
PROVIDING TRANSPARENCY IN THE
BUSINESS OF SOFTWARE:

A MODELING TECHNIQUE FOR
SOFTWARE SUPPLY NETWORKS

Slinger Jansen
s.jansen@cs.uu.nl, Utrecht University, NETHERLANDS

Sjaak Brinkkemper
s.brinkkemper@cs.uu.nl, Utrecht University, NETHERLANDS

Anthony Finkelstein
a.finkelstein@cs.ucl.ac.uk, University College London, UK

One of the most significant paradigm shifts of software business is that
individual organizations no longer compete as single entities but as complex
dynamic supply networks of interrelated participants that provide blends of
software design, development, implementation, publication and services.
Understanding these intricate software supply networks is a difficult task for
decision makers in software businesses. This paper outlines a modeling
technique for representing and reasoning about software supply networks. We
show, by way of a worked case study, how modeling software supply networks
might allow managers to identify new business opportunities, visualize liability
and responsibilities in a supply network, and how it can be used as a planning
tool for product software distribution.

1 SOFTWARE BUSINESSES ARE BLENDS

Individual businesses no longer compete as single entities but as supply chains
(Lambert, 2002). This holds for the software industry as well, where software
products and services are no longer monolithical systems developed in-house, but
consist of complex hardware and software system federations (Ghezzi, 2002)
produced and sold by different organizations. This development has led
organizations to combine their business and components into complex software
supply networks (SSNs), from which they supply end-users with integrated
products. As these SSNs grow more complex, it becomes harder for the participants
of SSNs to make informed decisions on development strategy, responsibility,
liability, and market placement (Gartner, 2005; Grieger, 2003). It also becomes
harder to manage the risk associated with these decisions (Jansen, 2006A).

A SSN is a series of linked software, hardware, and service organizations
cooperating to satisfy market demands. SSN management is different from physical
goods supply chain management (SCM) in two ways. First, software is malleable
after release and delivery, giving rise to the need for extensive maintenance.
Secondly, products delivered to end-users in SSNs are tolerated with much lower
quality levels than other products (Baxter, 2001). A result of the difference between
conventional supply networks and SSNs is that literature on collaboration in supply
networks (Patosalmi, 2003) does not discuss maintenance and how it requires
information about the supply chain. The same holds for other work on SCM, such as
(Lazzarini, 2001), which groups horizontal ties between firms (such as

73

678 ESTABLISHING THE FOUNDATION OF COLLABORATIVE NETWORKS

manufacturers and suppliers), but fails to recognize the importance of leveraging
feedback in such networks, or Lambert and Cooper (Lambert, 2002), who provide a
conceptual framework for SCM without maintenance.

This paper explores the new field of SSN research by presenting a method for
modeling the complex relationships between participants in the supply networks of
composite products and services. By conducting a case study of an organization that
leverages the SSN we demonstrate that SSN models enable participants in supply
networks to reason about business identification, product architecture design, risk
identification, product placement planning, and business network redesign.
Furthermore we demonstrate that modeling relations in supply networks is the first
step in explicitly managing relationships with other participants.

Value chains differ from SSNs in that value chains describe one product only,
whereas SSNs specifically address networks of software systems that interact to
provide software services. Attempts have already been made to model value chains
surrounding large ERP configurations, by Messerschmitt and Szyperski
(Messerschmitt, 2003). Their model cannot represent relationships between for
instance a component-off-the-shelf (COTS) vendor and an application developer,
making their models insufficient to describe a complete SSN. Weill and Vitale’s
(Weill & Vitale, 2001) value chains describe supply networks best, but lack the
accompanying product description required for a software supply network model.

In the following section SSN models are provided, by presenting the participants,
the meta-model, a creation method, and an example. In section 3 the case study
Tribeka is presented. In section 4 applications of SSN models are presented and
discussed. In section 5 a description is provided on how organizations best ready
themselves to participate in a supply network.

2 SOFTWARE SUPPLY NETWORK MODEL

Models for SSNs consist of two parts, a product context and a supply network. A
product context describes the context, in which a software service operates, and the
software products, hardware products, and software services that are required to
provide the software service. A supply network displays all participants in a SSN,
the connections between these participants, and the flows describing the type of
product that is traded across these connections. SSN Participants are any party that
provides or requires flows from another participant in the network. The two
diagrams are complementary in that the product context shows all products that are
traded in their different forms in the supply network.

2.1 Product Context

A software service is the provision of one or more functions by a system of interest
to an end-user or to another software service. A software system is a combination of
independent but interrelated software services, software components, and hardware
components that provides one or more services. There are three types of entities in
the product context, being (1) white-box services and their systems, (2) black box
services, and (3) software and hardware components making up systems. The main
concept for product contexts is that of a software system, which consists of hardware
and software components and when combined and activated these components
provide a service. A software system requires at least one hardware component, at

A modeling technique for software supply networks 679

least one software component, and any number of services. A hardware component
can support any amount of services and software components.

When a software component requires other software components (such as
libraries and COTS) these are drawn under the software component. When a
software component requires software services (such as databases and web servers),
these are drawn under the software component as a service. The hardware on which
the software components are running is drawn left of the systems. It is assumed that
hardware components are complete, and thus do not have dependencies. Systems
that provide services are drawn as containers containing the software components
and services on which they depend. Please see Figure 2 for an example.

2.2 Supply Network

Supply networks connect participants in the network. Furthermore, these
connections are annotated with flows, such as product requirements, product
designs, software components, component assemblies, assembled products,
assembled deployed systems (hardware and software), and services (provided by
these systems). These artifacts all come from decoupling points for software
products (see Figure 1), which is the point at which demand and supply meet in a
supply network.

Figure 1 Product Software Decoupling Points

To date, product software is defined as a packaged configuration of software
components or a software-based service, with auxiliary materials, which is released
for and traded in a specific market (Xu Brinkkemper, 2005). When looking at the
product software production pipeline seven decoupling points can be identified.
First, a development organization can outsource the requirements engineering
process and/or design process (a, b). Also, the developer can choose to release their
source code, binaries, or assemblies of components (c, d, e) to another developing
organization who uses these artifacts as a component to their product, or to a
publisher who releases the product (common for games, where the vendor is rarely
the developer). A software vendor can also choose to release the product itself,
either as a package, or as a deployed system (f). Finally, a vendor can decide to offer
their product to its customer in an application service provider model, where the
vendor sells usage of its product instead of the product itself (g).

Flows are modeled as labels on the arcs between the participants and are
distinguished by different colors and codings. The color indicates whether the
artifacts are source artifact collections, compiled binary artifact collections, or
complete systems and services. The codings are (in order of creation to usage) Req
(requirements), Des (design), Comp (software component), As (software component
assembly), P (software product), Sys (system, including hardware), HW (hardware),

680 ESTABLISHING THE FOUNDATION OF COLLABORATIVE NETWORKS

and finally Ser (services). It is not uncommon for software products going through
iterations of the decoupling points before the product is delivered to a customer. It
can be well imagined that a system designer creates a design, sells the design, and
the software developer starts at the requirements phase again to see what can be
added to the design. To indicate this numbers are used in the codings after the
abbreviation, such as Des2.1, which means that this is the second design for
product 1. In the supply networks we only make this distinction when two
generations of artifacts are produced by different participants.

Figure 2 Example of a WebERP SSN Model

In Figure 2 the example models are presented for a customer requiring a Web
Enterprise Resource Planning (ERP) service. To supply this service internally, the
customer has decided to go with its personal implementer organization who
implements a product WebERP on a newly purchased local database server and a
local web server. The product context displays that to supply Ser.6, P.6 is required.
To run P.6 a server is required that supplies WebERP through a web server
application, in this case Microsoft IIS. On the other side a database server (Sys.5) is
required that manages all the data for WebERP. Both servers, supplied by Dell, run
a different operating system. Furthermore, to provide the WebERP service, a
currency conversion web service is required. As products transition from source
code to product to system, they generally retain the same number, such as for
WebERP; Des.6, As.6, P.6, and Sys.6 are all instances of the same (software)
artifacts sold at their different decoupling points.

A modeling technique for software supply networks 681

Figure 3 Supply Network Legend

2.3 SSN Model Creation Method

To help define the scope of a SSN model, the product context is created. The
product context, which describes the systems that supply software services, must
display all products and services that are specifically required for the service(s) of
interest. Secondly, the participants must be determined. These participants are all
parties that are involved with the products in the product context. The products in
the product context will be presented as flows later. Finally, all relationships must be
established between the participants. Whenever a product or service is traded
between participants, they must be connected by an arc. Once the arc is drawn, it can
be annotated with the type of products and services that flow down this arc. Please
note that there must be a strict consistency between products in the supply network
and the product context. Furthermore, flows are directional, such as software
flowing forward to customers and money or feedback flowing back to vendors.

3 A CASE STUDY: TRIBEKA

We use a case study to demonstrate the SSN modeling technique. The company
under study is Tribeka (http://www.tribeka.com), an organization that attempts to
break through the traditional product software retail supply chain, by delivering
assemblies of components to retail outlets that can be burnt, packaged and turned
into a finalized product on-site. Tribeka, founded in 1996, currently employs twenty
five people and has deployed its systems at large retail chains in the United
Kingdom, such as WH Smith and HMV. Recently Tribeka has opened four high
street outlets where it solely sells software created with Tribeka's SoftWide system.

The Tribeka SoftWide system consists of a server with a large storage memory,
an internet connection, a number of CD and DVD burners, and a high quality cover
printing facility for boxes, CDs, and DVDs. It is capable of creating between 50 and
100 different shrink-wrapped products per hour. The SoftWide system is not solely a
hardware solution, since it is able to deliver the most up-to-date software onto the
retail market. On a daily basis software updates are sent to the SoftWide systems
deployed in retail stores, including price information. The SoftWide system stores
the component assemblies in a coded manner, such that products are only produced
when requested and authorized, using a proprietary auditable licensing system.

3.1 Tribeka Models

An SSN model with two different supply networks is presented in Figure 4. At the
top level of the figure the product context displays two systems, that provide the

682 ESTABLISHING THE FOUNDATION OF COLLABORATIVE NETWORKS

``computer use'' and ``entertainment'' services. The entertainment system requires
the software service ``computer use'' and the game product P.3. The system Sys.2
requires a laptop and Microsoft Windows, before it can actually provide the
``entertainment'' software service.

Traditional software supply is depicted in the ``before Tribeka'' section of the
figure. Here Microsoft is modeled as a software developer, who delivers its product
to Dell. Dell, the hardware manufacturer, deploys the product P.1 onto the laptop
system and delivers Sys.2 to its retailer, PC Store. PC Store sells the system to the
customer, who also purchases a game P.3 with it. P.3 is designed by Game Designer
and the design is sold to the Game Developer, which actually implements the game.
Once game development is finished a collection of source components (As1.3) is
sent to the game publisher. These source components are then compiled, causing the
As2.3 to be shaded, and sent off to a printing facility. Finally, the game publisher
sells the finished products P.3 to a reseller. The reseller then sells the game to PC
Store.

Tribeka takes over from the Game Publisher, the Reseller, and the printing
facility, by directly publishing any product from a software developer to retail
stores. The Game Developer now passes a compiled set of components directly to
Tribeka. Tribeka sends the component assembly to PC Store directly, instead of to a
printing facility and then reseller. The component assembly is then assembled into a
product at the retail store, enabling the latest possible binding for physically sold
software products. Tribeka also has opened three retail stores itself, offering all
products offered through the SoftWide system.

Figure 4: Tribeka Case Study SSN and Product Context

A modeling technique for software supply networks 683

3.2 Tribeka Relationships

The SSN model in Figure 4 shows that Tribeka maintains intensive relationships
with the game developer and with retailers. The presented model is slightly
simplified because in many cases there will be a publisher in between the developer
and Tribeka. As such, Tribeka has three types of participants in the supply network
it deals with: retailers, game developers, and game publishers. Tribeka uses its
SoftWide system to maintain relationships and transport data between these
participants. Publishers and developers send their component assemblies to Tribeka,
which are then uploaded into the SoftWide system, including price information,
license codes, software artifacts, digital manuals, and images for box covers. These
publishers are able to see the status of their products, such as how many sales have
been made and what types of licenses have been distributed. On the other side
retailers access the SoftWide system through their points of sale, which are used to
sell and create software products from the product assemblies supplied by Tribeka.
From Tribeka two lessons can be learnt about SSNs. To be successful in a supply
network an organization must explicitly manage relations with the other participants.
The second lesson is that an organization must observe opportunities to take part in
different parts of the supply network, such as Tribeka's opening of retail stores that
only use the SoftWide system.

4 SSN MODEL APPLICATIONS AND USAGE

We have identified five applications of SSN models being business identification,
product architecture design, risk identification, product placement planning, and
business network redesign. The aim of SSN models is to clarify the blend that is
software business. SSN models are thus used by policy makers, software architects,
and entrepreneurs. Depending on the application, they must make the SSN model on
a regular basis and observe changes, risks, and opportunities. The SSN model can
function as an overview diagram for a business plan or even for year end-reports to
indicate how a software business made profit.

Business Identification - SSN models show the trade relationships for each
participant in the network. These flows can be used to determine the business type
for that participant. When, for instance, a participant receives hardware and software
components and has one system as output this is an integrator (Implementer in the
WebERP example). A participant that receives component assemblies and then
publishes products is a publisher (WebERP publisher in the WebERP example).
Another common example is a supplier that has no input but produces a software
product (software product developer, RedHat in the example). We see that Tribeka
(see Figure 4) functions as a packager and interestingly enough turns the PC Store
into a software product publisher. A participant that has the same input as output is a
reseller. Finally, according to these definitions and due to the absence of a hardware
component input Dell is a hardware producing integrator. These constructs are
commonly encountered in different SSN models.

Product architecture design - In deciding the type of software architecture a
software developer must use, the supply network plays an important part. The
software architecture decides how a product will depend on other products and
services, and this will have far reaching consequences on the future of a software
product. SSN models can thus assist in making architectural design decisions.

684 ESTABLISHING THE FOUNDATION OF COLLABORATIVE NETWORKS

Risk identification - The SSN model uncovers, for instance, that a product
cannot be used without the availability of some component or service. These
dependencies on other organizations, though logical, can be disastrous for
participants further up the supply network. Such a dependency influences the total
cost of ownership of the product, the possibility to internationalize, and even the
future when such a dependency can no longer be fulfilled. This calls for
diversification and architecting for product dependency variability (Jaring, 2004).
The SSN model helps uncover such relations and dependencies. SSN models can be
used by customer organizations to uncover whether they are in possession of certain
products that are unsupported, or whether they are making use of a service that
could easily be terminated. Such investigation is part of portfolio rationalization. A
common vulnerability, for instance, is a custom link between two products, built by
a software implementation service provider, which stops working after an update for
one of the products has been deployed. The SSN models can assist in finding and
eliminating such weaknesses for all participants in the supply network.

Product placement planning - A vendor can use the SSN model to determine
how to market its product, how to inform customers of product news and releases,
and how customers will contact the vendor. The latter is especially important when
looking at pay-per-usage feedback and error feedback (Jansen, 2006b). For example,
when a bug report is sent from a customer to a participant in the SSN the participant
must decide whether to solve this issue or to forward it to another party in the supply
network. Software vendors can choose to sell their products as add-ons to other
products, in combination with hardware (i.e., navigation systems), and as a service
(on-line bookkeeping). Furthermore, software vendors can decide to sell the product
through channels they own (their own site), through resellers, through service
providers, etc.

Business Network Redesign - Participants of the supply network must identify
their business partners and establish different types of relations. SSN models can
thus be used to design business information systems that take into account the
participants of the supply network with which the business will have regular and
even ad-hoc relations. Tribeka for example manages explicitly its relationships with
software developers, publishers, and retail outlets and has created different
information systems and portals for them.

The SSN model reveals business opportunities and risks by making two types of
changes. The first change is to alter the binding times and decoupling points for
products and services. Tribeka is a clear example of this, where it takes the role of
the traditional reseller, but simply assembles the product at a later stage. This
optimization allows resellers to replenish their stock dynamically, saving cost in the
area of stock management, delivery, and deployment. The second type of change is
seen when a change is made to the participants in the supply network, in the form of
acquisitions, split-ups, developers buying new COTS, or customer organizations that
become vendors of products or services themselves. An example of this is when
Tribeka opens their own SoftWide stores.

5 AD-HOC SOFTWARE SUPPLY NETWORKS

The tendency to integrate components from different developers and manufacturers
into new products and components by both customers and integrators has led to a
phenomenon of quickly forming and dissolving of ad-hoc supply networks (Zager,

A modeling technique for software supply networks 685

2000). Many organizations, however, are not specifically adjusted to manage
relations within such ad-hoc networks. Simultaneously, software vendors and
manufacturers are constantly approached by (new) business partners, such as
manufacturers, resellers, and service providers, with bugs, feedback, requests for
changes, and other communication about their software products.

A coalition between participants in a supply network is where participants rely
on each other, yet do not have any of the skills required for collaborative unity
(Zager, 2000), such as organizational measures, structured communication, and
planned durability. Software organizations can profit from the many opportunities in
these ad-hoc supply networks when properly prepared to engage (order of intensity)
in conversations, relations, partnerships, and even alliances with other participants.
These other vendors are willing to create a user and developer community around a
(configuration of) software product(s), which will encourage use of products and
create new solutions and opportunities surrounding them. An example of such a
relationship between software vendors is when Microsoft sends error messages to
product vendors whose products have crashed on Windows. The vendor can opt to
resolve the error independently or in different gradients of intensity with Microsoft.

The SSN modeling technique presented in this paper assists a participant in
understanding how these coalitions are formed. Secondly, a participant must build a
community surrounding its product that unifies external and internal users,
developers, implementers, and integrators of the product. Such a community can be
built using ontologies, portals, customer days, and partner days. Especially portals,
which can be used for the distribution and sharing of knowledge, development and
bug finding tools, are an important factor to create a close network of participants
willing to add value to the community, and thus increase value of a supply network.

To transform a coalition to collaboration relations must be formalized by the
facilitating organization. A clear distinction needs to be made between intensively
and loosely coupled alliance partners. By classifying partners in such a way,
participants can create different circles of trust with partners and users, which will
clarify the different relationships within a supply network considerably for all
participants in a network. A participant in the supply network must at all times be
aware of opportunities to form coalitions, since each customer question could set in
motion the cooperation between multiple participants. The belief that supply
networks must be leveraged by software businesses is further strengthened by
(Duyster et al., 1999) who claim that to craft successful strategic technology
partnerships steps need to be undertaken to strategically position participants,
prepare alliance skills, build a business community, and do smart partner selection.

6 CONCLUSIONS AND FUTURE WORK

SSN models provide a novel manner to perform strategic and risk evaluation in the
business of software. The Tribeka insights can be realized through experience, but
the ability to assess risks a priori is a valuable contribution. This paper presents a
modeling method for SSNs to provide insight into supply networks, enabling
participants to do risk assessment, strategic decision making, product placement
planning, and liability determination. A case study is used for this paper because it is
a proven method to introduce a novel research area, such as SSNs.

The decoupling points are a concept taken from physical product development
and marketing planning. The combination of supply network with these decoupling

686 ESTABLISHING THE FOUNDATION OF COLLABORATIVE NETWORKS

points creates a powerful modeling tool that is generalizable to non-software
products as well. To be able to do so one must define the decoupling points, the
possible range of product decompositions, before creating the supply networks.

Currently we possess a collection of 30+ SSN models from start-ups and
medium to large software enterprises. With these models we are hoping to further
classify different business models for product software. Furthermore we are
experimenting with different flows, such as content, money, and licenses.

7 REFERENCES

1. Baxter, L. and Simmons, J. The software supply chain for manufactured products:
reassessing partnership sourcing. In International Conference on Management of
Engineering and Technology, 2001.

2. Colville, R. and Adams, P.. It service dependency mapping tools provide configuration view.
In Gartner Research News Analysis. Gartner, 2005.

3. Duysters, G., Kok, G., and Vaandrager, M. Crafting successful strategic technology
partnerships. In Research and Design management, issue 4:29:343, 1999.

4. Ghezzi, C. and Picco, G. P.. An outlook on software engineering for modern distributed
systems. In Proceedings of the Monterey workshop on Radical Approaches to Software
Engineering, Venice (Italy), October 8-12, 2002.

5. Grieger, M, Electronic marketplaces: A literature review and a call for supply chain
management research, In European Journal of Operational Research, 2003

6. S. Jansen and S. Brinkkemper. Definition and validation of the key process areas of release,
delivery and deployment of product software vendors: turning the ugly duckling into a swan.
In proceedings of the International Conference on Software Maintenance, September 2006b.

7. S. Jansen and W. Rijsemus. Balancing total cost of ownership and cost of maintenance
within a software supply network. In proceedings of the IEEE International Conference on
Software Maintenance, Philadelphia, PA, USA, September, 2006A.

8. M. Jaring and J. Bosch. Architecting product diversification - formalizing variability
dependencies in software product family engineering. In Fourth International Conference on
Quality Software, pages 154–161, Washington, DC, USA, 2004. IEEE Computer Society.

9. Lambert, D. M. and Cooper, M. C., Issues in supply chain management. In Journal of
Industrial Martketing Management, 2002.

10. Lazzarini, S. G., Chaddad, F. R. and Cook, M. L.. Integrating supply chain and network
analyses: the study of netchains. In Journal on Chain and Network Science. Wageningen
Academic, 2001.

11. Messerschmitt, D. G. and Szyperski, C. Software Ecosystem: Understanding an
Indispensable Technology and Industry (Chapter 6: Organization of the Software Value
Chain. MIT Press, Cambridge, MA, USA, 2003.

12. Patosalmi, J. Collaborative decision-making in supply chain management. In Seminar in
Business Strategy, 2003.

13. Weill, P., Vitale, M., “Place to space: Migrating to eBusiness Models”, Harvard Business
School, 2001

14. Xu, L., Brinkkemper, S., “Concepts of Product Software: Paving the Road for Urgently
Needed Research”, First International Workshop on Philosophical Foundations of
Information Systems Engineering, LNCS, Springer-Verlag, 2005

15. Zager, D. Collaboration on the fly. In AIWORC ’00: Proceedings of the Academia/Industry
Working Conference on Research Challenges, page 65, Washington DC, USA, 2000. IEEE

