival 
modeling. The feedforward neural networks are very well suited for prediction 
purposes because do not allow any feedback from the output (field strength or path 
loss) to the input (topographical and morphographical data). 

In this paper, the presented studies develop a number of Multilayer Perceptron 
Neural Networks (MLP-NN) and Generalized Radial Basis Function Neural 
Networks (RBF-NN) based models trained on extended data set of propagation path 
loss measurements taken in an outdoor environment. The smart antenna 
measurement system was a SISO one where a continuous wave (CW) signal at 60 
GHz was transmitted from a fixed base station to a fixed receiver, comprised of one 
antenna element, rotated in the azimuthal direction recording the multipath 
components. The signal envelope as a function of time was recorded. The 
performance of the neural network based models is evaluated by comparing their 
prediction, standard deviation and mean square error (MSE) between their predicted 
values and measurements data. Also, a comparison with the results is obtained by 
applying the Gaussian model. 

The remainder of this paper is organized as follows. Section 2 deals with the 
ANN overview describing and explaining the behavior of the two NN utilized 
models. In Section 3, an analytically description of the geometry of the measurement 
environment under consideration is presented along with the measurement 
procedure. In Section 4, the NN prediction models are implemented analytically 
describing the implementation method and the prediction results are presented in 
terms of measured Power Angle Profile (PAP), taking also into consideration the 
Gaussian model. Finally, Section 5 is devoted to conclusions derived by the 
prediction procedure. 
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2 The ANN Overview 

2.1 Multilayer Perceptron Neural Network (MLP-NN) 

Fig. 1 shows the configuration of a multilayer perceptron with one hidden layer and 
one output layer. The network shown here is fully interconnected. This means that 
each neuron of a layer is connected to each neuron of the next layer so that only 
forward transmission through the network is possible, from the input layer to the 
output layer through the hidden layers. Two kinds of signals are identified in this 
network:  
x The function signals (also called input signals) that come in at the input of the 

network, propagate forward (neuron by neuron) through the network and reach 
the output end of the network as output signals; 

x The error signals that originate at the output neuron of the network and propagate 
backward (layer by layer) through the network. 

 
Fig. 1. MLP-NN configuration 

The output of the neural network is described by the following equation: 
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where 
x w0j represents the synaptic weights from neuron j in the hidden layer to the single 

output neuron, 
x xi represents the i-th element of the input vector, 
x Fh and Fo are the activation function of the neurons from the hidden layer and 

output layer, respectively, 
x wji are the connection weights between the neurons of the hidden layer and the 

inputs. 
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The learning phase of the network proceeds by adaptively adjusting the free 
parameters of the system based on the mean square error E, described by Equation 
(2), between predicted and measured path loss for a set of appropriately selected 
training examples: 
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where yi is the output value calculated by the network and di represents the expected 
output. 

When the error between network output and the desired output is minimized, the 
learning process is terminated and the network can be used in a testing phase with 
test vectors. At this stage, the neural network is described by the optimal weight 
configuration, which means that theoretically ensures the output error minimization. 

2.2 Generalized Radial Basis Function Neural Network (RBF-NN) 

The Generalized Radial Basis Function Neural Network (RBF-NN) is a neural 
network architecture that can solve any function approximation problem. The 
learning process is equivalent to finding a surface in a multidimensional space that 
provides a best fit to the training data, with the criterion for the “best fit” being 
measured in some statistical sense. The generalization is equivalent to the use of this 
multidimensional surface to interpolate the test data. 

 
Fig. 2. RBF-NN architecture 

As it can be seen from Fig. 2, the Generalized Radial Basis Function Neural 
Network (RBF–NN) consists of three layers of nodes with entirely different roles: 
x the input layer, where the inputs are applied, 
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x the hidden layer, where a nonlinear transformation is applied on the data from the 
input space to the hidden space; in most applications the hidden space is of high 
dimensionality and 

x the linear output layer, where the outputs are produced 
The most popular choice for the function M  is a multivariate Gaussian function 

with an appropriate mean and autocovariance matrix. The outputs of the hidden layer 
units are of the form: 
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when x

kv  are the corresponding clusters for the inputs and y

kv  are the corresponding 
clusters for the outputs obtained by applying a clustering technique of the 
input/output data that produces K cluster centers [8]. x

kv  and y

kv  are defined as: 
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The outputs of the hidden layer nodes are multiplied with appropriate 
interconnection weights to produce the output of the GRNN. The weight for the 
hidden node k (i.e., wk) is equal to: 
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where Nk is the number of input data in the cluster centre k, and  
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3 Measurement Environment and Procedure 

The measurement took place in a typical urban environment as indicated in Fig. 3. 
The ground plan is illustrated as well as the transmitter and receiver positions. The 
first receiver position is 30 m away from the transmitter, whereas the second location 
is 70 m apart. Both transmitter and receiver terminals were placed at 3 m above the 
ground. Line-of-Sight (LoS) condition was preserved during the measurement. The 
street where the measurement took place is 20 m wide, including the pavements. All 
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the indicated buildings have 5 to 6 stories creating a narrow propagation canyon. The 
buildings are made with concrete and bricks, while all the building facades are 
covered with plaster and paint. There were also cars parked along both sides of the 
road, but their height is lower than the direct propagation path between the 
transmitter and receiver. 

 
Fig. 3.  Measurement environment and superimposed the derived Power Angle Profile. 

The measurements were performed by transmitting a continuous wave (CW) 
signal at 60 GHz, from a fixed base station to a fixed receiver, and recording the 
signal envelope as a function of time. Details for the measurement setup can be 
found in [9]. The transmitter output power was 100 mW (+20 dBm). The receiver 
hardware is located on a trolley, which was stationary at the measurement position. 
After amplification, the received signal is down-converted to 300 MHz IF and fed to 
a commercial receiver. The input to the automatic gain control (AGC) of the receiver 
is then sampled at 2 kHz and the data values were stored to a portable PC. The 
receiver had a noise floor of -90 dBm. For this measurement, a biconical antenna 
(omni-directional with 0 dBi gain in azimuth and 36o in elevation) was used as the 
transmitter antenna, and a horn antenna with 35 dBi gain was used as the receiver 
antenna. Both antennas are vertically polarized. The half power beamwidth of the 
horn antenna was 4o in azimuth and 3o in elevation. When a highly directional 
antenna is used, the system provides high spatial resolution to resolve multipath 
components with different AoAs. 

During the measurements, a mechanically steered directional antenna was used 
to resolve multipath components. An automated system was used to precisely 
position the receiver antenna along a linear track and then rotate the antenna in the 
azimuthal direction. At each position, the receiver antenna is rotated in azimuth from 
0 to 360o with a step size of 5o and power was recorded at each of the 72 angular 
steps. Then, a local average is calculated from the measurement results at 10 
different positions along the linear track being Ȝ/2 apart. The local average helps to 
remove any residual small-scale or time-varying fading that may occur at individual 
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positions. The precisions of the track and spin positions are better than 1 mm and 1o, 
respectively. 

Consequently, if we know the Power Angle Profile (PAP) of a SISO channel, we 
can calculate the channel matrix of a SIMO channel multiplying the array response 
vector at the receiver. The PAP of a SISO channel can be yielded by either PAP 
measurements between fixed transmit and receive terminals, a properly trained NN 
model and, a theoretical model (e.g. Gaussian model). 

4 Prediction Models’ Implementation 

The goal of the prediction is not only to produce small errors for the set of training 
examples but also to be able to perform well with examples not used in the training 
process. This generalization property is very important in practical prediction 
situation where the intention is to use the propagation prediction model to determine 
the angle of arrival of potential transmitter locations for which no or limited 
measured data are available. 

The selection of the set of training examples is very important in order to achieve 
good generalization properties [7], [10]. The set of all available data is separated in 
two disjoint sets that are training set and test set. The test set is not involved in the 
learning phase of the networks and it is used to evaluate the performance of the 
neural model. An important problem that occurs during the neural network training 
is the overadaptation that is the network memorizes the training examples and it does 
not learn to generalize the new situations. In order to avoid overadaptation and to 
achieve good generalization performances, the training set is separated in the actual 
training subset and the validation subset, typically 10-20 % of the full training set 
[7]. In order to make the neural network training process more efficient, the input 
and desired output values are normalized so that they will have zero mean and unity 
standard deviation. 

Since the purpose is to train the neural networks to perform well for all the 
routes, we should build the training set including points from the entire set of 
measurements data. In our applications the neural networks are trained with the 
Levenberg-Marquardt algorithm, which converges faster than the backpropagation 
algorithm with adaptive learning rates and momentum. The Levenberg-Marquardt 
algorithm is an approximation of Newton's method. As an optimization technique is 
more powerful than the method of gradient descent used in backpropagation 
algorithm. The Levenberg-Marquardt rule for updating parameters (weights and 
biases) is given by: 

� � 1T TW J J I J eP
�

'  �          (8) 

where e is an error vector, ȝ. is a scalar parameter, W is a matrix of networks weights 
and J is the Jacobian matrix of the partial derivatives of the error components with 
respect to the weights. For large values of ȝ the JTJ terms become negligible and 
learning progresses according to ȝ-1JTe, which is gradient descent. Whenever a step 
is taken and error increases, ȝ is increased until a step can be taken without 
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increasing error. However, if ȝ becomes too large, no learning process takes place 
(i.e. ȝ-1JTe approaches zero). This occurs when an error minima has been found. For 
small value of ȝ, the above expression becomes the Gaussian-Newton method. 

A data set of 406 patterns, that represents 20% from all available patterns, was 
used for training purpose. A set of 1620 patterns was used to test the model. In order 
to train the NN model the measured PAP was used. In Table 1, the average error, the 
standard deviation and the mean square error are presented, obtained from the 
training set by the proposed Multilayer Perceptron Neural Network and the 
Generalized Regression Neural Network. Fig. 4 presents the measured Power Angle 
Profile (PAP) together with the results derived by the MLP-NN and the RBF-NN 
predictions. As it is evident the results between the measured and the predicted PAP 
are very good with the Mean Square Error (MSE) equals to 4.9 dB for the MLP-NN 
model and 2.6 dB for the RBG-NN model. Furthermore, the theoretical Gaussian 
model for angular profile prediction is utilized for comparison reasons and presented 
also in Table 1 and Fig. 4. The Gaussian model is given by [11]: 
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The measured angular spread IV  was calculated 240o for the first and 260o for 
the second measurement position. Hence the same value will be used in Equation 
(9). The measured angular spread is calculated by [12]: 
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where nF  (n =1 or 2) is given by [12], and ( )p T  is the measured PAP. The MSE 
between the measured PAP and the Gaussian model was found equal to 6.4 dB. All 
the results are summarized in Table 1. 

Table 1. Prediction results of the ANN models’ implementation 

 Model Average Error 
[dB] 

Standard Deviation 
[dB] 

Mean Square Error 
[dB] 

RBF-NN 2.0 1.3 2.4 
MLP-NN 4.0 2.1 4.5 Rx-1 
Gaussian 5.2 3.2 6.0 
RBF-NN 2.5 1.1 2.8 
MLP-NN 4.8 2.0 5.2 Rx-2 
Gaussian 5.5 3.5 6.7 
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Fig. 4.  Comparison between the measured PAP, RBF-NN, MLP-NN prediction, and 
theoretical Gaussian model for two different receiver’s location. 

From Fig. 4 it is clear that the prediction of the trained NN models is very good, 
whereas the best results are yielded by the RBF-NN model. On the other hand the 
Gaussian model provides greater errors than the other two cases because it is not so 
accurate, and takes into account a smaller range of azimuth angle. 

 
5 Conclusions 

In this paper we examined the applicability of the neural networks for the prediction 
of angle of arrivals in an outdoor smart antenna system. The data measurements of 
an outdoor environment using a rotating receiver in the azimuthal direction recording 
the multipath components at the millimeter wave band of 60 GHz were taken into 
consideration for training purposes of the NN. Two NN models (RBF and MLP) 
were considered for the derivation of the prediction models as well as the Gaussian 
theoretical model is evaluated for comparison purposes. The main advantage of the 
proposed NN models is that the models should be easily adjusted to specific 
environments and complex propagation conditions. The knowledge of the Power 
Angle Profile from the ANN prediction models of a SISO channel can be used for 
the calculation of the channel matrix of a SIMO channel multiplying the array 
response vector at the receiver. 
The results are depicted in terms of average error, standard deviation and mean 
square error compared with the measurements and showed very good accuracy. The 
MSE between the measurements and the NN-models was found 4.9 dB for the MLP-
NN model and 2.6 dB for the RBG-NN model. The Gaussian model provides greater 
errors because it takes into account a smaller range of azimuth angle. High accuracy 
can be obtained, because the NNs are trained with measurements taking into account 
buildings characteristics and orientation, thus contain realistic propagation effects 
considering parameters which are difficult to include in analytic equations. In more 
specific local cases, the accuracy can be improved by using additional NNs training. 
Results are always connected with some uncertainty but accuracy is sufficient for 
prediction purposes. 
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