

Three Phase Self-Reviewing System
for Algorithm and Programming Learners

Tatsuhiro Konishi, Hiroyuki Suzuki, Tomohiro Haraikawa and Yukihiro Itoh
Faculty of Informatics, Shizuoka University, Japan

Abstract: This paper introduces an electronic report submission system that helps
effective learning of algorithms and programming. It proposes a three-phase
reviewing system that involves self-reviewing of algorithms, self-reviewing of
programs and staff reviewing. This is an improvement of our existing two-
phase reviewing system that only supports the latter two phases. In the
additional phase for algorithmic checking, learners describe an algorithm
graphically using PAD, compile it, and execute it to verify their algorithm first
without being troubled by syntax of a programming language; this supplies
effectiveness to the efficient self-reviewing system.

Keywords: Algorithm, programming, learning, self-review system.

1. INTRODUCTION

This paper introduces an electronic report submission system that helps
the learning of algorithms and programming. Learners’ programs typically
contain numerous mistakes and must be reviewed again and again before
becoming acceptable. While it takes a few hours until the learners can get
staff comment, the turnaround time must be shortened, so as not to distract
the learner’s concentration. Thus we have proposed two-phase reviewing: an
automated self-reviewing phase for improving efficiency of learning, and a
careful reviewing phase by staff.

Although algorithms should be represented independently of any specific
programming language, present algorithm education is filled with language-
dependent explanations and practices. In such a situation it is doubtful that
learners can be conscious of the algorithm itself and some researchers claim
that teaching of algorithms and of programming should be separated (Crews
1998). A flowchart or a PAD (Program Analysis Diagram) is used for
representing algorithms and there are tools for editing and executing
algorithms (Maezawa 1984, Hitachi Systems & Services), however, most of
them still depend on a specific programming language. Therefore we

204 Tatsuhiro Konishi, Hiroyuki Suzuki, Tomohiro Haraikawa and Yukihiro Itoh

develop a language-free algorithm representing system and an algorithm
validation support system, and propose a method of algorithm education
using these systems.

We constructed a three-phase reviewing system that involves self-
reviewing of algorithms, self-reviewing of programs, and staff reviewing, by
improving our existing two-phase reviewing system that only supports the
latter two phases. Through our practical operation, we learned that learners
tend to be hooked on syntax when teachers let them check their code. We are
now implementing a new system that also allows an algorithmic check
before coding. Learners can graphically represent, compile, and execute their
language-free algorithms to verify them without being troubled by syntax of
a programming language; this supplies effectiveness to the efficient self-
reviewing system.

In this paper, we first introduce our two-phase reviewing system. We then
discuss extension of the system, especially methods of assisting algorithm
education and algorithmic check.

2. TWO-PHASE REVIEWING SYSTEM

We had already adopted a self-reviewing system in programming
education to reduce the turnaround time. At first, we thought that a GCC
compiler was sufficient for learners to review their programs locally if its
warning level is maximized. However inspection of submitted reports reveals
that many typical mistakes are not detected as errors or do not receive
warnings. For example, an erroneous code “if (1 <= month <= 12) { … }”
never receives a warning since it is considered as a condition that compares
logical value of 1 <= month (0 or 1) and an integer value 12. The condition
perfectly satisfies C syntax. Such kinds of mistakes are left uncorrected until
staff notice and write a reviewing comment. The fact leads to a long
turnaround time and heavy staff loads. Fortunately we know some code
reliability checkers for embedded systems. For continuous fault-free
operation required for embedded systems, the tools perform strict source-
level analysis to point out any doubtful scraps. Some of them find
meaningless conditions or operators (such as return r++; for a local variable
r), make a string comparison using an operator ==, and even find typical
array-index overruns. We applied such tools to the collected reports, and
employed one product for self-program-reviewing in our two-phase system.

2.1 SELF REVIEWING PHASE

As we supposed, the reliability checker was useful but it was sometimes
unusable for educational use due to too many suggestions or too few detected
mistakes. Also, it has a user interface for professional use. So we decided to
make a ‘wrapper’ of our reliability checker which can both provide flexible
levels of suggestions and a user-friendly interface.

Three Phase Self-Reviewing System 205

We designed an email-based report submission system which sends back
compilation status and source-code reliability analysis immediately. The
email report should consist of the report text as an email body and sources
(and headers) as attachment files. When a recv script receives a report via a
Mail Transfer Agent (MTA), it tears the attachments off and forks to the gcc
and the reliability checker in this order. Subsequently, it sends back the result
by email. The wrapper is designed to suppress or replace some over warning
suggestions for untrained programmers. The wrapper suppresses all strong
suggestions about Y2K problems and code-optimizing directions, and
replaces some suggestions with [Info]s. An original [Info] for “Line 11” in
Fig.1 was “Using a pointer for accessing to array “month[i]” instead could
generate smaller or faster object code.”, which is from the viewpoint of the
embedded tools.

A learner who receives a modified suggestion as a reply can re-submit
their report, and repeat this self-reviewing process depending on their need.
A learner can also browse their submission history, every automatic reply
and additional reviewing comments from a staff including scores (described
in the next subsection) at a web site.

[Reviewer’s Comment] (handtyped)
You must verify the behavior of your program before submitting your report.

[Compilation Errors and Warnings]
 None. (Congratulations!!)
[Suggestions by Reliability Checker]
Line10: Wrong || usage between “1 <= i” and “i <= 12.”
Line9: for statement contains wrong comparison “i > 0.”
Line11:”month[i]” overruns because 12 is assigned to “i” by a for statement at line9.
Line11: [Info] You may use a pointer for accessing to array “month[i].”
Line14: Using an increment or decrement operator to the return value “i++”

makes no effect.
Line7: Variable “month” is not referenced.

Fig. 1: an Example of Feedback (translated)

2.2 STAFF REVIEWING PHASE

Since reports are usually refined repeatedly via a self-reviewing process,
the staff only have to review their best reports; this greatly reduces the
reviewers’ task. The reviewing screen is separated into two panes: the first
one displays scoring buttons, a comment field and a contents selector. The
second one initially displays a summary composed of the compilation status,
reliability analysis and body part of a report. It also shows any source file
selected by a staff. Comments and scores are immediately reflected on the
web site and learners can submit their reports again at this point, too.

206 Tatsuhiro Konishi, Hiroyuki Suzuki, Tomohiro Haraikawa and Yukihiro Itoh

3. THREE-PHASE REVIEWING SYSTEM

We are constructing an improved system based on a three-phase model.
The self-reviewing phase of the previous model is now divided into self-
program-reviewing and an additional phase named self-algorithm-reviewing.
The ideal flow is given below.

The first phase: The phase helps learners to fix their algorithm. A web-
based algorithm editor enables learners to represent algorithms
independently of any specific programming language. A submitted
algorithm is compiled on a server by an algorithm compiler. Learners can
download the object code to execute and verify the algorithm. Learners can
repeat this phase to make their algorithms accurate.

The second phase: This phase helps learners to verify their programs by
themselves. A learner writes his/her program in C language at this phase,
and then submits it with an algorithm representation created in the first
phase. If the program is successfully compiled, a correspondence checker
verifies whether the submitted program is implemented correctly in
accordance with the associated algorithm. In addition to the reliability status,
learners can also inspect the correspondence via a web-based
correspondence viewer.

Fig. 2: Three-phase reviewing system

The third phase: This phase provides staff hand typed comments to
learners. It is similar to the staff reviewing of the two-phase system, except
that the phase now has a potential to provide additional information to the
staff; correspondence between submitted source code and a standard
algorithm written by staff.

We designed this three-phase system (Fig.2) that employs the four
components mentioned above: an algorithm editor, an algorithm compiler, a
correspondence checker, and a correspondence viewer, in addition to the
previous two-phase system. We have constructed these components as
distinct four assisting systems: a language-free algorithm representing
system, a language-free algorithm validation support system, an algorithmic
checker, and the two-phase reviewing system. We adopt the language-free

Student

algorithm
editor

HTML MTA &
recv

algorithm
compiler

report.cgi

gcc

Teacher

Executable
Object DB

PAD
report
+PAD
+src

mail-based
feedback

web-based
revieving

make logslogs

web-based
feedback

correspondence
checker

reliability
checker

src reportPAD

download

JavaWebStart

correspondence
viewer

Three Phase Self-Reviewing System 207

algorithm representing system as the algorithm editor (Shinmura 2003). The
main feature of the language-free algorithm validation support system is used
for the algorithm compiler. The algorithm checker works as the
correspondence checker.

3.1 SELF ALGORITHM REVIEWING

 (1) Algorithm editor and Algorithm representation
Our algorithm editor adopts PAD representation. It has functions to help

users to edit PAD expression easily. Additionally, it should be able to
provide an appropriate operation set to users. In order to decide the set, we
discuss representation policy for each operation. The representation of an
operation has to satisfy the following requirements.
i. Learners can write algorithm by using the representation without

learning any specific programming languages.
ii. The representation includes no ambiguity.
iii. The granularity of the operation should be controllable. Too large

granularity of an operation allows a learner to jump into the goal using
too few operations. On the other hand, if the granularity is too small, a
learner can’t represent his/her algorithm intuitively.

iv. It has levels of both concrete and abstract representations. One of the
essential aims of algorithm education is to make learners learn how to
grasp problem solving procedures in an abstract level. For example,
linked lists can be represented by structures and pointers in C language.
In concrete level, operations on the linked list are described by such
terms as “pointer”, “structure” and so on. However, learners should
consider the solving process abstractly by using terms like “link”,
“node”. So, both concrete and abstract words should be provided to
describe algorithms.

Solution for i and ii: When someone describes an algorithm by any
formal languages, they have to study notations and the grammar of the
language. In order to avoid such extra work, we adopt natural language as a
method of describing an operation. However, unrestricted natural language
may be ambiguous, so we restrict the vocabulary and the sentence pattern.
For learner’s convenience, we prepare acceptable sentences as templates,
and let learners select a template from a menu.

Solution for iii: Appropriate granularity of description depends on the
goals of exercises. Therefore our system allows staff to select an appropriate
granularity by selecting available templates for each exercise.

Solution for iv: In order to let learners represent algorithms abstractly,
the algorithm editor provides templates which correspond to abstract
operations to abstract data structures. We surveyed explanations of
algorithm in textbooks of programming and found 7 typical data structures
used to describe algorithms abstractly; list, binary tree, table, stack, heap,
matrix and queue (Suzuki 2001). Based on the survey, we prepare templates
to represent algorithm abstractly. When a staff member intends to let

208 Tatsuhiro Konishi, Hiroyuki Suzuki, Tomohiro Haraikawa and Yukihiro Itoh

learners represent their algorithms abstractly, they select such templates as
mentioned above.

 Fig.3 shows a screenshot of our algorithm editor. In Fig.3, (1) is the
area for algorithm editing. An example of an algorithm representation is
displayed. (2) shows the list of variables, and (3) is the reduced drawing of
(1). In the area (1), learners draw algorithm representation by mouse
operation, menu selection and keyboard input.

Fig.3: Screenshot of the algorithm editor

(2) Validating algorithms by learners
In order to make it possible to validate algorithms by learners, we have to

develop the function of executing represented algorithms (algorithm
compiler). In our previous work, we constructed a system which converts
abstract representations of operations into source codes in a specific
programming language (Suzuki 2001). We use the system as the algorithm
compiler. With the algorithm editor and the algorithm compiler, a learner
can review their algorithms in the following way: First, a learner downloads
the algorithm editor from the web. Next, he/she writes his/her algorithm by
the editor and saves it as an algorithm file. If he/she wants to execute the
algorithm, he/she submits the algorithm file to our server. Then our system
compiles the algorithm, and creates an executable file. The learner can
locally execute the algorithm and can also validate its behavior.

3.2 SELF PROGRAM REVIEWING

In the second phase, a learner implements the validated algorithm using a
programming language, in order to acquire knowledge on syntax of the
programming language and techniques on implementation.

We think that mistakes in an erroneous program can be categorized into
two types. One is caused by misunderstood syntax or mistyping. The other is
caused by the fact that a learner can’t break down an operation in algorithm
into smaller pieces, or can’t convert operations into a set of statements of a
programming language. Compilers and code reliability checkers can only
check the former mistakes. The latter can be checked by comparing a

Area(3)
Area(1)

Area(2)

bubble_sort(ptr, n):int

retutn

Area(3)
Area(1)

Area(2)

bubble_sort(ptr, n):int

retutn

Three Phase Self-Reviewing System 209

learner’s algorithm representation with his/her source code. The method of
checking such correspondence is as follows (Suzuki 2001):

The correspondence checker breaks down an operation into the smallest
grain-sized operations, which are comparable with statements of a
programming language. When there are some operations represented
abstractly, many possible candidates can be generated from them. The
checker searches for the candidate most similar to the learner’s program.
Through the searching, the checker stores information of correspondence
between operations in the algorithm representation and statements in the
learner’s program.

By using these components, a learner reviews their programs as follows:
at first, a learner writes a program based on their validated algorithm and
submits both the algorithm file and C program to our server. Then gcc, the
code reliability checker, and the correspondence checker work. Diagnoses
by the components are stored in a database and are immediately sent to them
by email. Additionally, they can see the correspondence between their
algorithm and program by using the correspondence viewer that works on a
web browser (Fig.4). Learners can easily find operations/statements which
do not correspond to the program/algorithm. In addition, when a learner
places a mouse cursor on an operation/statement, the statement/operation
which corresponds to it changes its color. By these functions, learners can
confirm whether they correctly implement their algorithms.

Fig.4: Screenshot of the correspondence viewer

3.3 STAFF REVIEWING

Finally, a staff member reviews programs, algorithms, and reports which
are submitted by email. The staff can refer to all the diagnoses given to the
learners. Moreover, they can use the correspondence checker and the
correspondence viewer, in order to compare a learner’s program with a

Colored (red in actual screen)
operations means “not corresponding
to the program”.

Algorithm representation

Program code

partial_sort��

return

Colored statements means
“not corresponding to the algorithm”.

Colored (red in actual screen)
operations means “not corresponding
to the program”.

Algorithm representation

Program code

partial_sort��

return

Colored statements means
“not corresponding to the algorithm”.

210 Tatsuhiro Konishi, Hiroyuki Suzuki, Tomohiro Haraikawa and Yukihiro Itoh

standard algorithm that they write. Such usage makes it easier to find bugs
which are not found by learners.

4. CONCLUSIONS

We proposed a self-reviewing system that realizes efficient and effective
learning of algorithm and programming. The self-reviewing system is a
front-end of our three-phase electric report reviewing system. The new first
phase, self-algorithm-reviewing, allows learners to concentrate on
representing their language-free algorithms in a PAD before writing their
programs. An algorithms sent to the server is internally translated into C
language and compiled. The system makes the object code downloadable by
learners. Learners can repeatedly submit, validate and correct their
algorithms by themselves. Learners write their codes in the second phase of
self-program-reviewing. Formally, the phase includes not only a syntax and
reliability check, but also self-correspondence-check between a learner’s
algorithm and his/her program. The third phase newly provides a staff with
detailed analysis report; that will be of great help in scoring or writing hand
typed comments. Now we are planning to apply the system to actual classes
of algorithm and programming in our university.

5. REFERENCES

T. R. Crews, U. Ziegler (1998): The Flowchart Interpreter for Introductory Programming
Courses. Proceedings of FIE ‘98 Conference, pp.307-312.

H. Maezawa, M. Kobayashi, K. Saito, Y. Futamura (1984): Interactive system for structured
program production, Proceedings of the 7th international conference on Software
engineering, pp.162-171. Florida, United States.

Hitachi Systems & Services, Ltd.: TOPITAL: PAD CASE tool, http://www.hitachi-
system.co.jp/topital/index.html

Hiroyuki Suzuki, Takaomi Sakai, Tatsuhiro Konishi, Yukihiro Itoh (2001): Automated
Evaluation of Learner’s Pro-grams by using Algorithm Representations Independent of
Programming Languages, Proceedings of ICCE2001, vol2, pp.883-890.

K.Shinmura, E.Iida, H.Suzuki, T.Konishi, and Y.Itoh (2003): The Method to Support
Algorithm Learning without Being Distracted by Programming Lan-guages, Proceedings
of ICCE2003, pp.1210-1214.

