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Abstract. The economic order quantity (EOQ) and the economic production quantity 
(EPQ) are well-known and commonly used inventory control techniques. The 
standard results are easy to apply but are based on a number of unrealistic 
assumptions. One of the assumption is that the demand is normally distributed in 
any interval. In several practical cases the assumption about independence of 
successive demands, and consequently demand normal distribution in any 
interval, is not supported by real data. This paper investigates the effects on the 
expected service level (SL) after relaxing normal distribution assumption on the 
demand. The present work shows a possible strategy to use classic inventory 
model, such as EOQ/EPQ model, adopting discrete event simulation analysis to 
quantify model performances under relaxed assumptions. 
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1   Introduction 

The economic order quantity (EOQ), first introduced by Harris [1], and developed by 
Brown [2] and Bather [3] with stochastic demand, is a well-known and commonly 
used inventory control techniques reported in a great variety of hand book, for 
example: Tersine [4] and Ghiani [5]. The standard EOQ and economic production 
quantity (EPQ) results are easy to apply but are based on a number of unrealistic 
assumptions [6]. One of the assumption is that the demand is normally distributed in 
any interval, it is assumed that successive demands are independent and, 
consequently, the accumulated demand over many time units is approximately 
normal. The realization that inventories operate under less than ideal situations gives 
rise to a subset of inventory modeling theory that performs sensitivity analysis on 
models operating under stochastic conditions [7]. Several extensions of the classic 
EOQ/EPQ model have been, Borgonovo [8] presents a good review of them across 
several fields of research. A branch comprises models where the assumption that all 
units are of perfect quality is removed, for a deep literature review you can see Chan 
[9]. Another field of EOQ extended models is focused on deteriorating inventory 
models for perishables management, for a good review you can see Goyal [10] and 



	  

	   	  

Ferguson [11]. Some papers mixed the two proposals to develop a model that better 
fits real practice conditions, for example Inderfurth [12]. Other models modified 
demands assumptions, for example Chao [13] proposed an EOQ model in which the 
demand is characterized by a continuous-time Brownian motion process.  
Limiting the literature review to nonzero lead time EOQ model, Lowe and Schwarz 
[14] performed research on the problem where parameters value are not known with 
certainty and they find that EOQ model is quite insensitive to errors in forecast of 
demand, their research was extended by Hojati [15] in recent years. Also Dobson [16]  
studied EOQ model sensitiveness and his results support the previous conclusions. On 
the other hand Mykytka and Ramberg [17] and later Mahmoud and Younis [18] 
examine the sensitivity of the EOQ model to errors in forecast of demand and they 
found that inaccurate estimation produces considerably different results, Higle [19] 
extends the previous works. There is a good quantity of works about inventory 
analysis through simulation: Meherez and Ben-Arieh [20] studied a model with 
stochastic demand and their simulation experiments reveal that the model is not 
sensitive to demand distribution and parameters accuracy; Naddor [21] states that 
model results depended on mean and standard deviation of demand, but not on the 
specific distribution, also Hebert and Deckro [22] results are quite insensitive to 
demand forecast errors. In contrast Benton [23] states that high measures of demand 
lumpiness resulted in high service level. Even Lau and Zaki [24] state that EOQ 
results depends on demand distribution. The various researchers not always agree 
with one other and the EOQ model sensitivity needs to be more evaluated under 
stochastic conditions [7]. EOQ model apathy for accurate parameter estimation may 
have contributed to low usage of the EOQ Ziegler [25]. While some case study 
reporting EOQ model application can be found, for example De Castro [26], EOQ 
model low usage and poor results in industrial practice are suggested by recent works 
in which corrections to the original model are proposed, for example Persona [27]. 

 2 Purpose  

The purpose of this paper is to investigate the possibility to use discrete event 
simulation to extend the EOQ model in order to relax some of the standard 
hypothesis. In several practical cases EOQ assumptions are not supported by real 
data. The hypothesis about independence of successive demands, and consequently 
demand normal distribution in any interval, is often not guarantee, for example, when 
the manufacture uses at the same time different channels selling goods to address the 
same customers: large scale distribution and traditional retail. In all these cases the 
total demand in a certain period could fluctuate according with a normal distribution 
but the successive daily demands are not independent. Moreover, in many practical 
cases the used time sample to analyze the historical demand is not related to the lead 
time, often a monthly time sample is used to determinate the standard deviation and 
the safety stocks (SS) are calculated consequently. In fact, many manufactures 
experiment that the achieved SL is significantly lower than the SL expected from the 
theoretical EOQ model. Discrete event simulation can be useful to extend classical 
model under more realistic hypothesis. An example of the proposed approach is given 



	  

	   	  

here where are presented the effects on the expected SL, after relaxing normal 
distribution and sampling assumptions on the demand.	  
	  

Table 1. Symbol and definitions 

Symbol Unit Definition 
Di Unit/period Mean demand per i-period in unit 
σi Unit/period Standard deviation for demand per i-period in unit 
dk Unit/day Demand per k-day in unit 
N Day Number of days for simulation 
Np Day Number of days for period 
Cl Euro/batch  Set-up cost in euro per unit 
Cs Euro/ unit*year Stock cost in euro per unit per year 
Maxd Unit Maximum demand for a day in unit 
Mind Unit Minimum demand for a day in unit 
Lt Day Lead time in day 
σt Day Standard deviation for lead time in day 
EOQ Unit Economic production quantity in unit 
SS Unit  Safety stocks in unit 
SLt Rate  Service level, 1 minus the ratio between the number of 

“stock out” and the number of replenishment orders 
issued, while a “stock out” is considered when the 
total demand in a lead time exceeds the mean demand 
over the lead time. 

SL Rate  Service level, 1 minus the ratio between days of 
availability against total days, during the simulated 
period    

SLp Rate  Service level, 1 minus the ratio between available units 
against demanded units, during the simulated period 

3 Simulation model 

This paper is grounded on a discrete events simulation model reproducing a single-
item fixed order quantity system acting under relaxed demand assumption. The model 
was used to quantify the effectiveness of SS, in term of SL, when SS are calculated 
according with the EOQ classic model. The notations used in this paper are illustrated 
in table 1. A set of stochastic functions, provided by SciLab, are used to generate the 
demand, the simulation model was tested performing normal distributed demand and 
then this hypothesis is relaxed.  

3.1 Model validation 

The model validation represents a key aspect of the proposed approach especially 
because the considered discrete event simulation model is use under stochastic 
conditions. Simulation outputs are compared to the results provided by the theory, to 



	  

	   	  

validate the simulation model in a two steps process. First the behavior in term of 
stock during time is analyzed, second the achieved SL under stochastic conditions is 
compared. The first comparison, shown in Fig. 1, is performed for both: the 
deterministic EOQ model, where the demand is constant, and the stochastic EOQ 
model, where the demand is normally distributed. The figures shows that the 
simulation results fit with the standard EOQ theoretical model. 

	  
Figure 1. Inventory level for deterministic (left) and normal distributed (right) demand 

The second part of the validation process considers the achieved SLt to compare 
simulation results to theoretical expected values. The SL used in the validation 
process is named SLt defined according with the EOQ theoretical model as: 1 minus 
the ratio between the number of “stock out” and the number of replenishment orders 
issued, while a “stock out” is considered when the total demand in a lead time 
exceeds the mean demand over the lead time. This definition of SLt is used only to 
validate the simulation model, while findings are presented in term of redefined SL 
and SLp in order to have a more relevant definition for industrial practice. This second 
step of validation process involved only the stochastic model where the demand is 
normally distributed.  

	  	  	   	  
Figure 2. SLt course for a SL target of 50% (left) and 95% (right) 

The comparison of SLt reveals a discretization problem when the model is 
implemented. In each day the model does these actions: 

1. puts the incoming order to stock, increasing the inventory level; 
2. fulfills the outgoing order, decreasing the inventory level; 
3. checks the inventory level. 



	  

	   	  

The theoretical EOQ model is a mathematical continuous model where all these 
actions occur at the same time and where an order to refurnish stock is placed when 
the inventory level reach the reorder point, whatever is the time instant. This 
continuous behavior could not be implemented in the developed simulation model 
where the check of the inventory level is done once in a day.  The logical sequences 
used in the simulation model are two: sequence A (pre) and sequence B (post). In 
sequence A the simulation code performs, for each day, the actions in this order: 2-1-
3 and this overestimates the inventory level. In sequence B the code performs: 2-3-1 
and this underestimates the inventory level. The validation process considered the SLt 
achieved with SS calculated according with the theoretical model, for a target of 50% 
SLt (that means zero SS) and for a target of 95% SLt. As shown in Fig. 2 the results 
are very different, in fact the gap between simulation outputs and theoretical expected 
values is relevant for a low SLt target but this gap shrinks when the SLt target grows. 
According with the fact that EOQ model is often used with high SL target, it is 
possible to validate the simulation model independently from the used sequences (A 
or B in this case). For the simulations the used sequence is B.    

3.2 Model implementation and experiments set 

To prove the effectiveness of the proposed approach, the simulation experiments are 
developed to investigate the correlation between demand distribution and time 
sampling and expected SL. Demand is a normal distributed demand if the considered 
time sample is equal to a month and its shape is described by a minimum (Mind) and a 
maximum (Maxd) value for the daily demand.  
First the stochastic demand is generated, then the SS are calculated and the simulation 
model runs. Each simulation is performed with SS calculated but three different 
demand time sample are used to calculate σi. Time sample is set equal to: 

1. a month; 
2. a month, with SS calculated according with σi taken in the worst case; 
3. the lead time, with SS calculated according with σi taken in the worst case.  

In the first case demand time sample is set equal to the period of time used even for 
the stochastic generation of the demand, in other word, using this time sample the SS 
are calculated according with the imposed standard deviation used to generate the 
demand. In the second case the standard deviation σi of the generated demand is 
calculated Np time and at each time the initial day of the period is translated by one. 
The SS are calculated according with the standard deviation σi of worst case, so the 
actual value of σi is considered. In the third case the time sample used is the lead time 
and the SS are calculated according with the worst possible case according with the 
procedure described above. The simulation results are given in terms of achieved SL 
and SLp. The demand generation function is developed to be set with the parameters 
commonly available in practice. To characterize the stochastic demand the used 
parameters are: demand mean Di and σi demand standard deviation, both referred to a 
monthly time sample, maximum demand Maxd experimented in a single day and 
minimum demand Mind  experimented in a single day. The demand generation 
process acts as described below: 



	  

	   	  

1. The demand Di is randomly generated for the i-period, according with the 
assumption of normal distribution period by period; 

2. The Di period demand is divided into a defined number (Np) of single daily 
demand (dk) according with the following assumption: 

a. dk  must be higher than Mind; 
b. dk  must be lower than Maxd; 
c. the dk daily demand are uniformly distributed between Mind and 

Maxd;  
d. the mean of the demand in the period is equal to Di. 

 
Table 2. Used parameters set 

Parameter Set value 
Di 100.000,00 
N 10.000,00 
Np 20,00 
Cl 200,00 
Cs 1,00 
Lt 5,00 
σt 0,00 
Imposed SL 0,95	  

	  
 
To investigate the influence of  Mind and Maxd at different level of σi all the other 
parameters of the model are set to specific values. The simulation model parameters 
are set in order to be representative for small-medium manufactures operating in the 
food sector. The used set is illustrated in table 2. The experiments investigate the 
various combination between Mind and Maxd at different level of σi. The experiments 
were performed to investigate the range of  Mind between 0 to Di/2*Np (in this case 
from 0 to 2.500 units, with a step of 500 units) and the range of Maxd from Di/Np to 
Di (in this case from 5.000 to 100.000 units, with a step of 2.500 units). The demand 
monthly standard deviation σi varies from 0 up to the 20% of Di (in this case from 0 to 
20.000 units, with a step of 5.000 units), in order to simulate a scenario of long term 
demand stability and a scenario of long term demand fluctuation. 

4 Findings 

The presented experiment implies a number of 1.170 simulations, each of them is 
performed three times according with the choose time sample to evaluate σi and the 
consequent SS value, and each simulation provide two results: achieved SL and SLp. 
The results can be represented with diagrams as shown in Fig. 3. The generated 
demands Di were analyzed to check the assumptions described in chapter 3.2. The 
assumptions: a, b and c are always respected while the assumption  d is not always 
guarantee. A level of 98% of Di is undertaken to accept the results of the experiments. 
According with this threshold value, it is possible to observe that the assumption is 
not respected when the maximum value admitted for Maxd is small, lower than 12,5% 



	  

	   	  

of Di. This area is not very interesting because under these conditions the model acts 
as the standard EOQ model. The imposed value of σi (considering the worst case 
using a time sample of a month) is respected only for the simulation with a low 
admitted Maxd. In all the other cases the variables Mind and mostly Maxd drive the 
actual value of σi. that became almost independent from the initial imposed value, see 
Fig 3. The results show how the achieved service level is significantly lower than the 
imposed value of 95%  and the behavior of SL and SLp is similar. 
  

   	  

    
Figure 3. Achieved service level SLp and related SS for σi= 0 under relaxed assumption using 

different time sample (month on the left and lead time on the right) 
 

    

Figure 4. Actual values of σi  in simulations at different values of imposed for σi: 00% and 20% 
 



	  

	   	  

5 Conclusions 

The present work demonstrates that discrete event simulation approach can be useful 
to investigate EOQ model behavior under relaxed assumptions. Simulation technique 
can be useful to extend a mathematical continuous model even thought validation 
process has to be handled carefully because of discretization problems. In the 
presented example this approach is implemented to study the correlation between 
demand shape, sampling problems and achieved SL. The results show that when 
demand normal distributed hypothesis is removed the complexity of the EOQ model 
becomes very high and experimenters has to face different problems such as: how to 
describe demand shape and sampling problems. Moreover discrete event simulation 
model gives outputs for a specific parameters set and this prevents to enlarge 
automatically the results.  
Although the previous considerations, the simulation experiments reveal that under 
relaxed demand assumptions the EOQ model performances are significantly different 
from theory. The achieved service level (SL) is significantly lower than the imposed 
value (in this case 95%). The expected SL depends on demand lumpiness that in these 
experiments is characterized by Maxd, Mind and σi. The results shows that the 
expected SL is strongly related to the maximum demand Maxd admitted in a single 
day. High values of SL can be observed when Maxd is small, in these cases the model 
behavior is very similar to standard EOQ model. In general the achieved SL falls 
when Maxd grows and this effect is grater at small Mind values, when the minimum 
demand admitted in a single day is close to zero. The periodic demand standard 
deviation σi seems to have a small influence on SL. Comparing a scenario with low σi 
with a scenario with high σi the results show a slight reduction for the achieved SL 
associated with an increase of the safety stocks SS. This SL reduction is appreciable 
for small values of Maxd and for high values of Mind, when demand lumpiness is low. 
About the time sample used to calculate σi, and SS, results show that, even with demand 
relaxed assumptions, a time sample equal to the lead time assures a good trade-off 
between SL and SS.	  
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