
An SMS-based System Architecture
(Logical Model) to Support Management
of Information Exchange in Emergency
Stuations. poLINT-112-SMS PROJECT

Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna
Walkowska

Adam Mickiewicz University, Department of Computer Linguistic and Artificial Intelligence,
ul. Umultowska 87, 61-714 PoznaĔ, Poland, {vetulani, jacekmar, pawelk, ynka}@amu.edu.pl

Abstract: In the paper we present the architecture of the POLINT-112-SMS sys-
tem to support information management in emergency situations. The system in-
terprets the text input in form of SMS messages, understands and interprets infor-
mation provided by the human user. It is supposed to assist a human in taking
decisions. The main modules of the system presented here are the following: the
SMS gate, the NLP Module (processing Polish), the Situation Analysis Module
(SAM) and the Dialogue Maintenance Module (DMM).

Keywords: artificial intelligence, computer understanding systems, human-
computer interaction, crisis management tools, incoming information processing,
text understanding, information integration, contradiction solving, decision mak-
ing

1. Introduction

In this paper we present the architecture of the POLINT-112-SMS system: a
computer system supporting the gathering, processing and interpretation of infor-
mation on events and situations reported by different informers in the text message
form (in future version also in the spoken form). The following assumptions are
made:

– the information may be sent by different informers, who do not cooperate
with each other,

– the information concerns a specific situation or event,
– the information is sent by means of an SMS message in natural language

(Polish) or in controlled natural language (a subset of Polish); the system

An SMS-based System Architecture 241

has passive language competence, i.e. it can understand and process infor-
mation,

– the information inputted into the system may be untrustworthy, incomplete
or imprecise; also, contradictory statements may occur,

– the system is supposed to process the information to the extent allowing it
to display (visualize) the state of the situation to the user and to answer
user questions,

– the information is sent to the system and (possibly) also to a human opera-
tor.

– The communication mode has been limited to text due to the following
reasons:

– there is no speech-to-text technology (even for English language) ad-
vanced enough to make it possible for the system to understand speech in
extremely noisy conditions or when speaker's pronunciation is sloppy, dis-
torted or highly regional,

– the system is to be used in the specific environment where noise or secu-
rity reasons make the usage of text mode the most appropriate; e.g. in
football stadiums during important events where the use of speech is not
advisable because of both technical (noise) and logistic (safety of the in-
former) reasons.

A typical example of the system's application under the above assumptions is
supporting the process of crisis situation management (a situation that poses dan-
ger to public safety), where decisions have to be made based on a large amount of
information coming from different sources. In particular, this applies to mass
events (sports games, big artistic events) and natural disasters. The common fea-
ture for this kind of situations is their variability and dynamics. This is why they
need to be monitored by several observers who will report from various locations
in different moments. As a typical case we selected high-stake football games
(such as UEFA European Football Championship).

Compared to traditional methods of event reporting (telephone communication
between the informer and the emergency center), a significant quality improve-
ment is expected thanks to the computer-assisted integration of information com-
ing from distributed informers, the on-line verification of the coherence of data,
and the high credibility of the information sources. This goal can be achieved by
using POLINT-112-SMS software to understand text and to process messages.

The practical goal of the work described in this article is to create a tool assist-
ing a human in crisis management. By crisis management we mean undertaking
preventive or repair actions by a human or a team, from now on referred to as Cri-
sis Management Centre (CMC). We assume that CMC uses data acquired from in-
formers, who can be ether professionally-trained experts or outside persons, who
input information in a mode similar to 112 emergency telephone service, but using
SMS messages instead of voice as the communication medium.

242 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

In traditional crisis management models, information is received and inter-
preted by professionally trained human operators. The fundamental problem here
is the problem of communication bottlenecks when large amount of information
tries to reach the CMC at the same time. When this problem is addressed by in-
volving more operators, information may be lost, may remain unconnected (when
two operators describe different aspects of the same situation) or even contradic-
tory. The automation (or partial automation) of information gathering and process-
ing may help solve this problem. Within this project we assume that the informa-
tion is sent directly to the computer system that processes it for CMC use.

System's main functions are:
a) to collect information sent by the informer (SMS message),
b) to process (understand) the information to construct a coherent model of the

situation/event in real-time,
c) to integrate data from different sources,
d) to perform some of the operator's duties when all the operators are busy.
Figure 1 presents a possible application context of the POLINT-112-SMS. The

prototype being developed now will be tested in context of public order protection
during a football match attended by a large number of fans.

Figure 1. Application context of the POLINT-112-SMS system

An SMS-based System Architecture 243

2. LOGICAL MODEL

The logical model of the POLINT-112-SMS system, constituting the basis for
the implementation in progress, has been developed with participation of experts
with practical experience in the field of sport events security. As empirical back-
ground we considered a corpus of SMS messages collected in experimental set-
ting. The messages were gathered in controlled conditions (experiments with par-
ticipation of PPBW (Polish Platform for Homeland Security) to construct a
linguistic model of SMS communication in Polish language in some precisely de-
fined types of situations (cf. also (Fairon & Paumier 2006) and (Walkowska
2008)).

2.1. Assumptions about the logical model

The complexity of the processes that the system is expected to support has led
to distinguishing 3 Entity Sets, that will be used to store data and reason about the
events. These are Reports, Events and Situations.

Report – an entity designed to store data gathered during interaction with one
specific informer. It is kept in the system for a determined period of time and
moved to an archive when it expires. A Report is always assigned to at least one
Event. If a Report cannot be assigned to any Event already existing in the system,
then a new Event is created. After the Report is created, the system must decide
about what Event(s) (a fight, a fire) it should be tied to. The type of the Event de-
termines the mode of possible system-user dialogue to feed the system with re-
quired information. The system formulates questions to obtain as much informa-
tion on Events tied to the Report as possible. E.g. or a Fight Event this may
include questions about location, number of participants, danger for external peo-
ple, etc.

Event – an entity representing a real-life situation (accident, crime, fight) re-
ported by at least one informer. One Event has at least one Report assigned to it,
which stores pieces of information. One Event organizes data from possibly vari-
ous Reports. Each Event may contain:

– the most up-to-date (according to the system) information about the event,
– reliability assessment for each partial piece of information,
– information about contradictory elements of Reports,
– information about false data discovered in Reports.

The system tries to gain the maximal amount of information on the Event. It
will query the informer when the introduced information is untrustworthy, contra-
dictory or false. If the course of the dialogue (especially in the initial phase) does
not make it possible to assess whether the inputted data concerns an Event already

244 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

present in the system, an auxiliary unification question (e.g. about the location of
the Event) may be asked.
Situation – an entity representing an important situation concerning many peo-

ple (e.g. public order disturbance, riots, accidents with a significant number of vic-
tims). Such a situation is identified and the corresponding Situation entity is gen-
erated by the system automatically (using Situation Templates). This may also be
done by the Analyst who has access to the events controlled by the system. At
least one Event is assigned to each Situation. The Situation contains:

– information about Events tied to the Situation,
– information about the completeness of data in the Situation,
– information about how important the Events in the Situation are.

While accepting a Report concerning an Event that is tied to the given Situa-
tion, the system may generate further questions to the informer about different
Events in connection to this Situation in order to complete its understanding.

2.2. Components

The system’s architecture is presented in Figure 2. The components’ tasks are
as follows:

SMS Gate is a module allowing SMS communication with the informer by
means of SMS messages. It is formed of two submodules, one of which is respon-
sible for sending messages, the other one for receiving them. The SMS Gate
communicates directly with the NLP Module.

The NLP Module is the main module responsible for processing text input to
the System. In the final version of the system, the module will be responsible for
question generation, but at this point the question generation functions are per-
formed by DMM. The NLP Module communicates directly with the SMS Gate
and with DMM.

Dialogue Maintenance Module (DMM) is responsible for dialogue with the in-
former. It takes into account the data controlled by the Situation Analysis Module.
Thanks to the DMM, the NLP Module focuses on transforming single sentences
into data structures without storing and processing these structures. DMM com-
municates directly with the NLP and SAM modules.

Situation Analysis Module (SAM) is responsible for reasoning. It acts as the
„brain” of the system. It controls a number of subordinate modules, presented in
points 5-12 (at this point some of them are integrated with SAM). SAM reasons
about the structures without directly communicating with the informers. SAM
communicates directly with DMM.

Knowledge About the World Module stores general knowledge and is used as
the system's knowledge base. It may contain knowledge such as firemen reaction
procedures, city maps in the GIS format and other information.

An SMS-based System Architecture 245

PolNet Module. PolNet is a WordNet-type ontology. Apart from the basic rela-
tions of hyponymy / hiperonymy it also contains relations that facilitate reasoning.

Reports Module stores information obtained from users in the form of Reports.
Events Module stores information about Events. Each Event is tied to at least

one Report. The information stored in this module can be directly accessed by the
Analyst

Event Recognition Module is responsible for creating new Events in the Events
Module.

Situations Module stores information about Situations. Each Situation is tied to
at least one Event. The information stored in this module can be directly accessed
by the Analyst.

Situation Recognition Module is responsible for creating new Situations in the
Situations Module..

Reaction Module's task is to inform the Dispatcher at the Crisis Management
Centre that an action should be taken (e.g. sending an ambulance).

Figure 2. The logical model for the Polint-112-SMS system

246 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

3. Components implementation

3.1. System input – the SMS Gate

The SMS Gate is used for sending and receiving SMS messages. Currently it
consists of a physical device (SMS terminal) and an application enabling commu-
nication with the device. The component's main tasks are: informer identification
(by their phone No.), merging multipartite messages (i.e. messages too long to fit
in 160 characters) into one message, detection and standardization of the encod-
ing, and detection of the beginning and the end of a single dialogue session with
the user. The informer's interaction with the system comes down to exchanging
SMS messages (new information, questions, answers) .

Technical information about the dialogue is kept in a dedicated structure called
session. It stores information about the informer's phone number, the beginning of
the dialogue, the time of the last message exchanged between the parties, message
character encoding and the state of the session. The session becomes inactive after
a preset time boundary has been reached. The time limit has been proposed on ac-
count of some specific features of SMS communication: determining the end of a
dialogue session is not as straightforward as it is in the case of a telephone conver-
sation. The system needs a way of determining whether it is worth to wait for an
informer's answer, or whether it should process the information it has already
gathered.

Determining the boundaries of dialogue sessions is crucial for solving ana-
phoric references. One solution would be to introduce special types of messages,
in which the informers would determine the start and end of a dialogue session
(but this solution would impose unnecessary constraints to the use of natural lan-
guage and therefore would be in contradiction with the principle of unconstrained
NL access). The session structure is also used by consecutive modules in the sys-
tem, especially by the Dialogue Maintenance Module.

The prototype implementation of the SMS Gate is a Java application that com-
municates with PROLOG modules by SWI-PROLOG's API. This application is
capable of accepting messages sent to the SMS terminal and carrying their content
to further modules and of sending the module's output to the user. An additional
window can be opened to monitor the informer's communication with the system.

Within the prototype implementation of the system it is also possible to input
messages from the keyboard. This type of the communication may be considered
as a regular communications mode and it can be used in the target version for fa-
cilitating interaction with the system by the operator (e.g. with the role of system
analyst).

In Figure 3 below we show a screenshot of a sample session.

An SMS-based System Architecture 247

Figure 3. A sample dialogue session in the SMS Gate’s window

3.2. The NLP Module

The NLP Module is based on the POLINT system, initially developed as a text
understanding system which answers the user questions (both questions and an-
swers in Polish). Several prototypes of the POLINT system were implemented
during 1990ies and in the past couple of years initially in Arity-PROLOG. Using
these prototypes the user may ask questions about facts collected in a PROLOG
data base. The methodological and linguistic foundations of POLINT have been
published in (Vetulani 1989) (see also (Vetulani & Marciniak 2000) and (Vetulani
2004)).

For the needs of this project, POLINT was re-implemented in the SWI-
PROLOG and adapted to new tasks, in particular gathering information from the
user.

POLINT (Vetulani 1997) was a language understanding system including sev-
eral modules:

– dictionary (lexicon-grammar),
– preanalysis module for parsing heuristics,
– interpretable grammar rule set (PROLOG clauses),
– semantic module,
– knowledge base (in form of PROLOG facts and clauses).

POLINT is a real time system due to appropriate use of heuristics which sub-
stantially reduce non-determinism of the top-down parsing mechanism (inherited
from PROLOG). Heuristics take into account words in the input string, extract
from the system dictionary the syntactic information contained in the lexical en-
tries and calculate heuristics. These operations are executed in linear time. Heuris-

248 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

tics permit to generate syntactic hypothesis about the input sentences and therefore
substantially reduce the search (otherwise non-deterministic) (eg. (Vetulani 1997,
2004)).

The role of the NLP Module with respect to other elements of the POLINT-
112-SMS consists in partial understanding of the input text. The NLP Module is
responsible for processing isolated sentences (or sentence equivalents). In particu-
lar, resolution of problems which remain unsolvable without considering larger
context and/or some extra linguistic knowledge will require involvement of the
other system modules, i.e. SAM and DMM (anaphora, identification of event ac-
tors etc.).

At the present stage we were able to test the system's basic understanding func-
tionalities. The following is a sample dialogue performed by the system and the
user. The user was allowed to supply information and to ask questions (see Figure
4). In the dialogue presented in Figure 4, the involvement of the SAM/DMM func-
tionalities was very restricted.

USER: Kowal nosi bluzĊ i czarne spodnie. Kowal i Wolski są na murawie. Kowal i Wolski
naleĪą do bojówki. (Kowal is wearing a blouse and black trousers. Kowal and Wolski are on the
football field. Kowal and Wolski are members of a hooligan squad)
SYSTEM: Zrozumiaáem'(Understood)
USER: Osoba, która nosi czarne spodnie, jest niebezpieczna. Kowal i Wolski atakują
policjantów kamieniami. (The person who wears black trousers is dangerous. Kowal and Wolski are
attacking policemen with stones)
SYSTEM: Zrozumiaáem (Understood)
USER: Kto atakuje policjantów? (Who is attacking the policemen?)
SYSTEM: Kowal. Wolski. Brak dalszych odpowiedzi! (Kowal. Wolski. No more answers!)
USER: Kto jest niebezpieczny? (Who is dangerous?)
SYSTEM: Kowal. Wolski. Brak dalszych odpowiedzi! (Kowal. Wolski. No more answers!)
USER: Czy istnieje niebezpieczna osoba, która nie zostaáa záapana? (Is there a dangerous person
who has not been captured?)

 System: 'Tak, kilka, w szczególnoĞci istnieje: Kowal !' (Yes, a few persons, in particular Kowal!)
l i k (l)

Figure 4. A sample dialogue session

3.2. Dialogue Maintenance Module (DMM)

The DMM's main tasks are as follows:
– DMM receives and processes data structures.
– If the data structure created from a sentence by the NLP Module lacks an

important argument, then DMM consults the informer about its value be-

An SMS-based System Architecture 249

fore passing the structure to SAM. The importance of arguments is ex-
pressed by means of their priorities.

– If SAM needs to confirm or to fill a slot value in a structure (e.g. the color
of clothes of a tracked person – slots correspond loosely to predicate ar-
guments), then the module marks the slot and sends the structure to DMM.
DMM chooses an informer that may have information on the subject based
on the user dialogue history and asks the question.

– For any incoming data structure, DMM needs to decide whether the struc-
ture contains completely new information, or is a continuation of previous
information (then structures should be merged), or is an answer to one of
the previously asked questions.

– DMM tries to maintain and expand the user model. There are different
types of users – information from registered police informers is to be
treated with more trust than information from an anonymous user. User
type influences DMM's communication mode. Some types of informers
cannot communicate with the system too often, because their function can-
not be revealed to people surrounding them, so questions to them should
be grouped and sent rarely. If a user takes too much time answering ques-
tions, DMM will most likely choose somebody (at similar position) else to
ask for urgently needed information.

– One of DMM's most important functions is to solve anaphoric references.
If the NLP Module discovers a reference of this kind (as in "He hit her."),
it marks the corresponding slots. When DMM receives such structure, it
tries to find the referenced value in the recent user dialogue history.

– There is a number of structures that DMM passes to SAM with almost no
processing. These include structures used to indicate that the informer has
asked a question or asked for notification when a described situation oc-
curs (e.g. "Please inform me when Piotr Kowalski enters sector 5."). For
such structures, DMM's task is only to remember which user asked for in-
formation, in order to sent them the answer/notification later.

– As the NLP Module is limited to understanding (questions, affirmative
sentences and orders), DMM is charged with question generation. It keeps
partially predefined questions for values of each slot in each structure, also
in nested structures. It chooses the question form based on the slots that are
already filled (e.g. a question for a person's first name can be formulated
using their surname or nickname) and on the questions that have already
been asked. DMM tries not to repeat question forms or questions. If a in-
former does not answer a question or says that he does not know the an-
swer, DMM remembers the fact and does not try to ask again.

DMM is being implemented in PROLOG. It operates on data structures that
also play the role of transport structures between the NLP Module and DMM, and
between DMM and SAM. The NLP Module fills the structures with as much in-
formation as it can extract from single sentences. As stated in the previous section,

250 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

some of DMM’s most important tasks are merging structures received from the
NLP Module, solving anaphoric references and asking (i.e. choosing and generat-
ing) questions about missing pieces of information that are considered crucial.

Structure merging is based on PROLOG list unification. After receiving a
structure generated from a sentence sent by an informer that had communicated
with the system a short time before, DMM tries to merge the structures. If the
same kind of structure has been received (e.g. one describing a person), but the in-
formation inside is different (or partially different), DMM checks for conflicts. If
there is a conflict, meaning that a value in a particular slot differs among the struc-
tures, then DMM either considers the structures separate (e.g. when different sur-
names are given) or asks for clarification (e.g. when different nicknames are
given, it can ask if they both refer to the same person). When there are no con-
flicts, it is assumed that the information carried by the structures is complemen-
tary, and the structures will be merged. After having merged the structures, or add-
ing a new structure if unification was not possible, DMM checks for missing
information. Every slot in the structures (representing every possible piece of in-
formation that the system is capable of processing) is given a priority value at the
start of the system. If a slot with priority above some predefined threshold remains
not filled, then DMM asks for its value before sending the structure to SAM (it
will send the structure anyway if the informer does not know the answer or if it
does not respond within a given period of time). Thresholds may be different de-
pending on types of informers.

DMM keeps a list of all structures sent by the NLP Module and of all questions
it has asked. Because of this, it is able to assess that an incoming structure is the
answer to one of its questions in a manner similar to structure merging described
in the previous paragraph. Keeping a history of user input allows DMM to choose
the best informer to ask when SAM forces a question by looking through struc-
tures sent by informers and finding one containing similar information (e.g. a
structure in which an informer described an event close to a place about which
SAM want to receive more information).

The situation is very similar when it comes to anaphoric references. If the first
structure sent by the NLP Module, generated based on the informer’s input, de-
scribes an event in which two people participate („Kowalski is throwing stones at
Nowak.”) and the second structure describes a person, but the person is not named
(„He is very aggressive.”), the NLP Module will mark the corresponding slot (rep-
resenting the person’s data) as anaphoric. DMM will then test the latest structures
sent by the same informer, looking for structures representing persons that might
match the event. If in the last event more than two people are present (as is the
case in the example), it will choose the person that was more active. Coming back
to the example: DMM will decide that „he” in „He is very aggressive” is
Kowalski. (Of course, if Kowalski is throwing stones at Nowak, the Situation
Analysis Module will mark him as aggressive anyway.)

The DMM only reasons within one dialogue session. It does not try to merge
structures sent by different informers on its own. It is the Situation Analysis Mod-

An SMS-based System Architecture 251

ule that is responsible for combining information sent by different informers.
When SAM forces a question upon the DMM, the DMM starts a new dialogue
session with the informer.

3.3. Situation Analysis Module (SAM)

The Situation Analysis Module is responsible for collecting knowledge based
on the information from the informers and for reasoning with the knowledge in
order to deduce new facts. Its main tasks are: management of information about
individuals, linking new information about entities with information stored in the
knowledge base, recognizing Event types (using built-in context-related Event
templates) and managing knowledge about Events and Situations (linking partici-
pants of Events and Event type structures, detecting dangerous objects, etc.).

There are three categories of SAM data structures:
a) Structures describing entities and relations between them.
Two types of entities have been distinguished: animate (individuals and

groups) and inanimate (objects, artefacts). Special structures have been added to
represent the relation of possessing objects by individuals and groups. Examples
of entity structures are shown below:

– PERSON(id, name[], surname[], alias[], function, sex, appear-
ance(heightCm, hair_colour, hair_length, eye_colour, skin_colour,
has_moustache, hair_beard, is_dressed, identifying_articles[],
clothes(article, pattern)[]), mood[], physical_state[]),

– GROUP_MEMBER(group_type, person_id, group_id, position_in_group)
– ARTICLE(id, idPolNet, size, colour, is_dangerous),

b) Structures describing Reports, Events and Situations
The most important structures from the point of view of SAM are those repre-

senting Events. Such structures contain current information about real-life, poten-
tially dangerous situations reported by the informers. Examples of Event struc-
tures are shown below:

– EVT_BATTERY(id, aggressors[], victims[], articles[]),
– EVT_UNREST(id, participants[]),
– EVT_DESTROYING(id, participants[], destroyed_place, articles[]),
– EVT_FIGHT(id, participants[], articles[]).

c) Structures describing referential points in space and space-time relations be-
tween entities, Events and places.

The location of entities and Events is represented in the knowledge base by
means of special structures called landmarks. They describe the entities' and
Events' location in the space of referential points. Referring to them by their
names, the informer inputs data about their location, specifying temporal and spa-
tial relations between entities ("individual A is standing next to individual B"), be-

252 Zygmunt Vetulani, Jacek Marciniak, Paweá Konieczka and Justyna Walkowska

tween entities and Events ("individual A is involved in a fight in sector X"), be-
tween Events ("fans of opposite teams met, and then they started fighting"), be-
tween landmarks and entities ("the suspect is in the guests sector), between land-
marks and Events ("riots in the guest sector"), or between different landmarks
(sector A is to the right of sector B). Relations of this type can be static ("to the
north of X") or dynamic ("right behind X's back"). Spatial relations in the Situa-
tion Analysis Module are translated into directional matrices, on which calcula-
tions are carried that determine new space-time relations.

Examples of space-time structures are shown below:
– LANDMARK_SECTOR(place(id, idPolNet, name, place_state(is_peace,

is_smoke, is_fire, people_inside)), team, capacity),
– TIMESPACE_RELATION(object1_id, object2_id, matrixes[],

space_distance, time_distance, orientation).

After consultation with experts a document describing business processes was
prepared. The processes were used to create an experiment during which partici-
pants sent SMS messages reporting observed course of events. Analysis of the col-
lected corpora allowed for creation of predefined Event templates for situations in
the chosen context. Situation details important from the point of view of knowl-
edge processing have been identified. The type of the Event influences the way in
which the dialogue is managed and determines the set of questions asked by the
system. If during a dialogue session it turns out that the informer is describing a
type of Event different from what was assumed at the beginning, the dialogue
mode changes.

When new information is inputted into the system, SAM checks if it is possible
to tie the incoming information (forming a Report) to an Event or Situation al-
ready present in the knowledge base. If SAM suspects that such relation occurs, it
asks questions (i.e. forces the Dialogue Maintenance Module to ask questions) that
may confirm it. After confirming the relation SAM will try to gather missing in-
formation about the Event/Situation.

4. Conclusions

A system based on the presented architecture can satisfy the needs of a number
of user categories. When used in a crisis situation or a potential crisis situation
(e.g. large scale football event or another type of mass event) the system might
have the following users:

The Informer, is a person (not necessarily professional) which reports on an ac-
cident, a crime, an incident, etc. The Informer might be in a state of vexation,
stress or fear. Hence, the data obtained from them may be incomplete or impre-
cise, and the mode of conveying the information may be chaotic or clumsy.

An SMS-based System Architecture 253

The Detective is a employee of emergency services (police, fire service) work-
ing in the field, supposed to report an accident, a crime, an incident or a significant
change in the monitored situation, etc. It is assumed that he/she has been trained to
work under crisis conditions.

The Analyst works for emergency services trained to recognize critical situa-
tions.

The Dispatcher is an emergency services employee responsible for making de-
cisions about the actions that should be taken.

Identification of the above user categories introduces new quality into the tech-
nologies of crisis situation management. Systems with text based communication
competence (as it is the case of POLINT-112-SMS) apt to collect and process
knowledge, open new possibilities to obtain information about events from a large
number of informers in situations that call for quick decisions.

ACKNOWLEDGEMENTS
The research presented in this paper was partially covered by the on-going Pol-

ish Government research grant R00 028 02 "Text processing technologies for Pol-
ish in application for public security purposes" (2006-2009) within the Polish Plat-
form for Homeland Security.

References

Fairon C., Paumier S. (2006): A translated corpus of 30,000 French SMS; in: Proceedings of
LREC 2006. Genova.

Vetulani Z. (1989): Linguistic problems in the theory of man-machine communication in natural
language. A study of consultative question answering dialogues. Empirical approach. Brock-
meyer, Bochum.

Vetulani Z. (1997): A system for Computer Understanding of Texts, in: R.Murawski, J. Po-
gonowski (eds.), Euphony and Logos (PoznaĔ Studies in the Philosophy of the Sciences and
the Humanities, vol. 57) Rodopi, Amsterdam-Atlanta, 387-416.

Vetulani Z., Marciniak J. (2000): Corpus Based Methodology in the Study and Design of Sys-
tems with Emulated Linguistic Competence; in: Dimitris N. Christodoulakis (ed.), Natural
Language Processing - NLP 2000, Lecture Notes in AI, no 1835, Springer, 346-357.

Vetulani Z. (2004): Komunikacja czáowieka z maszyną. Komputerowe modelowanie kompe-
tencji jĊzykowej, Akademicka Oficyna Wydawnicza EXIT, Warszawa.

Walkowska J. (2008): A corpus of real-life and experimentally collected Polish SMS messages
(manuscript).

