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Abstract 
 

In this paper an optical beam splitter based on an equilateral triangle waveguide (ETW) is studied theoretically 
and numerically. We show that an optical beam splitter bases on ETW formed only when the length of the 
waveguide and the location of incident light are appropriate. When the length of the ETW is one third of the self-
imaging length, the incident light is divided into three identical and symmetrical beams; while the length of the 
ETW is one nine of the self-imaging length, the incident light is divided into twenty- seven identical and symmetrical 
beams, if the number is less than twenty-seven, that is because some of images overlap with each other. It is 
expected that the results obtained here will help to design a new splitter. 

 Keywords: Self-imaging; Equilateral triangle waveguide; beam splitter 
 

1. Introduction 
 

The propagation of light along a waveguide is one of the fundamental and important questions of wave optics. In 
recent years the splitter and self-imaging of waveguide have been actively discussed. A theoretical and experimental 
investigation of the self-imaging properties of planar waveguide have been studied[1-3]. Self-images in a rectangular 
waveguide has been reported[4]. Similar studies[5-6] were performed on square fiber, and it  mentioned that round 
fiber do not have the image transmission characteristics above, that is mainly because of the angular ambiguity and 
high symmetry. And optical power splitter(OPS) base on multimode interference waveguide has been studied [7-9]. 
OPS made of photonic crystal waveguide has been studied[10-11]. A few investigators have been discussed the 
equilateral triangle resonators[12-16] and ray optics model for triangular hollow waveguides[17], but few attentions are 
paid to investigate the properties of self-images in an ETW. So study on the behavior of light propagation through 
this waveguide would be of practical interest. In our previous paper[18], we showed that an image transmission 
through an ETW, in this paper, we study on the behavior of Gaussian beam propagation(GBP) through this 
waveguide. An optical beam splitter bases on ETW formed by the new study, the results may have convenience in 
beam splitter application. 
 
2. Theory 
 

As shown in our previous paper [18], consider an ETW with side size a  and length L  (see Fig.1), and the 
cladding is a perfect reflector, the field vanish at the boundaries. The field inside the waveguide can be expressed by 
eigenfunction expansion of Helmholtz equation in the triangular section[19]. 
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Figure 1. Schematic diagram of an equilateral triangle waveguide 
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For integral values of , with the restriction that . For the case of , there are two degenerate 
states with different symmetry properties, which can be written as follows

nm, nm 2> nm 2>
[20] (the correct normalizations are 

included here): 
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In the special case of  there is a single nondegenerate state for each , and the wavefunction is given by nm 2＝ n
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The coefficients are determined by the projection of the initial distribution onto the 

waveguide 
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In this paper, the initial light we consider a GBP 
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Where 0ω is beam waist size of the GBP, The GBP is launched at )63,0 a（ , instead of the center )33,0 a（ , in 
order to avoid any overlap of the images. The coefficients can’t be get analytic solution, which are given by 
oscillatory numerical integral. 

λ29 2
0 aL = is the self-imaging length of the ETW, the detailed derivation as shown in[18], that is, at this 

distance (the self-imaging distance) the initial distribution repeats. 
 

3. Numerical results and analysis 
 

The output field at the back face of the waveguide was numerically calculated according to Eq.(1) with the 
waveguide size ,the wavelength mma 2.0= nm633=λ  and GBP with mμω 100 = . Modes  should be taken on 

values for all the possible guided-wave modes, in other words,  are determined by  

nm,
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But normally, the coefficients decrease rapidly with increasing , the actual number of modes which have to 
taken into account is much less than  

nm,
maxmax , nm [1], in this paper 100, =nm  are used in calculation. 

 
3.1. The field at the face of  0=z

 
Firstly, at the incident face of the waveguide 0=z , that is the incident wave. It is clear that the output field 

consists very well with the input field both in field intensity and position from Fig(2). From these we consider that 
the simulation procedure is correct and feasible. 

                                     
 
Figure 2.The field at the distance 0=z            Figure 3. The field at the distance 0Lz =  

（right is contour plot） 

 
3.2. The output field at the back face of self-imaging length in ETW 
 

From the theory educing we know λ29 2
0 aL =  is the self-imaging length of the ETW, which means at this 

distance the initial distribution repeats. Fig(3) demonstrates the result, the field intensity and position of output field 
consist with the input field. Similar distributions are also observed at the distance 0nLz = ,where  is an integer. n
 
3.3. The output field at the back face of other length  

 
As shown in our previous paper[18], similar the results at the distance 30Lz = are also simulated, obviously the 

initial distribution is splitted into three identical and symmetrical distributions at the back face of the waveguide, 
and the output fields have 3 fold rotational symmetry. Moreover, the total intensity of the three beams consists with 
the intensity of the input field, these are displayed in Fig(4). Fig.5(a) demonstrates the similar results when the input 
field is launched in the other location, for example the location of )43,0( a .However, if the position of the input 

field is located in the center of the waveguide )33,0( a , the only one output beam is still located the center, 
Fig.5(b) shows the result, which is because some of images overlap with each other.  

                                  
Figure 4.The field at the distance 30Lz =                  Figure 5. The incident wave launched at 

the )43,0( a  and )33,0( a  

 
Finally, the field distribution at the distance 90Lz =  are calculated and displayed in Fig(6). The incident light 

is splitted into nine identical and symmetrical distributions when the incident light is launched at )63,0( a  as 

shown in Fig.6(c); while the incident light is launched at )43,0( a , the initial wave is splitted into twenty-seven 
identical and symmetrical distributions, Fig.6(d) shows the result. So the number of the output beams is decided by 
the location of the incident light. We consider the initial wave can split into twenty- seven at this distance, if the 



number is less than twenty-seven, that is because some of images overlap with each other. (Note that: Fig.6(d) takes 
GBP with a waist size of mμω 60 =  to avoid superposition of the field). 

   
Fig 6. The field at the distance 90Lz = : (c)the incident wave launched at the )63,0( a ; 

(d)launched at the )43,0( a  

 
A splitting of the field distributions in waveguide is well known phenomenon, this phenomenon can be used for 

beam splitters. The main difference between the waveguide beam splitter and other beam splitter is that it can 
provide many output beams with the same intensity. Another nice property of the ETW beam splitter or the 
difference between the ETW beam splitter and the other waveguide beam splitter is that the ETW beam splitter can 
provide  beams with the 3 fold rotational symmetry. So the interesting application of the results as 
demonstrated in this work is useful in designing a new beam splitters. 

)2,1,0(3 L=nn

 
4. Conclusion 
 

Summarizing, from above discussed, an optical beam splitter bases on ETW formed when the length of the 
waveguide and the location of identical light are appropriate. When the length of the ETW is one third of the self-
imaging length, the incident light is divided into three identical and symmetrical beams; while the length of the 
ETW is one nine of the self-imaging length, the incident light is divided into twenty- seven identical and 
symmetrical beams, if the number is less than twenty-seven, that is because some of images overlap with each other. 
It is expected that the results obtained here will help to design a new splitter. 
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