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This paper studies virtual organization (VO) creation through an application
of mathematical programming. We present a mixed integer linear
programming (MILP) model to support VO configuration in a virtual
organization breeding environment (VBE). The model allows for multiple
criteria, of which we give several examples: One objective is to minimize total
fixed and variable costs. Another objective is to maximize expected cooperative
efficiency using collaboration history as reference data. We model
collaboration history with bilateral cooperation indices forming a weighted
graph of VBE members. Furthermore, we incorporate capacity risk-measures
in the model, allowing capacity risk minimization.

1. INTRODUCTION

Collaborative network organizations (CNO’s) have become a necessity for
companies who have decided to concentrate on core competencies, outsourcing
other operations. This trend has attracted researchers to study the phenomena related
to CNO’s, and more specific virtual organizations and virtual enterprises
(Camarinha-Matos and Afsarmanesh, 2005). In their earlier paper, Camarinha-
Matos and Afsarmanesh (2003) introduced the concept of virtual organization
breeding environment (VBE), being the platform for agile virtual organization (VO)
creation. The idea of a VBE is that a set of organizations has commonly agreed
cooperation structure, including for instance common ICT infrastructure, strategy,
and processes for agile VO creation.

Our paper focuses on supporting decision-making concerning VO partner
selection. When a VBE identifies a business opportunity, it faces the problem of
finding a good VO configuration that is able to meet the needs of the customer. In
this paper we approach this optimization problem through a mixed integer linear
programming (MILP) model. This approach has been chosen for two reasons. First,
a reasonable size MILP model is computationally solvable and second, it is flexible
to modifications.

Earlier literature presents several optimization-based approaches to VO
configuration. For instance, Wu et al. (1999), Ko et al. (2001), Ip et al. (2004), and
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Wu and Su (2005) have applied integer programming in supporting VO selection.
All of them use total costs as optimality criterion. Extending the solitary cost-
criterion, e.g. Mikhailov (2002), Fischer et al. (2004), Lin and Chen (2004), and Sha
and Che (2005) present models that account for multiple criteria, such as
organizational competitiveness and social relationships. This paper contributes to the
existing literature by, firstly modeling inter-organizational relationships as a
selection criterion, and secondly assessing failure risk of VO operation.

Inter-organizational relations, such as collaboration history, distinguish the case
of VBE based VO creation from traditional supplier selection. This is explained by
the long-term agreements between the VBE members, which enable the collection of
collaboration data. In contrast, in the non-controlled global supplier markets the
collection of such data is practically impossible.

The rest of this paper is structured as follows. Section 2 presents a mixed integer
linear programming model for VO creation. Sections 3 and 4 extend the basic model
catering for inter-organizational relationships and risk measurement. Section 5
concludes and suggests directions for further research.

2. AMIXED INTEGER LINEAR PROGRAMMING MODEL

Our main concern is in VO partner selection. We consider this as a work-allocation
problem, for which we present a mixed integer linear programming (MILP) model.
Sections 2.1-2.3 present the basic model, which Sections 3 and 4 extend by taking
collaboration history and risk measurement into account.

2.1 Variables

Let M = {l1,...,m} denote the set of organizations, i.e. the members of a VBE.
Assume the VBE identifies a business opportunity, which will be performed as a
project to a customer (for more discussion on VO coordination, see e.g. Camarinha-
Matos and Pantoja-Lima, 2001). We model the project with a set of tasks, denoted
by N = {1,..., n}. Tasks 1,...,n constitute the whole project to be carried out. Each
task j € N has a work load w;, which describes the amount of work required (e.g.
person months) in order to perform that task.

In VO creation, the information gathered from VBE members i € M and from
databases includes the following parameters:

C; Jk = capacity, or amount of work that member i € M can perform on task j
(e.g. person months), with probability pi,(k)

pij = probability measure on set C;;, which includes c; ’jk ’s for given i and j

vij = variable costs of member i € M working on task j (e.g. €/person month)

fi = fixed cost of member i becoming part of the VO, i.e. working on at least
one task of the project
fi; = fixed cost of member i starting to work on task j.

The actual decision variable is the work-allocation matrix X;,.,, whose element
x;j denotes the amount of work that VBE member i performs on task j. In addition,
we define the following dummy variables, whose values depend completely on x’s.
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First, let
0, ifx,, =0 eN

AT if x; ; > 0 for at least one j € N.

That is, y; is binary, denoting whether any work in the project is allocated to VBE
member i. Furthermore, let

0, ifx,;=0

Yo =01, ifx,, > 0.

In words, binary y;; denotes whether any work on task j is allocated to i.
2.2 Objective Function

In the basic model we present one criterion, which is cost. Therefore the objective is
to minimize total costs related to each organization’s variable and fixed costs:

m n m
n}};‘Zfiyt"*'ZZ(vi,jxi,j +fi,j)’i,j)’ 1)
i 1(1) J=1 i=1 wn
where X is mxn matrix consisting of x’s and Y is mx(n+1) matrix of y’s.
Interpretation of the sum terms is the following.
(I) Sum of fixed costs for adding a new member to VO
(IT) Sum of fixed and variable costs of each member’s work on tasks
It should be noted, however, that the model is flexible in the sense that some costs
can be ignored if considered irrelevant. On the other hand, the model allows
accounting for completely new criteria, of which some examples are given in
Sections 3 and 4.

2.3 Constraints

The constraints of the optimization problem are divided into three categories,
namely 1) constraints that assure the demands of the project are met, 2) constraints
that care for the feasibility of decision variables, and 3) constraints related to
additional features. Beginning with the project constraints, first the work load of
each task has to be covered:

m

le.’j 2w, VjeN.
i=1
The work allocation may not exceed expected capacities:

|
xl.,jSZpi,j(k)ci'fj VieM,jeN. (2)
k=1
Work loads are non-negative (unless capacity can be transferred inside the VBE):
x,;20 VieM,jeN.

Second, we present the feasibility constraints. The correct values for binary y;’s are
assured with the following constraints:
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ZjeN Xij ZjeN Xij

J .
y, > —c+1 Vie M,
Z jeN W, Z jeN Wi
where € is a lower bound for the amount of work allocated to i in order to have i

considered as an essential VO member.
The following constraints assure binary y;;’s have correct values:

—gand y, <

X

i, 2=, VieM,jeNst E[C,,]>0,

E |C,.’ ; I
where E[C;;] is i’s expected capacity for task j, defined as in (2).

Lastly, the MILP model allows numerous additions and modifications, of which
we give two examples. First, common capacity between several tasks is captured
with a simple additional constraint, €.g. X; ;+X; p<C; b

Second, overwork pricing is captured with a new variable x;;" denoting work that
exceeds expected capacity E[Cij]. The capacity constraint transforms to
XiXi fSE[Ci ;] and x; fS x;; Objective function takes an additional cost term
vij X;; , where v;;" is the variable cost of overwork.

3. COOPERATIVE EFFICIENCY

Organizational collaboration is seldom completely frictionless when compared to
work performed by a single organization. Since organizations have different
physical and social relationships to each other, it is not justified to assume that two
distinct groups of organizations would perform equally well, even with equivalent
intra-organizational competencies. We denote this phenomenon by cooperative
efficiency of organizations.

3.1 Cooperation Measures
We define the bilateral cooperation measure as follows.

Definition 1 Let M be a set of organizations. For each a, b, ¢, d € M, a#b, c#d,
bilateral cooperation measure e, satisfies the following conditions
(i epclR
(i) eny=cha
(ili) e,p>e.q pair (a,b) has higher expected cooperative efficiency than pair
(c,d).

Suppose there is a documented collaboration history between the organizations of
VBE M. This can be modeled for instance as a graph, where nodes are the
organizations of M and edges between the nodes represent successful/unsuccessful
collaboration history. More generally, the edges are weighted corresponding to the
success/failure of past collaboration, measured by a bilateral cooperation measure.
Recently, Lavra¢ et al. (2005) have modeled trust in a VBE through an application
of multi-attribute decision analysis. For instance, their work provides a means for
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measuring efficiency of bilateral cooperation, whereas Pearson et al. (2002) present
a model for the evolution of bilateral relationships.

In the following, we suggest that the cooperative efficiency of a network can be
obtained from bilateral cooperative efficiencies. Let G = (M,E) be a graph whose
nodes are the members of VBE M and edges are weighted with bilateral cooperation
measures between members of M. Let E = {e,;, | a, b € M, a<b} denote the set of
edges, i.e. the bilateral cooperation measures of each pair (a, b) € M. Furthermore,
let PM denote the power set of M, and let Gp(P™\ M, E") denote a graph whose nodes
are the elements of PM excluding set M itself, and edges exist between every two
nodes o, B € (PM\ M), such that o U p = &. Figure 1 illustrates a Gp(PM\ M, EF)
with M = {a, b, c}.

Definition 2 Network cooperation measure is a mapping v: Gp(PM\ M, E?) IR
with the following property. Let AB < M, A # B, then y(A) > y(B) network
organization A has higher expected cooperative efficiency than B.

Hence, the network cooperation measure accounts not only for bilateral cooperative
efficiencies between individual organizations, but also for bilateral cooperative
efficiencies between possible coalitions inside a network. This is necessary, for
instance if a, b, and c get along well twosome, but cannot work together as a triplet.

be

a

£
N

ac ab

b

Figure 1 — Graph Gp(PM\ M, EF) with M = {a, b, ¢}

3.2 Two Examples of Network Cooperation Measures

The following additive measure is defined for e, € (—0,1]:
ADD
e v€ap>
I: Al( AI ,:l (a;cA “e

where A,, > 0 is a weight attached to cooperative efficiency of pair (a,b). The
weights sum up to one. The weighted sum is normalized with the number of edges in
complete graph with |A| nodes. Hence, a network with perfect relationships would
attain a value of one. This measure enables the comparison of two different size
networks.
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For our MILP model we would like to have a linear measure. For that purpose,
let us first define a binary variable z,, € {0,1}, such that

0, ify,=0o0ry, =0
z = .
“ 1, ify,=landy, =1.
In words, z,, denotes whether both a and b have work allocated. For z, we need the
following constraints:

7, <2e ;yb ,andz,, 2y, +y, —1 V{a’b}CM’S't' €0y > 0.

ab —

Then, the following cooperation measure is linear:
}/LIN(Z’E)= Zea,b(f;l + f;;)za,b’
a,beAd
a<b
where Z is mxm matrix of z’s. The bilateral cooperative efficiencies are weighted
with fixed participation costs.

However modeled, the purpose of collaboration data is to highlight such subsets
of a VBE that, based on e.g. historical evidence, have a higher expected cooperative
efficiency than those with unsuccessful or negligible past collaboration. This
phenomenon can be included in our MILP model using cooperation measures.

4. CAPACITY RISK MEASURES

Apart from financial portfolio optimization problems, where risk is usually
measured through fluctuations in profit, in our case it is meaningful to define risk
through fluctuations in capacity. This is reasoned with two facts. Firstly, project
income, i.e. payment from customer, is normally risk-free, excluding force majeure
reasons, e.g. customer’s bankrupt. Secondly, almost all project failures, e.g. quality
defects, material shortages, and unexpected raise in demand, can be reduced to
capacity shortfall.

We shall review two linear risk measures, which are therefore applicable to our
MILP model. First, Eppen et al. (1989) suggest expected downside risk (EDR) be
used for capacity-risk measurement. Applied to our model, expected downside risk
of i’s work on j is

oS Ot

Vc‘ S <Xij
In words, EDR is the expected value of downside difference between allocated work
and capacity. Hence, the summation is taken over such events c; Jk that imply a
shortfall in capacity, if work x;; is allocated.

Expli01tly, EDR is incorporated in our model as follows. For each c;; ke C j» let

*> 0 and ¢; i =0, respectlvely, denote the positive and negative difference of
Cij o —X;;. The correct values of ¢;;" and ¢;* are assured with constraints:

X, —ci+e=ciVieM,jeN,ci; eC,,
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Formula for EDR becomes
EDR k-
Pij = Zpi,j(k)ci,j'
Vc,»’f ;€Cij
The other risk measure we shall review is lower semi-absolute deviation (LSAD),

which was presented by Gustafsson and Salo (2005) in the context of financial
portfolio selection. For our model, LSAD of i’s work on j is calculated as follows:

piy’ = E[C,.,j]— Zk:ci]fr

c,.’fj<E[C,-,j]
Hence, LSAD is the expected downside deviation from expected capacity.

Both EDR and LSAD are interpreted as expected shortfalls from a target value;
in EDR the target value is allocated work, whereas in LSAD the target value is
expected capacity. Both can be incorporated in our MILP model either as linear
constraints, e.g. EDR<r,, LSAD<r,, or as additional costs in the objective function.
However, both approaches require parameter estimations; in the former the accepted
risk-levels (r’s) are to be defined, and in the latter the cost of capacity risk is to be
determined.

5. CONCLUSIONS AND FURTHER RESEARCH

In this paper we have presented a mathematical programming approach to virtual
organization creation. The use of such models helps obtain better understanding of
prevailing conditions and helps answering questions such as “What would be the
structure of an optimal VO?”, “Should the project be performed in a centralist rather
than in a distributed manner?”, “What are the risks related to distributed
manufacturing?”.

We have formulated a mixed integer linear programming model for the optimal
VO creation problem. The objective of the model is to match the core competencies
of different VBE members with the requirements of a project and thereby select the
optimal VO to serve the customer. The most important contributions of our model
are first the modeling of inter-organizational relationships and second, measuring
risk of VO failure.

Topics for future research are manifold. First, our optimization model could be
improved by several features. These include for instance dynamic decision-making
and uncertainties, interdependent risks, hedging against capacity risk, etc. Second,
the effect of incentives, e.g. profit sharing rules, on VO creation should be studied.
Third, VBE member performance measurement models are needed in order to most
efficiently use operative models. For instance, our model raises the need to measure
factors related to cooperative efficiency.
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