

Hardware Natural Language Interface

C. Pavlatos, A. C. Dimopoulos, G. Papakonstantinou
National Technical University of Athens

Department of Electrical and Computer Engineering
Zografou 15773, Athens

Greece

Abstract. In this paper an efficient architecture for natural language
processing is presented, implemented in hardware using FPGAs (Field
Programmable Gate Arrays). The system can receive sentences belonging to a
subset of Natural Languages (NL) from the internet or as SMS (Short Message
Service). The recognition task of the input string uses Earley’s parallel parsing
algorithm and produces intermediate code according to the semantics of the
grammar. The intermediate code can be transmitted to a computer, for further
processing. The high computational cost of the parsing task in conjunction
with a possible large amount of input sentences, to be processed
simultaneously, justify the hardware implementation of the grammar (syntax
and semantics). An extensive illustrative example is given from the area of
question answering, in order to show the feasibility of the proposed system.

1 Introduction

Natural Language (NL) processing is a very attractive method of human-computer
interaction and may be applied to a considerable number of fields such as intelligent
embedded systems, intelligent interfaces, learning systems, etc [2], [3]. It is clear that
automatically extracting linguistic information from a text can be an extremely
powerful method for NL processing systems.
In this paper a hardware natural language interface is presented, using FPGAs (Field
Programmable Gate Array). The system can receive sentences belonging to a subset
of Natural Languages (NL) from the internet or as SMS (Short Message Service). In
Fig. 4 a possible application is shown. Clients of a firm are asking questions which
have to be answered very fast. The recognition task of the input string uses Earley’s
[1] parallel parsing algorithm and produces intermediate code according to the
semantics of the grammar. The intermediate code can be transmitted to a computer,
for further processing. The high computational cost of the parsing task, in
conjunction with a possible large amount of input sentences to be processed
concurrently, can dramatically speed-up the processing, due to the hardware

306 C. Pavlatos, A. C. Dimopoulos, G. Papakonstantinou

implementation of the grammar (syntax and semantics). An extensive illustrative
example is given from the area of question answering [4], in order to show the
feasibility of the proposed system.
In the example given, the well known parallel parsing algorithm of Early [1], [5] has
been used, based on the implementation proposed in [10]. When the syntactic
recognition of the input sentence is completed, using the created parse tree, the
semantics are evaluated and the FPGA sends the intermediate code generated to an
abstract data-management machine that has access to a data-base, in order to produce
the final result (answer). The intermediate code consists of commands and their
parameters. The FPGA may receive the questions either via internet or via SMS
receiver, since both interfaces may be implemented on the FPGA. In the second case
an extra device (SMS receiver) is necessary.
The proposed architecture has been implemented in synthesizable Verilog in the
XILINX ISE 8.2 [6] environment while the generated source has been simulated for
validation, synthesized and tested on a Xilinx SPARTAN 3E FPGA.

2 The Hardware Parser

2.1 Theoretical Background

A Context Free Grammar [7] (CFG) is a quadruple G = (N, T, R, S), where N is the
set of non-terminal symbols, T is the set of terminal symbols, R is the set of grammar
rules (a subset of N x(N ෽ T)* written in the form AൺĮ, where A ෛ N and Į ෛ (N ෽
T)*) and S (S ෛ N) is the start symbol (the root of the grammar). We use capital
letters A, B, C… to denote non terminal symbols, lowercases a, b, c… to denote
terminal symbols and Greek lowercases Į, ȕ, Ȗ... for (N ෽ T)* strings, Ȝ is the null
string and V = N ෽ T is called vocabulary. Aൺa means that a can derive from A after
the application of one or more rules.
Let S ൺ Į, (Įෛȉ*) be a derivation in G. The corresponding derivation (parsing) tree
is an ordered tree with root S, leaves the terminal symbols in Į, and nodes the rules
that are used for the derivation process.
The process of analyzing a string for syntactic correctness is known as parsing. A
parser is an algorithm that decides whether or not a string a1a2a3…an (of length n)
can be generated from a grammar G and simultaneously constructs the derivation (or
parse) tree.
An Attribute Grammar [8] (AG) is based upon a CFG. An AG is a quadruple AG =
{G, A, SR, d} where G is a CFG, A = ෽A(X) where A(X) is a finite set of attributes
associated with each symbol X ෛ V. Each attribute represents a specific context-
sensitive property of the corresponding symbol. The notation X.a is used to indicate
that attribute a is an element of A(X). A(X) is partitioned into two disjoint sets; the
set of synthesized attributes AS(X) and the set of inherited attributes AI(X).
Synthesized attributes X.s are those whose values are defined in terms of attributes at
descendant nodes of node X of the corresponding semantic tree. Inherited attributes
X.i are those whose values are defined in terms of attributes at the parent and

Hardware Natural Language Interface 307

(possibly) the sibling nodes of node X of the corresponding semantic tree. The start
symbol does not have inherited attributes. Each of the productions pෛ R (p: X0 ൺX1
X2 Xn) of the CFG is augmented by a set of semantic rules SR(p) that define
attributes in terms of other attributes of terminals and on terminals appearing in the
same production. The way attributes will be evaluated depends both on their
dependencies to other attributes in the tree and also on the way the tree is traversed.
Finally d is a function that gives for each attribute a its domain d (a).

In the case of the illustrative example given in this paper (based on the one of ref.
[4]) a subset of NL is given in the formalism of AG where the semantics are
described using a synthesized attribute called ‘output’ for each non-terminal symbol.
The only operation for the semantic rules needed, between the attributes of the non-
terminals, is conc (par1, …, parn), which stands for the concatenation of strings par1,
…, parn that are values of the attributes of the non-terminal symbols of the syntax
rule.

2.2 The Parsing Algorithm

Fig. 1. The parallel architecture for the construction of Parsing Table

The parsing task may be reduced to the procedure of filling a two dimension
table (parsing table: pt ()). Chiang & Fu [5] proved that the construction of the
parsing table can be parallelized with respect to the length of the input string n, by
computing at step k the cells pt(i, j) for which j-i=k�1. Only the elements on or
above the diagonal are used. In [9] a parallel architecture (see Fig. 1) has been
presented that uses n+2 elements to compute the parse table in O(n) time where n is
the input string length. In each execution step, each processing element Pj is
computing one cell pt(i,j) of the column j. At the next execution time Pj is used again
to compute the cell that belongs to the same column but is one row higher pt(i-1, j).
In addition one processing element is required to control the whole process and one
more to handle the attribute evaluation process as shown in Fig. 3. The n elements

308 C. Pavlatos, A. C. Dimopoulos, G. Papakonstantinou

that are used for the parallel parsing are following the design presented in [10] (see
Fig. 2).

After the end of each execution step k (tek), the computation of one parsing
processing element terminates. At the next execution step this processing element
should transmit the cells that it has computed, to the next processing (tck). Each
processing element repeatedly calculates a cell, checks if it should transmit some
cells and then if it should receive any.

Fig. 2. The architecture of the Processing Element (PE)

2.3 The proposed modifications for the semantic processing

As it must be clear by now, the proposed implementation follows the architecture
shown in Fig.3. The proposed architecture is based on the abovementioned CFG
parser. The parser handles the recognition task and constructs the parse tree or parse
trees in the case of ambiguous sentences. When the parsing process is over, the
attributes may be evaluated. For that purpose, an extra module (Semantic Evaluator)
has been created, so as to compute the semantics. This module takes as input the
parse tree encoded in bit-vectors and gradually traverses it. In each branch (syntactic
rule) of the tree, the semantic evaluator executes the corresponding semantic rule,
which is nothing more than a concatenation of alpharithmetic strings. The resulting
attribute value of the root symbol is the output string that will be transmitted to the
abstract data-management machine that has access to a data-base in order to produce
the final result (answer). Both parser and Semantic Evaluator are downloaded into
the same FPGA board.

The parser module and semantic evaluator module are initialized by the grammar
specifications. The resulting source code is downloaded into the FPGA. The latter,
takes as input the input string, recognizes it, evaluates the semantics and responds
with an intermediate code. In the example given in the next session the intermediate

Hardware Natural Language Interface 309

code consisting of commands and their parameters, for the abstract data-management
machine. Finally, the abstract data-management machine executes the received
commands and provides the user with the final result.

Fig. 3. The proposed architecture

3 An Illustrative Example

In order to show how we can build a natural language interface, using the system
proposed, we have chosen a question-answering example [4] from the area of airline
flights. In Table 1 an AG is given. The underlying grammar accepts questions
concerning airline flights and the semantic rules produce an intermediate code,
consisting of commands and their parameters, for an abstract data-management
machine that has access to a data-base (Fig. 3), according to the example grammar of
Table 1.

The subset of English accepted by the system uses words belonging to classes
like: class names, object names, property names e.t.c.

The sentences of the subset of English are questions concerning airline flights
and the answer after the processing of the intermediate code by the abstract data-
management machine is YES or NO.

In this grammar, the semantics are described using a synthesized attribute called
“output” for each non-terminal symbol of the underlying grammar. It contains the
generated output string so far. The only operation needed between the attributes of
the non-terminals is conc (par1, … parn), which stands for the concatenation of the
contains of par1, … parn.

An illustrative simple question is:
A FLIGHT DEPARTS FROM ATHENS?

This question can be syntactically analyzed into a noun phrase consisting of a
determiner and a common noun and a verb phrase consisting of a verb, a preposition
and a proper noun. The determiner corresponds to a quantifier, the common noun to
a class name, the verb and the preposition to a relation and the proper noun to an
object. The nouns and the verb will be used as parameters by the commands that will

310 C. Pavlatos, A. C. Dimopoulos, G. Papakonstantinou

be generated. In order to show the exact correspondence between the above question
and its semantic interpretation (described by the grammar), they are written one
underneath the other as follows:

 A FLIGHT DEPARTS FROM ATHENS?
 (01)INT, (x) UNIV, (01)STO, (y) (z) CON.
The capital letters strings INT, UNIV, STO and CON are the name parts of

commands which use as parameters the symbols enclosed in parentheses. Commas
are used in the above illustration to separate a command and its parameters from the
others. At this point it should be noted that the program generated must always be
executed from right to left. For this reason the parameters combined with each call
usually lie at the left of the call and this will be the form used in the explanation that
follows.

The first command to be executed in the above example would be CON (z,y).
The function of the command CON is to retrieve from the data-base the set of all
objects which are related by the binary relation y, which here stands for
“DEPARTS”, to the object (z), which here stands for “ATHENS”, and store it in the
buffer. The second command to be executed is STO(01). The function of this
command is to store the contents of the buffer into a location of the working data
structure. This location is specified by the parameter of this call in this case (01).
This call is generated when the main verb phrase structure is recognized. The next
call is UNIV(x). The function of this command is to store in the buffer all the objects
belonging to the class denoted by the parameter x which here stands for “FLIGHT”.
The next command is INT(01) which forms the intersection of the sets stores it in the
buffer and tests whether it is empty or not. The result of this test determines the
correct answer to the question and it is held in a flag-register.

A second illustrative question and its procedural semantic interpretation are:
FLT-1 FLIES FROM ATHENS TO NEW-YORK?
(01)(x)MEM, (01)STO, (y) (z) (w) COB.
The new commands generated by the above question are COB and MEM. The

function of COB is to retrieve from the data base the set of all objects which are
related by the ternary relation y, which stands for “FLIES”, to the pair of objects z
and w, which stand for “ATHENS” and “NEW YORK” respectively. The function
of MEM(x,01) is to test whether the object x is a member of the set stored in location
01. The result of this test again determines the correct answer to the question.

More complex questions, like “EACH FLIGHT WHICH IS CONNECTED TO
A FLIGHT WHICH BELONGS TO AIRLINE-1 DEPARTS FROM A CITY
WHICH IS LINKED TO EACH CITY WHICH BELONGS TO GREECE”, can be
handled by the proposed grammar. In this question, nested quantified subordinate
clauses are used and new commands will be generated according to the grammar.

It can be seen from the above illustration that semantic interpretation can be
achieved by establishing a mapping between syntactic structures and semantic
components. This mapping can be described formally with the attribute grammar of
Table 1. In this grammar the semantics are described using a synthesized attribute
called ‘output’ for each non-terminal symbol of the underlying grammar. The only
operation needed between the attributes of the non-terminals is conc (par1, …, parn),
which stands for the concatenation of the contains of par1, …, parn . In Table 1 the
‘output ’ attribute is represented by ‘o’ for simplicity.

Hardware Natural Language Interface 311

Table 1. The AG of the example
Non Terminals PR, NP, VP, QS, W, OB, A, E, SET, REL, AT, NRL, N, CNJ
Terminals Object names, Class Names, Relation Phrases, Property Names, Numerical Relations,

Numbers, Relative pronouns, Determiners, Conjunction words or symbols
Syntax Rules Semantic Rules

PR ĺ NP VP PR.o=conc(NP.o, “01ST0”, VP.o)
NP ĺ QS W VP NP.o=conc(QS.o, “SEL”, W.o, VP.o)
NP ĺ QS NP.o = conc(QS.o, “UNIV”)
NP ĺ OB NP.o = conc(“QS” ,OB.o, “01MEM”)
QS ĺ A SET QS.o=(A.o, “01INT”, SET.o)
QS ĺ E SET QS.o= conc(E.o, “01IMP”, SET.o)
VP ĺ VP1 VP2 SP VP.o= conc(VP1.o, VP2.o, SP.o)
VP1 ĺ IP VP1 VP1.o = conc(IP.o,VP1.o)
VP1 ĺ null
VP2 ĺ SP CNJ VP2 VP2.o = conc(“02INT”, SP.o,

CNJ.o,”02ST0”, VP2.o)
VP2 ĺ null
IP ĺ REL QF W IP.o = conc(REL.o, QF.o, "SEL", W.o)
SP ĺ REL SB SP.o = conc(REL.o, SB.o)
SP ĺ AT NRL N SP.o = conc(AT.o, NRL.o, N.o, ”LIM”)
SB ĺ QF SB.o = conc(QF.o,”UNIV”)
SB ĺ OB SB.o = conc(OB.o, “CON”)
SB ĺ OB P OB SB.o = conc(OB.o, P.o, OB.o, “COB”)
QF ĺ A SET QF.o=(A.o, “RAN”, SET.o)
QF ĺ E SET QF.o= conc(E.o, “REA”, SET.o)
 OB ĺ Object names e.g. : Athens OB.o=”Athens”
 SET ĺ Class Names e.g.: Flights SET.o =”Flights”
 REL ĺ Relation Phrases e.g.: Departs from REL.o =”Departs from”
 AT ĺ Property Names e.g.: Has population AT.o =”Has population”
 NRL ĺ Numerical Relations e.g.: Larger than NRL.o =”Larger than”
 N ĺ Numbers
 W ĺ Relative pronouns e.g.: which W.o =”which”
 A ĺ Determiners e.g.: A A.o =”A”
 E ĺ Determiners e.g.: Each E.o =”Each”
 CNJ ĺ Conjunction words or symbols e.g.: And CNJ.o =”And”

5 Conclusion and Future Work

This work is a part of a project for developing a platform (based on AGs) in
order to automatically generate special purpose embedded systems. In this paper, an
efficient architecture for natural language processing is presented, implemented in
hardware using FPGA. The system can receive sentences belonging to a subset of
NL from the internet or as SMS, as it is shown in Fig. 4. The system has been tested
with numerous application examples [10] and the speed-up was an order of
magnitude on the average. The main contribution of this paper is the proposed
model, for implementing in hardware the complete grammar (syntax rules plus
semantic rules), for NL applications. Our future work remains focused in
implementing the proposed architecture using a faster parser, e.g. the one proposed
in ref. [11]. In applications where more complicated semantics are required instead
of a simple module, as in the illustrative example, a processor should also be
incorporated in the FPGA e.g. MicroBlaze [6] soft-core microprocessor, as proposed
in ref. [12].

312 C. Pavlatos, A. C. Dimopoulos, G. Papakonstantinou

Fig. 4. A real-life application example1

Acknowledgements: This work has been funded by the project PENED 2003.This
project is part of the OPERATIONAL PROGRAMME ”COMPETITIVENESS” and
is co-funded by the European Social Fund (75%) and National Resources (25%).

References

1. J. Earley, “An efficient context–free parsing algorithm”, Com.of ACM, 13, pp. 94-102,
1970.

2. Y. Li, H. Yang and H. V. Jagadish, “NaLIX: an interactive natural language interface for
querying XML”, Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pp. 900-902, Baltimore, Maryland

3. A. Yates, O. Etzioni and D. Weld , “A reliable natural language interface to household
appliance”, Proceedings of the 8th international conference on Intelligent user interfaces,
pp. 189 - 196, 2003

4. J. Kontos and G. Papakonstantinou, “Semantic interpretation of English like questions
using procedural components”, NATO ASI on on-line mechanized information retrieval
systems, Lyngby, Denmark, 1972.

5. Y. Chiang, K. Fu “Parallel parsing algorithms and VLSI implementation for syntactic
pattern recognition”, IEEE Trans. Pattern Anal. and Mach. Intell. PAMI-7, 1984

6. Xilinx Official WebSite,www.xilinx.com
7. A. Aho, R. Sethi and J. Ullman, “Compilers – Principles, Techniques and Tools”,

Reading, MA, MADDISON-WESLEY, pp. 293-296. 1986
8. J. Paaki, “Attribute grammar paradigms -a high-level methodology in language

implementation” ACM Computing Surveys, 27(2):196–255, 1995
9. C. Pavlatos, A. Dimopoulos and G. Papakonstantinou, “An Intelligent Embedded System

for Control Applications”, Workshop on Modeling and Control of Complex Systems,
Cyprus, 2005

10. C. Pavlatos, I. Panagopoulos and G. Papakonstantinou, “A programmable Pipelined
Coprocessor for Parsing Applications”, Workshop on Application Specific Processors
CODES, Stockholm, 2004

11. A. Koulouris, T. Andronikos, C. Pavlatos, A. Dimopoulos, I.Panagopoulos, and G.
Papakonstantinou, “Efficient Signal Processing using Syntactic Pattern

Hardware Natural Language Interface 313

RecognitionMethods”, International Conference on SIGNAL AND IMAGE
PROCESSING ,Honolulu, Hawaii, USA, August 14–16, 2006

12. C. Pavlatos, A. Dimopoulos and G. Papakonstantinou, “An embedded system for the
electrocardiogram recognition”, EMBEC'05, Prague, Czech Republic, November 2005

