ER20WL: Generating OWL Ontology from
ER Diagram

Muhammad Fahad

Mohammad Ali Jinnah University, Islamabad, Pakistan
mhd.fahad@gmail.com

Abstract. Ontology is the fundamental part of Semantic Web. The goal of W3C
is to bring the web into (its full potential) a semantic web with reusing previous
systems and artifacts. Most legacy systems have been documented in structural
analysis and structured design (SASD), especially in simple or Extended ER Dia-
gram (ERD). Such systems need up-gradation to become the part of semantic web.
In this paper, we present ERD to OWL-DL ontology transformation rules at con-
crete level. These rules facilitate an easy and understandable transformation from
ERD to OWL. The set of rules for transformation is tested on a structured analysis
and design example. The framework provides OWL ontology for semantic web
fundamental. This framework helps software engineers in upgrading the structured
analysis and design artifact ERD, to components of semantic web. Moreover our
transformation tool, ER20WL, reduces the cost and time for building OWL on-
tologies with the reuse of existing entity relationship models.

1 Introduction

Ontology is regarded as the formal specification of the knowledge of concepts
and the relationships among them [7]. They require formal syntax and semantics
to represent domain concepts. They have played a key role for describing seman-
tics of data not only the applications of semantic web but also revolutionized the
traditional knowledge engineering [14]. There are many languages proposed to
build ontologies e.g. RDFS, OWL, LOOM, OIL etc. In 2004, W3C has made
OWL as a standard to build ontologies [9], because of its decidability and high
level of expressivity. OWL describes many types of semantics about terms to fa-
cilitate high mechanisms for reasoning; like its hierarchal information, its relation
with others and its own description in the form that are machine-interpretable and
machine-understandable.

However, many legacy systems have been documented using Structured Analy-
sis and Structured Design (SASD) [1]. The most common artifact of SASD is the

ER20WL: Generating OWL Ontology from ER Diagram 29

Entity Relationship (ER) Diagram or Extended ER Diagram. There are many
problems in understanding and upgrading a legacy system. To use old system as a
component of emerging semantic web, these systems need up-gradation. Software
engineers require OWL ontology to aid in the up-gradation of these systems. The
new OWL ontology can act as the basis for design and implementation of the new
system with in the semantic web. Both ERD and OWL represent entities and their
relationships. This provides an intuitive transformation of the ERD to OWL ontol-
ogy. Translating ERD into OWL is indeed seems like a worthy goal of current
model driven architecture, in order to integrate legacy systems into the Semantic
Web. Extended ER has a bigger domain then ER, so from now onward we refer
ERD formed from Extended ER notations. There are so many conventions and no-
tations used for conceptual modeling of ER, here we are using the notations of
Chen [10].

As ontologies have been used by couple of industry applications, our transfor-
mation tool will open up a number of advantages. Especially ontologies played an
important role for heterogeneous database integration [4]. Heterogeneous data-
bases are represented by the ontologies and can combine together efficiently. As
semantic web is emerging, schema integration becomes the main hindrance in
achieving its goal. Here we have developed concrete rules that aid in schema inte-
gration. We demonstrate an example to facilitate usage of these rules. They also
help in mapping between relational database schema and OWL ontologies for
deep annotation. “Deep Annotation means the process of creating ontological in-
stances for the database-based, dynamic contents by reaching out to the ‘deep
Web’ and directly annotating the underlying database of the dynamic Web site”
[3].

Ontology integration is one of the active research areas of present era, as differ-
ent models are used to build up different domain ontologies such as RDBMS,
XML, etc. This framework helps the ontologists to resolve model conflict [7] in
ontology integration. Those ontologies that are build-up on RDBMS model are
transformed into OWL and then different OWL ontologies are combined together
through conventional methods.

Rest of the paper is organized as follows: Section 2 discusses related work. Sec-
tion 3 presents the framework for transforming ERD to OWL. Section 4 concludes
the paper and shows future directions.

2 Related Work

Vasilecas et al. proposed an approach to automatically transform enterprise on-
tology into conceptual model [6]. They used metamodels of ontology and concep-
tual model to facilitate transformations from one domain to another. A prototype
was developed to show the effectiveness and automation of their proposed tech-
nique. They build ontology in Protégé 2000 and Power Designer was used to im-

30 Muhammad Fahad

plement ER model. They transform class of ontology in protégé to entity in ER,
and slot (property) to attribute, directed binary relation to inheritance and ontology
constraints to entity constraints.

Xu et al. proposed mapping rules between relational database schema and
OWL ontology for deep annotation [3]. Ontological annotation is used for dy-
namic web page contents extracted from the database. Their Framework, DPAn-
notator, translate the ER Schema of the relational database into OWL ontology.
They provide a D20OMapper tool, which automatically creates the mappings by
following their rules.

Colomb et al. discussed the issues in mapping metamodels in the ontology de-
velopment metamodel using QVT [2]. They suggest many ways to integrate sev-
eral metamodels in one structure. First approach is to take one metamodel as ba-
sic, and represent others by subclasses. Second approach suggests taking one
metamodel as basic and translating others into it. Third approach suggests repre-
senting the metamodels separate and providing transformation rules from one do-
main to another using QVT. They gave QVT transformations between UML and
DL (Description Logic), ER and DL, and OWL to DL. QVT does not only help in
transformation process but also keeps track of the association between source and
target model elements.

Kupfer et al. proposed an approach that allows the database schema and the on-
tology to change and evolve, without breaking their connection with each other
during maintenance [4]. They gave the automatic mappings from database sche-
mas to database ontologies, with maintaining connection with each other when
one of the artifact changes. They called this process, the Coevolution process that
tracks changes of the database schema into related database ontology.

In Ontology Definition Metamodel, researchers provided ER to OWL map-
pings [5]. They used abstract syntax for representation of mapping specification.
Understanding their mapping specification is much tedious task. A new researcher
needs much effort to transform ERD to OWL ontology, as they did not provide
any explanation, case study or tool support. Furthermore their proposal provides a
starting point, but never provides formal rules that could be used to automate the
transformation. It also needs further elaboration and examples to help aid in trans-
forming ERD to OWL. While transforming conventional ERD to OWL, we find
many inconvenience especially transforming association entity and unary, binary
and ternary relationships between entities, as they did not incorporate association
entity in their metamodel and differentiate between unary, binary and ternary rela-
tionship. Besides these, they did not included ER metamodel and mapping rules in
their latest document and thus did not elaborate them further. Thus we feel a need
to extend their work and propose a framework, which facilitates an easy and thor-
ough transformation.

A more related work of our domain is done by Upadhyaya et al. He presented
the implementation details of their tool, ERONTO, that extracts ontologies from
Extended ERD [8]. His proposal provides a good starting point but lack some fea-
tures, as the tool does not produce complete mappings from ERD to OWL, and

ER20WL: Generating OWL Ontology from ER Diagram 31

user himself has to check the incompleteness and write glue code himself. They
call the generated OWL as a “near-complete ontology” and conclude that users
track the portions that are missing and enhance the generated ontology themselves.
They gave an inappropriate mapping of composite attribute to OWL Class, which
increases the overhead to produce ObjectProperties that relate OWL Class (corre-
sponding to Entity) to another OWL Class (corresponding to composite attribute),
and cardinalities restrictions associated with both the classes. Furthermore they
did not tell how the Restriction code is generated that is equivalent to cardinality
in conjunction with modalities i.e. cardinality of N represents 1..* or 0..* for man-
datory and optional modalities respectively. Ignoring restrictions in the code of
generated OWL Class equivalent to associative entity makes the code inconsistent.
As associative entity does not exist without the existence of corresponding enti-
ties, and the only way to apply this constraint is to produce restrictions in that
class. Moreover they did not handle multivalued attributes, unary relationships
I:N or N:M etc. Another serious incompleteness error [11,12,13] that ERONTO
produces is the functional property omission error for single valued property (at-
tribute). This type of error creates inconsistencies by allowing attribute to accept
many values and create ambiguity.

3. Transformation Framework

SASD uses the Entity Relationship Diagram (ERD) to model data. Both ERD
and OWL represent entities and their relationships and this gives an intuitive
transformation of the ERD to OWL ontology: ERD entities become OWL classes;
ERD attributes become Datatype Properties of corresponding OWL class.

<owl:Class rdf: ID="Person" /= <owl:DatatypeProperty rdf:ID="Skill">
<owl:Class rdf: ID="Employee"= -rdfs range rdf:resource="#string"/>
<rdfs:subClassOf rdf:resource="#Person"/> -rdfs:domain rdf:resource="#Employee"/>
</owl:Class= </owl:DatatypeProperty=
<owl:InverseFunctionalProperty rdf:ID="ID"= <owl:FunctionalProperty rdf: ID="Name">
=rdf type rdfresource=" #FuncticnalProperty"/= rdfs:range rdf resource="#string"/
<rdfs:range rdfiresource=" #int"/> -rdfs:domain rdf:resource="*Emplovee"/>
<rdfs:domain rdfresource="#Employee"/> rdf type rdfresource="#DatatypeProperty"/>
<rdfitype rdfresource="#DatatypeProperty"/= </owl:FunctionalProperty=

</owl:InverseFunctionalProperty=

Fig. 1. ER Entity to OWL Class mapping.

32 Muhammad Fahad

Bidirectional Relationships become two Object Properties. Cardinalities on the
ERD can be used in conjunction with modalities to produce restrictions for the
OWL class.

3.1 ERD to OWL Mapping Rules

The set of rules to transform an ERD into OWL ontology are outlined below:

Entity. Map each Entity in the ERD into OWL class in the OWL Ontology. In
Fig. 1, Person and Employee are entities that are mapped to OWL classes.

Attribute. There are many types of attributes that belong to entity i.e. simple
attributes, composite attributes and multi-valued attributes. These require separate
ways to map into OWL datatype properties. While transforming attributes to prop-
erties, it should be taken care of making local unique names. Incase of two unique
names associated with entities, our system appends the entity name with start of
attribute like (Entity. Attribute). Moreover, Range mapping of values has to take
care of mapping the datatypes of the ER domain to XSD datatypes.

Simple Attribute. Map Simple Attribute of entity into datatype property of
corresponding OWL class. Domain of the datatype property is the Entity, and
range is the actual datatype (int, string, etc) of that attribute. Range mapping of
values has to take care of mapping the datatypes of the ER domain to XSD
datatypes. One important point should be considered here is that as this attribute
takes only one value so a special tag “functional” should be tagged with this
datatype property, otherwise OWL DL allows datatype property to take many val-
ues by default. In Fig. 1, Name of Employee is a simple attribute.

Composite Attribute. There are two ways to map Composite Attribute to
OWL datatype property. One is to map only their simple component attributes
(city, street, country, etc) of composite attribute (Address) to datatype properties

<owl:FunctionalProperty rdf: ID="City"> <owl:DatatypeProperty rdf:ID="Address">
<rdfs:range rdf:resource="#string"/> <rdfs:domain rdf:resource="#Employee" /=
<rdf:type rdf resource="#DatatypeProperty"/= <rdfs:range rdfresource="#string" />
<rdfs:domain rdf:resource="#Employee"/= =/owl:DatatypeProperty=
</owl:FunctionalProperty= <owl:DatatypeProperty rdf:ID="street">
<owl:FunctionalProperty rdf:ID="5Street"> =rdf:type rdfiresource="#FunctionalProperty"/=
<rdfs:domain rdf:resource="#Employee"/= <rdfs:subPropertyOf rdfiresource="#Address"/>
<rdf:type rdf resource=" #DatatypeProperty" /= </owl:DatatypeProperty=
<rdfs:range rdf:resource=" #string"/> <owl:DatatypeProperty rdf:ID="city">
</owl:FunctionalProperty= =rdf:type rdfrresource="#FunctionalProperty"/=

<rdfs:subPropertyOf rdf:resource="#Address"/>

=/owl:DatatypeProperty=

Fig. 2. Composite Attribute to Datatype Property Mapping

of corresponding OWL class, and ignore composite attribute (Address) itself. Sec-
ond is to map composite attribute to datatype property and then map its simple,
component attributes to subproperty of corresponding datatype property. The first

ER20WL: Generating OWL Ontology from ER Diagram 33

one is more preferred while working with transformation of relational databases
because in Relational Schema, we do have only the instances of simple, compo-
nent attributes and composite attributes are ignored. By using this rule one has not
preserved the conceptual modeling of composite attribute and when performing
reverse engineering from ontology to ER, we lost composite attributes. If someone
wants to preserve such knowledge then second one is used effectively by analyz-
ing datatype property to composite attribute and subproperty-of to its component
attribute. All the datatype properties produce should be tagged as “functional” as
they all get only one value. Fig. 2 shows both the method of transforming Com-
posite Attribute to OWL ontology.

Multi-valued Attribute. Multi-valued Attribute is mapped to datatype property
like simple attribute, but without a “functional” tag. For an example, Skill of an
employee may have many values, so OWL DL property by default takes many
values.

Primary Key. An attribute which stands as a primary key, is transformed into
datatype property and is tagged with both “functional” and “inverse-functional”.
Functional tag restricts object to take only one value for a given subject, and in-
verse-functional restricts the subject to associate with only one object [9].

Subtype Relations (IS-A). Convert subtype relations in the ERD to subClas-
sOf in the OWL ontology. In OWL ontology, OWL.subClassOf represents the
generalization hierarchy.

I IDepartrment |

e

I Fmploywes

1
<owl:ObjectProperty rdf:ID="work"> <owl:Class rdf:ID="Employee"=
<rdfs:domain rdf:resource="#Employee"/= <owl:Restriction><owl:someValuesFrom=
<rdfs:range rdfiresource="#Department”/> <owl:Class rdf:about="#Emplovee "/=
=/owl:ObjectProperty™ =/owl:someValuesFrom™

<owl:onProperty=
=owl:ObjectProperty rdf:ID="has_work"> <owl-ObjectProperty rdf resourse="#manage"/>
~owlinverseOf rdfiresource="#work"/> =/owl:onProperty=</owl:Restriction>

</owl:ObjectProperty= < fowl-Class=

<owl:0ObjectProperty rdf: ID="manage">
<rdfs:domain rdfresource="#Cmployee"/>
<rdfs:range rdfiresource="#Emplovyee" />

=/owl:ObjectProperty=

Fig. 3. Bi-Directional Relationship to Object Property Mapping

Bi-Directional Relationship. Every relationship between entities is mapped
onto object property between classes. But in ERD it is bi-directional and object

34 Muhammad Fahad

property in OWL is uni-directional, so two object properties should be generated
between those entities having bi-directioanl relationship. One corresponding to the
relationship as represented in the ERD, and second as an inverse property of the
original object property. For example if a relationship Work exists between Em-
ployee and Department as shown in Fig. 3, then in OWL two object properties are
generated with names Work(domain:Employee and range:Department) and other
Has Work (by default it takes the opposite domain and range values of Work
property) as the inverse property of Work. Note that the name of second property
is generated by preceding the word ‘has’ of the actual property and later on can be
changed to give meaningful name to it.

Unary (recursive) 1:N Relationship. Unary recursive relation between a per-
son Employee and other worker Employees can exists when one Employee han-
dles/assists many Employees. In Fig. 3, Employee entity with Manages relation-
ship is transformed into Employee OWL class and Manages as an Object property
with same domain and range as employee.

Unary M:N Relationship. When unary relationship exists between M object to
N objects then that it is transformed into two OWL classes. For example Many
Items contain many item-components as shown in Fig. 4. In this case, we trans-
form Item entity to Item OWL class and build another OWL Contains class that

has some values from item class.
N .
quantity

T .-’;.-

- ___A__/,;mm: - Ordar _{,« “qua:;‘x‘_ Froduet

{ quantity | o~ -, __,-"'(_

Y)~ N

<owl:Class rdf ID="Contains"= <owl:Class rdf: ID="Requests"=
<owl:Restriction=<owl:someValuesFrom=

<owl:Class rdf ID="Ttem" /= =owl:DatatypeProperty rdf.ID="quantity">
</owl:someValuesFrom=><owl:onProperty> <rdf:type rdf-resource="#FunctionalProperty"/=
=owl:ObjectProperty rdfiresourse="#has"/> <rdfs:subPropertyOf rdfresource="#Request"/>
</owl:onProperty=</owl:Restriction= </owl:DatatypeProperty=

</owl:Class>
<owl:ObjectProperty rdf:ID="has">
=rdfs:domain rdfiresource="#Contains"/>
<rdfs:range rdf-resource="#Item" />

</owl:ObjectProperty=

Fig. 4. Associative Entity and Unary Recursive Mappings

ER20WL: Generating OWL Ontology from ER Diagram 35

Associative Entity or Relationship having attribute. Associative Entity or
Relationship having attribute is also mapped onto OWL class as shown in Fig. 4.
Attribute of Relationship or Associative Entity is mapped into datatype property
of corresponding OWL class.

1 to Many Relationship (mandatory). Cardinalities and Modalities are trans-
formed into OWL restrictions within corresponding OWL classes. 1 to many rela-
tionship is transformed into restrictions as shown in Fig. 5.

1 to Many Relationship (optional). In case of optional, we do not put restric-
tions in the corresponding class.

Many to Many Relationship. This type of relationship in ERD is transformed
into restrictions in OWL classes, and corresponding cardinalities and modalities
are split up into two indicating Many to 1 and 1 to Many relationships, their im-
plementation rules are applied accordingly to generate OWL code.

Professor s . Studert
1
<owl:Class rdf:ID="Student"> <owl:Class rdf:about="#Professor"=
<rdfs:subClassOf=<owl:Restriction= <rdfs:subClassOf=
<owl:valuesFrom><owl:Class rdf:ID="Professor"/> <owl:Restriction=
</owl:valuesFrom=<owl:onProperty= <owl:someValuesFrom rdfiresource="#5tudent" />
<owl:ObjectProperty rdf:ID="1sTaughtBy"/= <owl:onProperty=
</owl:onProperty=><owl:cardinality <owl:ObjectProperty rdf:about="#teaches"

rdf:datatype="#int"> 1</owl:cardinality=

/rdfs:subClassOf=

</owl:onProperty>

</owl:-Restriction== =/owlRestriction=

<fowl-Class> </rdfs:subClassOf:>

</owl:Class=

<owl:ObjectProperty rdf:about="#isTaughtBy"> <owl:ObjectProperty rdf:about="#teaches"=

S . _ng ") » N
<owlnverseOf rdfiresource="#teaches": ~rdfs-domain rdf-resource="4Professor’ /=

</owl:ObjectProperty> <rdfs:range rdfresource="#Student"/>

=/owl:ObjectProperty=

Fig. 5. 1 to Many Relationship Mappings

3.2 Comparison with ERONTO

We have implemented the above defined rules into a prototype, ER20WL. It
facilitates a quick transformation, and reduces the cost and time for building OWL
ontologies with the reuse of existing entity relationship models. As comparison

36 Muhammad Fahad

with ERONTO, the generated ontology is more complete and does not have in-
completeness errors.

The limitations of ERONTO are addressed by ER2Z0WL and produce ontolo-
gies that serve best when spread out to be used in real world applications. Unlike
ERONTO, the system attach the “functional” tag with datatype properties with
single valued property, moreover does not create overheads by transforming com-
posite attributes to owl classes and let the application safe from incompleteness
and consistency errors [11,12,13]. (Details about these errors are found in individ-
ual paper and are out of scope of this paper). Our system asks the user to suggest
the direction of relationship between entities, so that valid domain and range of
object properties should be generated against each object property.

4 Conclusions and Future Work

This paper presents a framework for transforming the structured analysis and
design artifact, ERD, into the OWL ontology. We have provided rules to trans-
form ERD concepts into equivalent OWL ontology for semantic web. The set of
mapping rules has been demonstrated with the diagrams to promote understand-
ing. The framework provides OWL ontology for semantic web component from
old legacy systems and enable them to upgrade and become a part of emerging
semantic web. This proposed framework helps software engineers in upgrading
the structured analysis and design artifact ERD, to components of semantic web.
Our ongoing research on this topic is to handle other cases of relationships that are
not binary, which require reification.

Reference

[1] T. P. Fries. A Framework for Transforming Structured Analysis and Design Artifacts to
UML. SIGDOC’06, Myrtle Beach, South Carolina, USA, October 18-20, 2006,

[2] R. M. Colomb, A. Gerber, M. Lawley. Issues in Mapping Metamodels in the Ontology De-
velopment Metamodel Using QVT.

[3] Z. Xu, S.Zhang, Y. Dong. Mapping between Relational Database Schema and OWL ontol-
ogy for Deep Annotation. Proceedings of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI'06), 2006 IEEE

[4] A. Kupfer, S. Eckstein, K. Neumann and B. Mathiak. A Coevolution Approach for Database
Schemas and related Ontologies. Proceedings of the 19th IEEE Symposium on Computer-
Based Medical Systems (CBMS'06), 2006 IEEE

[5] Ontology Definition Metamodel, second Revised Submission to OMG/RDF ad/2006-04-13

[6] O. Vasilecas, D. Bugaite, J. Trinkunas. On Approach for Enterprise Ontology Transformation
into Conceptual Model. International Conference on Computer Systems and Technologies,
CompSysTech’06

[7] D. Dou, P. LePendu. Ontology based Integration for Relational Databases. SAC 06, April
2327, 2006, Dijon, France.

ER20WL: Generating OWL Ontology from ER Diagram 37

[8] S. R. Upadhyaya and P. S. Kumar. ERONTO: A Tool for Extracting Ontologies from Ex-
tended E/R Diagrams, ACM Symposium on Applied Computing 2005.

[9] OWL Web Ontology Language Guide, W3C Recommendation 10 February 2004.
http://www.w3.0org/TR/2004/REC-owl-guide-20040210/

[10] P. Chen. The Entity Relationship model towards a unified view of data, ACM Transactions
Database Systems., I,1(March 1976),9-36.

[11]. M.A. Qadir, M. Fahad, S.A. Hussain-Shah, Incompleteness Errors in Ontologies. InProc. of
International Conference on Granular Computing, Silicon Valley, USA, IEEE Computer So-
ciety. pp 279-282

[12]. W. Noshairwan, M.A. Qadir, M. Fahad. Sufficient Knowledge Omission error and Redun-
dant Disjoint Relation in Ontology. InProc. 5th Atlantic Web Intelligence Conference, Fon-
tainebleau, France (June 25-27, 2007)

[13]. M. Fahad, M.A. Qadir, W. Noshairwan. Semantic Inconsistency Errors in Ontologies. In
Proc. of InternaQtional Conference on Granular Computing, Silicon Valley, USA, IEEE
Computer Society. pp 283-286

[14]. G. Antoniou, and F.V. Harmelen, A Semantic Web Primer. MIT Press Cambridge, ISBN
0-262-01210-3, 2004.

