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Abstract. HealthObs is an integrated (Java-based) environment targeting the 

seamless integration and intelligent processing of distributed and 

heterogeneous clinical and genomic data. Via the appropriate customization of 

standard medical and genomic data-models HealthObs achieves the semantic 

homogenization of remote clinical and gene-expression records, and their 

uniform XML-based representation. The system utilizes data-mining 

techniques (association rules mining) that operate on top of query-specific 

XML documents. Application of HealthObs on a real world breast-cancer 

clinico-genomic study demonstrates the utility and efficiency of the approach.  

1 Introduction 

As the number of electronic clinical records and respective data repositories 

increases, the seamless integration of the respective data repositories coupled with 

knowledge discovery operations offer the potential for the automated discovery of 

valuable clinical knowledge. Furthermore, the completion of the human genome 

drives us to the post-genomics era. In this environment the newly raised scientific 

and technological challenges push for trans-disciplinary team science and 

translational research. As it is noted by J. Grimson: ‘… Patient empowerment fuelled 

by the Internet coupled with post genomics will ultimately lead to a health system 

which focuses more on promoting wellness rather than on treating illness … Such a 

system must be centred on the patient (citizen) and their health status and 

management. The existence of a longitudinal Electronic Health Care Record is 

fundamental to bringing about this paradigm shift in the healthcare system’ [11]. 
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The vision is to compact major diseases, such as cancer, on an individualized 

diagnostic, prognostic and treatment manner. This requires not only an 

understanding of the genetic basis of the disease – acquired, for example, from 

patient’s gene expression profiling studies [4, 13, 21], but also the correlation of this 

data with knowledge normally processed in the clinical setting. Coupling the 

knowledge gained from genomics and from clinical practice is of crucial importance 

and presents a major challenge for on-going and future clinico-genomic trials [15]. 

Such evidential knowledge will enhance health care professionals’ decision-making 

capabilities, in an attempt to meet the raising evidence-based medicine demand. 

Recently, and in the context of three research projects – PrognoChio (http:// 

www.ics.forth.gr/~analyti/PrognoChip/isl_site/index.html, [6]), INFOBIOMED 

(www.infobiomed.net, [10]), and ACGT (http://www.eu-acgt.org, [15]), we have 

designed and implemented an integated clinico-genomics environment [7]. The 

environment is enhanced by a Mediation infrastructure through which linkage and 

integration of patients’ clinical and genomic (e.g., nicroarray gene-expression) data 

is achieved [2]. The clinical information systems being utilized are components of an 

integrated clinical systems’ infrastructure built in the region of Crete, Greece [16]. 

These systems are: (a) Onco-Surgery information system – manages information 

related to patient identification and demographic information, medical history, 

patient risk factors, family history of malignancy, clinical examinations and findings, 

results of laboratory exams (mammography, ultrasound, hematological etc.), pre-

surgical and post-surgical therapies, as well as therapy effectiveness and follow-up; 

and (b) Histo-Pathology information system – manages information related to 

patients samples’ histopathologic evaluation and TNM staging (tumor size, lymph 

node involvement, and metastatic spread). Engaged CISs comply with relevant 

medical information and data models, such as: SNOMED CT® 

(http://www.snomed.org/), ICD (http://www.cdc.gov/nchs/ icd9.htm), and LOINC® 

(http://www.regenstrief.org/loinc/). Data and information exchange between the two 

CIS is based on the HL7 (Health Level 7) messaging standard (http://www.hl7.org). 

The experimental study presented in this paper (section 4) deploys the two CIS to 

store and manage patients’ clinico-histopathology information and data drawn from 

an anonymized public domain clinico-genomic study [13]. In this respect we are not 

confronted with ethical, legal and security issues (even if the whole infrastructure 

provides high-level security services). 

With the help of the Mediator, the biomedical investigator can form clinico-

genomic queries through the web-based graphical user interface of the Mediator and 

translates them into an equivalent set of local sub-queries, which are executed 

directly against the constituent databases (i.e., clinical and genomic/microarray 

information systems). Then, results are combined for presentation to the user and/or 

transmission to further analysis. 

Access to distributed and heterogeneous data sources and collection of respective 

data items are not end in itself. What is desirable is the exploitation of data, hence 

the possibility for exporting useful and comprehensible conclusions. In this context 

we have designed and developed an integrated clinico-genomic knowledge discovery 

scenario enabled by a multi-strategy data-mining approach. The scenario is realized 

by the smooth integration of three data-mining techniques: clustering, association 

rules mining and feature selection [3,14]. In this scenario, clustering is performed on 
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gene-expression datasets in order to induce indicative clusters of genes, called 

Metagenes. Clustering is performed with discr_k-means – a revision of the k-means 

algorithm that primarily identifies clusters of co-regulated binary-valued genes. To 

overcome the error-prone variance of gene-expression levels, gene-expression values 

are discretized (following a data pre-processing discretization step) into two nominal 

values: ‘low’ and ‘high’. Putting it in more molecular biology terms, the ‘low’ and 

‘high’ gene-expression levels correspond to ‘DOWN’- and ‘UP’-regulated status of 

the genes, respectively. The discr_k-means algorithm resembles similar approaches 

presented in [17] and [20]; for a more detailed description of the discr_k-means 

algorithm, please refer to [3,14]. After convergence of discr_k-means, each 

metagene is linked with respective (patient) samples and obeys a special 

characteristic: all of its genes exhibit a ‘strong’ gene-expression profile for all of its 

linked samples, i.e., exhibit solely ‘high’ (or, solely ‘low’) expression levels. Then, 

the quest is forwarded towards the identification of associations between metagenes 

and specific clinico-histopathological profiles. 

In this paper we focus on the presentation and utilization of an association rule 

mining system, called HealthObs [5, 8, 12], to discover interesting and indicative 

association between patients’ clinical and genomic gene-expression profiles, i.e., the 

metagenes. In the next section we present the architectural specifics of HealthObs. 

Section 3 presents the basic HealthObs operations and functionality. In section 4 we 

present results of using HealthObs on a real world breast-cancer study. In the last 

section we conclude and present hints for further research and development.  

 

Fig. 1. Architecture and Components of HealthObs 

2 Architectural and Operational Set-Up of HealthObs 

HealthObs is an integrated system that offers: (i) semantic homogenization of 

respective distributed and heterogeneous clinical and genomic data sources, (ii) 

uniform representation of the respective data-items as realized by standard clinical 
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and microarray data-models, and (iii) intelligent processing of XML-formatted 

documents enabled by the discovery of interesting clinical associations implemented 

by the customization of association rules mining (ARM) techniques [9,18]. 

HealthObs offers a population-oriented view on the distributed patients’ clinico-

genomic information as recorded in respective clinical and genomic/microarray 

information systems. 

Association rules mining [9,18] is among the most advanced and interesting 

methods for finding interesting patterns and indicative trends in data. The definition 

of an ARM problem has as follows: Let I = {i1, i2, …, im} be a set of items. Let D be 

a set of transactions, where each transaction T is a set of items such that T ⊆ I. An 

association rule is an implication of the form X ⇒ Y, where X ⊂ I, Y ⊂  I, and X∩Y= 

∅. The rule X ⇒ Y has confidence c in the transaction set D if c% of transactions in 

D that contain X also contains Y. The rule X ⇒ Y has support s in the transaction set 

D if s% of transactions in D contains X ∪Y. Given a set of transactions D, the ARM 

problem is to discover the associations that have support and confidence values 

higher that the user specified minimum support, and minimum confidence levels, 

respectively.  

An outline of the reference architecture underlying HealthObs is shown in Figure 

1 (above) where, the basic operational modules of the system are also shown. Central 

to the architecture is a single data-enriched XML file which contains information and 

data from distributed and heterogeneous clinical and genomic information systems. 

Accumulation of data and their XML formatting are performed off-line. To this end, 

the Mediator infrastructure [2] is utilized in order to mediate and query federated 

clinical and genomic information sources and recall the relevant query-specific data 

items. For each query, and with the aid of custom made filtering and formatting 

operations, the respective query-specific XML file is created. HealthObs initiates and 

base its operations on such data-enriched XML files. 

3   Basic Operations and Functionality of HealthObs 

Query formulation supports the representation of the inquiry presented to the system. 

For instance, a user may decide to investigate and assess the confidence of 

associations between a focused number of clinical and genomic features. For 

example, between histological/biochemical-tests, such as ‘ER’ (Estrogen Receptor) 

status and prognostic features, such as patients’ ‘METASTASIS’ status, on one 

hand, and genomic features, e,g., ‘UP’/’DOWN’-regulated status of specific genes, 

on the other. In Figure 2, the system’s feature-selection/focusing interface is shown. 

The features to be selected correspond to the instance elements being present in the 

data-enriched XML file to process. 

In Figure 2 note the unique characteristic of HealthObs that relate to the 

specification of the desired form of ‘focused’ association rules to induce: rules to 

induce: (a) if the user only check-tick ( ) a feature, then this feature may or may-

not be present in the rule, i.e., not-obligatory feature, (b) if the user not only checks a 

feature but post an ‘IF’ ( , e.g., ER, MG33g9c19) or a ‘THEN’ ( , e.g., 

METASTASIS) tick on it then, the presence of the feature in the association rules is 

obligatory in the ‘IF’ or, ‘THEN’ part of the rule, respectively. 
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Fig. 2. Feature focusing and query formulation in HealthObs 

3.1 Semantic Homogenization 

Upon presentation of the inquiry and selection of the respective query features, 

HealthObs activates the Common Term Reference Service (CTRS) component. CTRS 

support the placement of the query in context of domain’s semantics, e.g., involved 

medical and genomic nomenclatures and data-models. The SNOMED/CT, ICD and 

LOINC medical ontologies and nomenclatures (see section 1), as well as the ‘Minimum 

Information About Microarray Experiments’ (MIAME, http://www.mged.org/ 

Workgroups/MIAME/miame.html)
 

microarray/gene-expression data-models are utilized. 

CTRS incorporates (user’s) specifications for the semantics of the domain (e.g., valid 

reference-ranges for lab findings, enabled by the transformation of numerical values to 

qualitative equivalents or, assignment of continuous gene-expression values to qualitative 

ones, e.g., into ‘high’/’low’ expression levels).  Activation of the CTRS component 

results to the creation of an intermediate XML domain semantics and query specific 

schema (‘XMLdsq’ tree in Figure 1). XMLdsq is a restriction of the given DTD grammar 

and helps to: (i) focus the inquiry on the user selected features, and (ii) semantically 

homogenize the content of the data-enriched XML file. For the editing of the domain-

semantics file, and its customization to different domains, we have also developed a 

special tool, the ‘Domain Editor’, made operational within the HealthObs environment 

(for detail see [8]).  

3.2 The Prefix-Tree Structure 

The recalled query-specific clinical data are kept in the corresponding data-rich 

XML-documents, and the implemented ARM operations are performed exclusively 

on top of these documents. The implemented ARM operations rely on the principles 
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of the Apriori algorithm [18]. Adaptation of Apriori-like functionality on top of 

XML structures is based on a specially devised XML parser enabled by object-

oriented search operations. Following RDF/XML techniques, the parser reads/scans 

the XML document in order to identify composite/atomic observations and 

homogenize their content (with CCTR service). 

In the core of the ARM process is the identification of all frequent itemsets. 

Usually this is achieved by multiple-scans of the data (in our case, of the XML-

document). Thus information-space search operations should be efficient. To 

enhance on efficiency we rely on a prefix-tree – a special tree-like data structure, that 

passes the data only once, the prefix-tree [1,19]. A prefix-tree structure makes no 

distinction between internal and leaf nodes. In this structure, nodes do not contain 

sets, but only information about sets (e.g. counters). Each edge in the tree is labelled 

with an item, and each node contains the information for the set of items labelling 

the edges of its path to the root. Prefix-trees store both frequent sets and candidate 

sets in the same tree. 

4 HealthObs in Practice 

The utility of HealthObs system was assessed byn applying it on a real-world breast-

cancer study [13]. This study profiles the expression of ~24800 genes on 78 breast-

cancer patients. The aim was to reveal (potentially) interesting and indicative 

individualized (i.e., target-population oriented) clinico-genomic profiles.  

Characterization and classification of a disease, and prediction of respective 

patients’ clinical outcome could be performed with reference either to solely clinico-

histopathological patient profiles (CHPPs or, clinical phenotypes) -the clinical 

classification of the disease or, to solely genomic (i.e., microarray gene-expression) 

patient profiles (GEPPs or, genomic phenotypes) – provided that specific and 

reliable gene-markers are available. If this presents the decision-making track in the 

course of a clinico-genomic research trial, the most challenging task is the knowledge 

discovery track which works in a more-or-less inverse way. That is, starting from 

observable clinico-histopathological disease states the quest targets the identification 

of respective molecular signatures or, gene-markers able to discriminate between the 

different disease states. 

Based on the central-dogma of molecular biology, CHPPs could be fully 

‘shaped’ and causally determinable by respective GEPPs. In this setting, the quest is 

forwarded towards the following target: “which clinico-histopathology phenotypes 

relate and how with which gene-expression phenotypes?” Such a discovery-driven 

scenario falls into the individualized medicine context -GEPPs may be utilised to 

‘screen’ respective CHPPs, to refine the clinical decision-making process, and finally 

identify specific patients groups (i.e., cohorts) as more suitable for specific clinical 

follow-up procedures. The whole endeavour aims to the identification of abductive 

and inductive inferential ‘rules’.  

As we have already mentioned (see section 1) we have designed and developed a 

Mediation infrastructure to recall patients’ clinical and gene-expression data from 

respective clinical and microarray information systems [2]. With the utilization of a 

clustering operation – realized by the customization of k-means clustering technique 
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on categorical data [3,14], we induce indicative clusters of genes, called Metagenes 

that meet a special characteristic: all of its genes exhibit a ‘strong’ gene-expression 

profile for all of its linked samples, i.e., exhibit solely ‘high’/‘UP’-regulated or, 

solely ‘low’/‘DOWN’-regulated expression levels. For example, with 

‘MG39g7c20=DOWN’ we denote a cluster with id=39 (‘MG39’), which includes 7 

genes (‘g7’) and covers 20 cases (‘c20’), and for all 20 cases all the respective 

genes exhibit a DOWN value (i.e., are down-regulated or, exhibit ‘low’ expression 

levels). A total of 22 such metagenes were induced when the following genes’ pre-

filtering was applied: p-value ≤ 0.01 and a 2-fold difference in at least 5 samples 

(similar filtering was applied in the original reference study [13]). 

HealthObs was called to induce associations between the induced metagene-

values and respective clinical feature-values for the available set of 78 patient 

samples. The target clinical feature was set to ‘METASTASIS’ (in the reference 

breast-cancer study metastasis is considered as ‘YES’ (‘good’) or ‘NO’ (‘bad’) if it 

occurred in less than five years or not, respectively. A total of 32 association rules 

were induced (22 concluding to ‘METASTASIS=NO’, and 10 to 

‘METASTASIS=YES’) when the following parameters were applied: min-sup = 

13% (i.e., at least 10 samples), and min-conf = 60%. By visual inspection of the rules 

(offered by HealthObs’s graphical interface), we were able to identify some 

interesting associations with potential clinical decision-making value.  

For example, one of the rules is:  

ER=pos ⇒  METASTASIS=NO 

Confidence=63%, Support: 63% = 49 cases 

Another, related with the above, rule that was induced is:  

ER=pos & MG39g7c20=DOWN ⇒  METASTASIS=NO 

Confidence=100%, Support: 13% = 10 cases 

ER (Estrogen Receptor) factor possesses a distinct prognostic value for breast-

cancer patients. In a ‘positive’ (‘pos’) ER state the prognosis is considered as good 

(i.e., no metastasis). The first rule, above, validates partially this, i.e., it is true in 

63% of the cases. With the inclusion of gene-expression information and knowledge 

the evidence of a good prognosis could be improved. This is what the second rule 

states and suggests: with the knowledge that all genes in metagene MG39g7c20 are 

in ‘DOWN’-regulated state then, the good prognosis is definite (i.e., 100% confident). 

Note that the second rule covers just 10 cases, less than the 49 cases (~ 9%) covered 

by the first rule. This could be considered as an approach to individualization of 

prognosis in the context of a molecular medicine environment. There are other 

association rules induced by HealthObs that cover other cases. For example the rule 

below engages two metagenes, is also 100% confident, and covers another sub-

population of 7 cases:  

ER=pos & MG9g6c22=UP & MG38g4c28=UP ⇒  METASTASIS=NO 

Confidence=100%,  Support: ~9% = 7 cases 

Of course the findings are valid for the specific case-study that refers to a limited 

set of samples. Further evaluation and validation of results depends on the initiation 

of specific and targeted clinico-genomic trials that acquire adequate numbers of 

(statistically stratified) patients’ samples. The running times for the discr-k_means 

and the ARM component of HealthObs were 13 and 3 seconds, respectively; the 
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figures are indicative for the efficiency of the whole approach and of the respective 

clustering and ARM/HealthObs implementations. 

5 Conclusions 

We have presented a methodology for mining distributed and heterogeneous clinical 

and genomic data sources implemented within the context of the HealthObs 

environment. HealthObs represents an integrated platform with inter-operating 

software components that offers: (i) semantic homogenization of heterogeneous data 

resources, (ii) operationalization of ARM operations on-top of XML-formatted 

clinico-genomic data items, and (iii) flexible query-formulation and mining 

operations. Preliminary results on applying HealthObs on a real-world clinico-

genomic (breast-cancer) study demonstrate the utility of the approach.  

Our future research and development plans include: (a) design and development 

of appropriate human computer interfaces, accompanied with user-profiling 

capabilities for the personalized delivery of the results, (b) experimentation with 

other clinico-genomic domains and assessment of the clinical/genomic validity of the 

results, (c) incorporation of other data-mining operations (e.g., rule discovery), and 

(c) implementation of ‘active-query’ capabilities where, discovered clinico-genomic 

associations from pre-selected records are tested for potential differences and 

deviations so that, specific alarms could be broadcasted to the interested clinical 

researcher.  
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