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Abstract. A robust speech activity detection system is presented in
this paper. The proposed approach combines the well-known linear dis-
criminant analysis with a finite state machine in order to successfully
identify speech patterns within a recorded audio signal. The derived
method is compared with existing ones to demonstrate its superiority,
especially when performing on noisy audio signals, obtained with far
field microphones.

1 Introduction

Voice activity detection (VAD) is a fundamental component of several mod-
ern speech processing systems like automatic speech recognition (ASR), voice
commanding and teleconferencing. Providing such systems with accurate in-
formation about the existence of speech within an audio signal can result in
reduction of the computational and energy requirements and improved perfor-
mance of the overlying system.

Most VAD systems monitor a quantity and they compare it to a threshold in
order to decide whether the observed signal is speech or not [1]. This quantity
is usually the energy of the observed signal, which has presented remarkable
performance with close talking (CT) microphones. The threshold can be chosen
either with heuristic methods or adaptively [2], so as to be able to cope with non-
stationary environments. Another approach is to use classification techniques,
like the well-documented linear discriminant analysis [3], in order to distinguish
speech from non-speech patterns. These techniques have noticeable results for
both CT and far field (FF) microphones. The same holds for VAD systems that
rely on the use of Hidden Markov Models (HMM).

The use of finite state machines (FSMs) in VAD was proposed as well [4].
These models pose some lower bounds on the duration of silence and speech
intervals. Hence more accurate separation is performed since segments of very
small duration characterised as speech within a silent interval are neglected and
vice versa. In this paper we propose the use of a five state automaton, as was
presented in [4, 5], which uses the LDA method applied to Mel Frequency Cep-
stral Coefficients (MFCC) as primary criterion for transition between states
contrary to the approaches presented in [4, 5] which use the energy instead.
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Our approach was found to have improved performance. The energy was com-
pletely neglected, since it might vary depending on the relative position of the
microphone and the speaker.

This paper is organised as follows: Section 2 provides the basic background
and summarises the previous VAD methods that employ FSMs. In Section 3 the
proposed system is presented. The results of the performance of the introduced
approach are provided in Section 4 and are compared to those of other methods.
Finally Section 5 concludes the paper.

2 Background

2.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are the dominant features used in
speech applications. They are obtained by taking the inverse Fourier transform
of the log spectrum after it is wrapped according to a nonlinear scale that is
matching by properties of human hearing, the Mel scale. It was shown in our
experiments that the addition of the first and second derivatives of the MFCC
as well as of the energy of each preprocessed frame enhances the performance
of the algorithm.

Fig. 1. Finite State Machine

2.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method that efficiently separates data
into classes [3]. In the case of VAD there are two classes to be discriminated,
speech and non speech. The optimal discriminating line w w w is derived by max-
imising the following criterion function

J (w w w ) =
w w w t S S S B w w w

w w w t S S S W w w w
(1)
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where S S S B is the between-class scatter matrix and S S S W is the within-class scatter
matrix. S S S B is a measure of the separation of the means of the clusters, while S S S W

is a measure of the spread of the clusters. The maximization problem reduces
to a general eigenvalue one, given by

S S S −1

W S S S B w w w = λ w w w (2)

The eigenvector that corresponds to the greatest eigenvalue from the solutions
is chosen as the projecting vector of the test vectors.

2.3 Finite State Model

In [4] the use of a five state automaton was proposed for VAD. Its five states
were silence, speech presumption, speech, plosive or silence and possible speech
continuation. The transitions between states were controlled by comparing the
derived short and long term energy estimates with an energy threshold. From
Fig. 1 and Tab. 1, where the introduced FSM and the associated conditions
and actions are presented, it is observed that a segment is characterised as
speech if its duration is longer than 64m s e c AND its energy is above the em-
ployed threshold. Similarly, a silent interval smaller than 240 m s e c is classified
as plosive, and thus speech.

Table 1. Conditions and Actions of the energy controlled five state automaton for
VAD

Conditions

C1 Energy<Energy Threshold
C2 Speech Duration (SD)>=64ms
C3 Silence Duration (SiD)>=240ms

Actions

A1 SiD = SiD + l
A2 SD = l
A3 SiD = SiD + SD
A4 SD = SD + l
A5 SiD = l
A6 SiD = SD = 0

In order to improve the performance of this system the introduction of
an extra criterion was proposed in [5]. This system characterised as speech
segments that satisfied not only the energy but the LDA criterion as well. It does
not clarify though what happens when the results of the energy and the LDA
criteria do not match. The LDA was trained by using two learning databases
where the speech and non-speech intervals have been manually segmented. The
LDA threshold was derived from these databases as well.
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Fig. 2. Histograms of the energy and the LDA projected values of the speech/non-
speech segments of the training data.

3 Proposed System

Embarking upon the observation that LDA provides more accurate discrimina-
tion between speech and non-speech classes than simply comparing the energy
estimate with a threshold, and adopting the FSM of [4] a robust VAD system
was developed. The choice to use LDA projection instead of energy is justified
from Fig. 2 where is illustrated that the speech and silent segments have similar
energy values but different LDA projections of their MFCC.

The proposed architecture used the five state automaton of Fig. 1, but the
primary criterion that controlled the transition between states was derived by
comparing the linear combination of the MFCC provided by the LDA, with a
threshold. The LDA classifier was trained with manually segmented speech/non-
speech signals. The threshold was obtained from the provided training data as
well. Moreover, median filtering was applied to the results obtained from FSM
in order to remove spiky decision regions and get improved error rates.

The audio signal was processed in frames. For each frame the corresponding
MFCC were computed and subsequently their linear combination, which was
derived by LDA, was compared to the Threshold LDA to decide whether this is
speech or not. Notice that the duration bounds and the time counters (S D , S i D )
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Table 2. Conditions and Actions of the proposed LDA controlled five state automaton
for VAD

Conditions

C1 Linear MFCC Combination<Threshold LDA
C2 Speech Duration (SD)>=5 frames
C3 Silence Duration (SiD)>=16 frames

Actions

A1 SiD = SiD + 1
A2 SD = 1
A3 SiD = SiD + SD
A4 SD = SD + 1
A5 SiD = 1
A6 SiD = SD = 0

are expressed in frames instead of msec. The proposed approach is summarised
in Tab. 2.

4 Experiments

To evaluate its performance the introduced VAD system was compared to

– the approach of [4] that uses the same five state automaton, but the state
transitions are controlled by the comparison of the energy estimates with an
energy threshold

– the stand-alone LDA applied to MFFCs for the discrimination of the speech
from the non-speech class

– the Energy Based Adaptive algorithm presented in [1] which relies on an
estimation of the instantaneous SNR for the distinction of speech and non
speech segments

The VAD systems were evaluated on a database collected by the University
of Karlsruhe (ISL-UKA). The database is comprised of seven seminars. Each
seminar contains four segments of audio data that are approximately five min-
utes long. The audio segments are sampled at a rate of 16.0 kHz. All the data
were obtained from FF microphones resulting in comparable energy values of
speech and non-speech segments (Fig. 2). Segments three and four were used
for the training of the algorithm while one and two for testing. Manual human
transcriptions were provided for the separation of the training segments and
evaluation of the testing recordings.

The following metrics were used for the evaluation of the algorithms:

– Mismatch Rate (MR): the ratio of the incorrect decisions over the total time
of the tested segment.
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Table 3. Comparison of the proposed VAD with exiting approaches

Method LDA Energy MR SDER NDER ADER Wpeps

Threshold Threshold

LDA 4.9 - 10.09% 10.40% 8.62% 9.51% 0.09
Adaptive

Energy - - 18.10% 18.40% 15.60% 17.00% 0.08
Thresholding

FSM+LDA 4.9 - 9.94% 10.19% 8.65% 9.42% 0.08

FSM+Energy - 0.043 17.28% 17.69% 14.63% 16.16% 0.08

– Speech Detection Error Rate (SDER): the ratio of incorrect decisions at
speech segments over the total time of speech segments.

– Non Speech Detection Error Rate (NDER): the ratio of incorrect decisions
at non speech segments over the total time of non speech segments.

– Average Detection Error Rate (ADER): the average of SDER and NDER.
– Working Point Epsilon (WPeps): an indicator of the balance between SDER

and NDER. It is the absolute value of the difference between SDER and
NDER over their sum.

Considering that SDER and NDER should be relatively balanced in order
to draw any conclusions for the value of the algorithms, we required WPeps
to be between 0 and 0.1 for the results to be valid. Under this constraint the
parameter that we seek to optimize is the ADER.

Each frame consisted of 1024 samples. Furthermore the amount of over-
lapping between neighbouring frames was 75%. The LDA method was trained
with manually segmented speech and nonspeech data. The SD threshold was
5 frames and the SiD one 16 frames, which correspond to 128 msec and 304
msec respectively, since the sampling rate was 16.0 kHz. The window size in
the median filtering step was 29 frames long.

The performance of the compared VAD systems is presented in Tab. 3.
From this table it is observed that the proposed method presents improved
performance compared to the other approaches.

5 Conclusions

A robust voice activity detection system has been proposed in this paper, which
combines a finite state machine along with the linear discriminant analysis in
order to perform accurate segmentation of audio signals to speech/non-speech
segments. This approach was found to outperform the stand-alone LDA and
the existing approaches that combine FSMs with the energy criterion for VAD.
Its performance was evaluated with noisy far field microphone recordings.
Acknowledgments: This work is sponsored by the European Union under
the integrated project CHIL, contract number 506909.
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