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Abstract. Image classification is addressed in this paper by utilizing
spatial relation of detected objects in a rule-based fashion. Instances
of particular object classes are detected combining bottom-up (learn-
able models based on simple features) and top-down information(object
models consisting of primitive geometric shapes such as lines). The rule-
based system acts as a model for the spatial configuration of objects,
also providing a human interpretable justification of image classifica-
tion. Experimental results in the athletic domain show that despite
inefficiencies in object detection, spatial relations allow for efficient dis-
crimination between visually similar images classes.
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1 Introduction

Retrieving images based on their content is a challenging issue. Although the
last decade research has being focusing on the query-by-example paradigm [1],
an ambitious goal is to allow the user to formulate semantic queries through
a natural language interface. Beside translating textual information into a se-
mantically valid query, this goal also requires an association of semantic classes
to their visual representations.

An approach to handle semantic queries has been to label images with coarse
classes, such as indoor/outdoor and cities/landscapes, based on global charac-
teristics of images. Such a labelling, though, tends to be inadequate in respect
to realistic user-queries. At the same time, finer grain classification based di-
rectly on global image features, seems unfeasible. In more realistic scenarios,
a user may wish to retrieve an image based on particular objects they appear
in it. This brings up the question of detecting and classifying particular areas
of images to one among a certain number of object classes. What’s more, once
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Fig. 1. Schematic diagram of the detection and classification process

this question is addressed, an overall image classification becomes conceivable,
by resolving it to a particular spatial combination of objects it is made of.

In this study, we apply an object detection followed by image classifica-
tion approach to detect objects and events in the athletics domain. Our object
detection method results in finding image areas corresponding to a (possibly
partially occluded) 2D-representation of an instance of a predefined set of ob-
ject classes. To that end, we combine a top-down strategy, i.e. take into account
modelling of specific object classes, with a bottom-up approach, i.e. determine
region boundaries based on visual cues, as suggested in [2, 3, 4]. As a next
step, we consider the image as a combination of distinct semantic objects corre-
sponding to different area locations [5, 6, 7, 8]. We then verify the object spatial
relations against a set of rules, to characterize the whole image.

In unconstrained images, there is a great variability of object classes in
respect to lighting conditions and camera positions. Hence, most literature has
been concentrating on very specific application domains, such as car plates
recognition, horses, street scene analysis and face detection [9]. In this article,
we present on-going work focused on the athletic domain, where (a) the objects
to be identified are the humans and the athletic instruments and facilities and
(b) the image is classified as a whole in respect to the athletic event it focuses
on. Nevertheless, as it will be shown, our methodology allows to improve image
classification results even when objects are missing or not properly detected.

2 System Overview

Semantics extraction from images has been frequently depicted as bridging the
gap between concepts and their visual representations. Our approach consists
of constructing this bridge with, as an intermediate abutment, the detection
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of particular image areas as instances of semantic classes. The overview of our
method is depicted in Figure 1.

Our assumption is that in most circumstances, even when an image can
be overall described by a single word, its semantics are too complex to be de-
tected directly by visual cues. We refer to those semantics as high-level concepts.
Instead, it may be easier to decompose the image semantics into a set of inter-
related concepts corresponding to distinct visual areas of the image, which may
be much more easily detectable. We will refer to these concepts as mid-level
concepts [10], since they serve as intermediates between visual cues and the
final image classification2. This has the advantage of being able to explicitly
supplement the extraction system with known semantics regarding the relation
between the mid-level concepts and the high-level ones, thus providing useful
a-priories to the extraction procedure.

To illustrate our methodology, consider an example of the athletics domain,
where an image shows an athlete holding a pole and jumping over an horizontal
bar, whereas a pillar is also visible. Clearly, this may be interpreted as a photo
taken from a pole-vault event, as long as the relative position of these objects
does indicate this. Although a direct classification of an image as a pole-vault
event is theoretically possible, detecting each object separately and then asso-
ciate them seems a more robust and scalable solution, if a distinction between
a very visually similar event, such as high jump, is desirable.

Our methodology results in semantic labelling of images as well as of ob-
jects within images, which makes it potentially suitable for image retrieval. An
important issue that arises then is how the results are further used to allow
for query answering. Although early approaches employed ad-hoc methods for
querying specially crafted databases [11], the approach we suggest here is to
populate an ontology, which can be then further queried using a standard rea-
soner (see [12]). This approach has the additional advantage of using further
knowledge, implied by the T-box of the ontology, to answer complex semantic
queries.

3 Object Detection

Our approach to object detection is a conjunction of bottom-up and top-down
techniques to detect specific objects. Namely, following a domain-independent
segmentation to find a first set of segments (bottom-up approach), particular al-
gorithms [13] [14], taking into account information regarding the colour/texture
of objects, are used to detect fragments of objects classes (top-down approach).
Additional information regarding the expected shape of the object classes is also
used either to merge adjacent fragments of the same object class or to directly

2 Notice that although the concepts’ qualifier “mid-level” refers to their role as inter-
mediates in bridging the semantic gap, they can also be characterised as “atomic”
in that they constitute the smallest semantic entities detected directly through
image processing techniques.
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locate them in the image (top-down). In the latter case, a further combination
of the segments found with the general-purpose segmentation is used to opti-
mally adjust the object boundaries. To further distinguish among object classes
in a finer grain, we extract features of the detected objects and feed them to a
learnable classifier, assigning the object class with the highest score.

In the remainder of this section, we describe in details the way detection is
done for three object classes: human bodies, human faces and elongated objects.
The choice of these object has been such that, as it will be shown at section 4,
it will enable a final image classification based on their spatial relations.

Detection of human bodies To detect human bodies, the image I is first
partitioned into segments S = {Si} using the JSEG [15] algorithm, such that

I =
⋃

i

Si (1)

To allow for more accurate object contour detection, over-segmentation is pro-
moted, by choosing high values for the merging threshold of this algorithm.
Subsequently, a small number among these segments is kept, based on whether
these constitute foreground areas of the image. Foreground areas are modelled
as the visually attended areas, computed with the aid of the algorithm described
in [14]. The assumption here is that the human to be detected is always part of
the foreground, since during photo capturing, the focus is on him. In particular,
the set of segments S′ kept as candidates for humans, comprises those having
overlap precision ratio higher than a defined threshold T :

S′ = {Si :
|Mi ∩ MF |

|Mi|
> T } (2)

where Mi denotes the mask of segment Si, MF denotes the mask of area detected
as foreground, ∩ denotes the logical AND operation and | · | denotes the sum
over pixel values. A typical value for the threshold T is 0.5.

To further reduce the elements of S′, we make use of a classifier, which
decodes wether a segment is part of a body, rather than some other object
class. Since the same classifier is used to discriminate among object classes, it
is described separately below. Finally, adjacent partitions of this set are, then,
merged and the human body is considered as the largest (with respect to area
measuring) candidates after merging.

Detection of human faces To detect human faces, we rely on two essential
characteristics of a face: (a) faces are skin areas having significant intensity
variability due to the presence of eyes, eyebrows, mouth and nostrils and (b)
faces tend to have an oval-like shape. In particular, we first detect segments
containing skins, based on the combination of the JSEG segmentation algorithm
with a skin-detection algorithm described in [13]. Again, over-segmentation is
pursuit in order to allow discrimination between the face and neighboring naked
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body parts (neck and arms)3. Having identified a number of potential face
fragments, we proceed by selectively merging their corresponding segments.
Segments are recursively merged under the condition that (a) they are adjacent
and (b) the resulting segment jointly maximizes both the anticipated skin colour
[13] and the circularity index, as compared to the largest of the component ones.
The circularity index is computed as the ratio of the area of a circle having as
radius the variance of the segment along its longest projection, to the actual
area of the segment:

2π(max|v|=1 var{v⊤S})2

|S|
(3)

The resulting candidate human faces segments are then given to the machine
learning algorithm for a final scoring.

Detection of elongated objects Particular attention has been given to the
detection of possibly occluded objects having an important elongated nature,
since these are pertinent in respect to the athletics domain (horizontal bars,
poles, pillars). Elongated objects have line segment characteristics and their
detection involves the combination of the radon transform with hough trans-
form. Namely, the image edges are first extracted, by using information from
the gradient and the entropy of the pixels’ images. Then, the matrix stemming
from the radon transform, evaluated at angles with a small step (e.g. 3◦), is
processed by a hough transform to find optimal angles, where the intensity
of accumulation is important across a wide range of pixels. Subsequently, the
image-mask corresponding to each of the angles found is dilated and combined
with the original image with the AND operator. The detected objects are then
fed to the classifier for a final decision. To allow for discrimination among sev-
eral types of elongated object classes, features such as orientation and length
are also extracted.

Finer Object Classes The above methods for human face, human body and
elongated objects result in image segments that possibly correspond to one
of these object classes. To further enhance the ability to discriminate among
these classes, as well as to discriminate among sub-classes, we make use of
a classifier. This requires generating a feature vector corresponding to each
image segment. The features that have been used are area, colour, area entropy
(texture), circularity index, angle, and position. The generated feature vectors
are then fed to a multiclass 1-vs-all extension of an RBF-SVM classifier. The
class with the maximum score is then used to finally characterize the segment.

4 Ruled-Based Image Classification

In the proposed methodology for image classification, the role of rules is to pro-
vide relations between semantic entities (objects) so as to allow for an overall

3 Notice that this is not always feasible and is actually the main reason for achieving
high area recall but low area precision values (see the evaluation section below).
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image interpretation. The rules are derived automatically based on the manually
annotated objects and refer to spatial relations between them. Justification of
using rules referring to spatial relations was, first, identified during the manual
image annotation process. The question there was: “Which are the discrimi-
natory cues that allow (humans) for identifying the class of an image given a
set of available classes?”. In the athletics domain it turned out that these cues
were: (a) Existence of particular athletic instruments (e.g., pole, hurdles, etc),
(b) posture of athlete’s body, and (c) recognition of an athlete and association
with her/his athletic event of expertise. The existence of particular objects, in
our approach, is verified through the object detection process. As already men-
tioned, however, object detection (even in the context of a particular domain
like athletics) is neither easy nor reliable. Thus, rules of the form “if instrument
X was found then input image belongs to class Y” are error pruned. On the
other hand by using spatial rules between two objects we ensure that neither ob-
ject detection false alarms nor object detection misses would be able to activate
a rule because a spatial relation with another object needs also to be fulfilled.
As far as the athlete’s body posture cue is concerned, by defining human body
and human face as different objects one can define rules describing a variety
of postures. Finally, the third image classification cue implies face recognition
abilities so as to recognize athletes from photos. Despite the lot of work done
in this area, unconstrained face recognition from images is closed to impossible

In order to construct rules concerning the spatial relations between objects
we have defined a set of spatial relations that can be easily identified in the
2D-projection of a physical scene through the use of image analysis techniques.
In the first stage we have used the following spatial predicates: ‘is above’, ‘is
below’,‘is left’, ‘is right’, ‘is adjacent’, ‘is near’, ‘is above left’, ‘is above right’, ‘is
below left’, ‘is below right’. We are currently working towards reliable automatic
extraction of the ‘is behind’ relation.

Rule extraction Rules are automatically extracted by using the manually
annotated content. Spatial relations are then computed based on the object
masks. Although formal rule extraction exist [16], in a preliminary study we
have constructed spatial rules by exhaustive search in our training corpus. In
particular we have tried to identify rules that frequently appear in the content
of a particular image class and are able to separate this image class from the
other classes. A sample of derived rules are shown in Table 1. For instance,
the rule with id=10 can be expressed as ‘a body is below an horizontal bar‘;
this rule holds in the 5% (see frequency field) of training images. The 75% (see
confidence field) of these images belong to the pole vault class.

Image Classification In order to classify images w.r.t a set of available classes
using the above mentioned rules we use a ‘rule-voting’ process. That is, given
the object detection results for a particular image, every activated rule votes for
its class with the rule’s confidence value. The overall score for a particular class
is the sum of votes for this class divided by the total number of activated rules.
Imagine, for example, that the rules with ids 9,10,11 hold based on the image
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rule id relation arg. a arg. b frequency class confidence

...
9 is above right body pole 7 pole vault 1.00
10 is below body horizontal bar 5 pole vault 0.75
11 is left face horizontal bar 14 high jump 0.84
12 is right face horizontal bar 9 high jump 0.91
...

Table 1. Example of spatial rules

analysis results. The ‘voting’ score for the pole vault class is (1+.75)/3 = 0.5833
while the corresponding score for the high Jump class is 0.8421/3 = 0.2807.
Given that the confidence score for each rule is bounded in the [0, 1] interval
it is obvious that the sum of voting scores for all classes is bounded by one.
However, the upper bound is rarely reached in practice. On the other hand,
there are cases (images) in which no rule is activated. In this case the image
class is denoted as ‘unknown’. In this way images, for which the evidence for
their class estimation is poor, remain unlabelled.

We should note, here, that the aim is to transfer the knowledge captured
through the rule extraction process, outlined earlier, into an ontology to allow
for usage of description logics. This will allow rule combination and utilization
of prior knowledge already available in the ontology. A further goal is then
to use the ontology to guide the object extraction process, by also detecting
object’s configurations unlike to appear. To give an example, in the context of
pole vault and high jump images, it is unlike that a body can be above a face
and both of them below an horizontal, unless a pole is also present and touches
the body.

5 Evaluation Results

The performance of the presented algorithms has been evaluated based on a
set of manually annotated images spatial dimensions 480× 600, taken from the
IAAF web site [17]. In total 140 images illustrating pole vault (69) and high
jump (71) events were manually annotated by two different annotators. In order
to evaluate the consistency of the manually marked areas the inter-annotator
agreement (IAG), which equals the ratio of the number of pixels belonging to
both annotated areas to the number of pixels belonging to at least one annotated
area, was used:

IAGi =
|M 1

i
∩ M 2

i
|

|M 1
i
∪ M 2

i
|

(4)

The ground truth area for each object instance was set as the logical OR oper-
ation between the areas marked by the two annotators under the constrained
that the IAG for these annotations is higher than 0.6. In this way a ground
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object class occurrences recall precision MAR MAP MAM

horizontal bar 111 81.1 81.8 79.0 61.8 80.1
pole 61 73.8 81.8 62.3 65.1 85.6
human face 139 62.6 64.9 91.9 48.0 66.7
human body 140 67.2 72.9 93.1 84.7 88.3

Table 2. Evaluation Results for the detection of objects. The first three columns
correspond to the number of occurrences of instances of each object class, the recall and
precision of the object detection method. The following three columns are percentages
in respect to the object correctly identified, conveying information about the area
mathching: mean area Recall (MAR), mean area precision (MAP) and Mean Area
Match between annotations (MAM).

truth set was built comprising of 140 human body instances, 139 human face
instances (one face was fully occluded), 111 horizontal bars instances and 61
pole instances.

Table 2 presents the results of evaluation of the object classes at image level.
We consider that a segment Si detected automatically is correct when there
exist a manually annotated segment Sm

i
classified under the same object class

with high overlap, in the sense of eq.(4). To be fair, we consider the threshold
t as a function of the manually annotated segment size, so as to be more strict
(respectively less strict) for large objects (respectively small objects). To this
end, we used the sigmoid-shape function

t(S) = a(1 +
b

1 + exp(−c|S|/|I | + 1)
) (5)

where |S| and |I | are the areas of the segment and image respectively, and a,
b and c are parameters set to a = 0.1, b = 3 and c = 10. For the segments
classified as correct, the area recall and recision have been evaluated as:

|M ∩ M a|

|M a|
,

|M ∩ M a|

|M|
(6)

where M and M a denote the mask of a detected and its corresponding manu-
ally annotated segment respectively. Their mean values across all instances of
the same class is shown in Table 2. An interesting point one can notice is the
poor results in face detection. This can be assigned to the variability in pose
(in very few images face appears in frontal position) and a frequent partial oc-
clusion from human body and athletic objects. The authors believe that given
the difficulty of face detection in such an unconstrained environment, results
are more than satisfactory. Also notice that detection of horizonal bar is more
accurate than pole’s, though both are detected using the same principle (elon-
gated objects). This is due to the higher variability in shape and orientation
encountered in the visual appearance of poles.

In Table 3, the evaluation results for image classification are presented. To
test the generalisation performance of the rules used, we tested them on a set
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Sport Performance Confusion Matrix
Recall Precision HighJump Pole Vault Unknown

High Jump 86,7% 92.2% 13 2 1
Pole Vault 75.0% 85.7% 1 12 3

Table 3. Evaluation results for image classification – Confusion matrix

object class occurrences recall precision

horizontal bar 24 79.2 79.2
pole 11 63.6 70.0
human face 30 66.7 69.0
human body 32 75.0 82.8

Table 4. Evaluation Results for the detection of objects in the test set.

of 32 pole vault and high jump images not used during the rule induction and
object class learning process. Object detection results for the same set are shown
in Table 4. Notice that the only object class which can be used for discriminating
between pole vault and high jump images is pole, since all other object classes
appear in both sports. However, as can be seen from Table 4, retrieving pole
vault images only upon pole existence would result in poor performance (recall
63.6%, precision 70%). Rule-based classification achieves significantly higher
rates (recall 75.0%, precision 85.7%), thus alleviating false alarms and misses
during pole detection.

6 Conclusion and Future work

In this paper, we proposed a methodology that allows for fine-grain image clas-
sification. At a first step, a number of key-objects with specific semantics are
detected. Subsequently, the spatial configuration of these objects has been taken
into account by a set of rules, to ultimately characterize the entire image. The
evaluation of our approach shows that spatial relations between objects have
provided substantial information for image classification. The redundancy of
cues induced by both detected objects and their spatial relations allows for
tempering object misses and/or misclassifications, thus rendering the overall
methodology robust.

Our future plans to improve upon our methodology involve two main di-
rections. First, we investigating one-class learning models to measure the level
confidence of the objects detection. The level of confidence can then be used as
a weighting factor while applying the rules. A second research direction regards
rules learning, which is currently done though through exhaustive search. We
expect that elaborated machine learning methods for rule extraction that, in
addition, allow for complex rule formation. can further improve the accuracy
and robustness of image classification.
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